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Abstract

Automatic identification of salient aspects from user reviews
is especially useful for opinion analysis. There has been sig-
nificant progress in utilizing weakly supervised approaches,
which require only a small set of seed words for training
aspect classifiers. However, there is always room for improve-
ment. First, no weakly supervised approaches fully utilize
latent hierarchies between words. Second, each seed word’s
representation should have different latent semantics and be
distinct when it represents a different aspect. In this paper we
propose HDAE, a hyperbolic disentangled aspect extractor
in which a hyperbolic aspect classifier captures words’ latent
hierarchies, and an aspect-disentangled representation models
the distinct latent semantics of each seed word. Compared to
previous baselines, HDAE achieves average F1 performance
gains of 18.2% and 24.1% on Amazon product review and
restaurant review datasets, respectively. In addition, the em-
bedding visualization experience demonstrates that HDAE is a
more effective approach to leveraging seed words. An ablation
study and a case study further attest the effectiveness of the
proposed components.

Introduction
Researchers have begun to focus on aspect extraction, the
automatic detection of fine-grained segments with predefined
aspects (Hu and Liu 2004; Liu 2012; Pontiki et al. 2016),
due to its potential for downstream tasks. For example, as-
pect extraction benefits users and customers when searching
through review segments for aspects of interest on the In-
ternet. Aspect extraction is also crucial for document sum-
marization (Angelidis and Lapata 2018), recommendation
justification (Ni, Li, and McAuley 2019), and review-based
recommendation (Chin et al. 2018).

Aspect extraction research can be divided into supervised
approaches, unsupervised approaches, and weakly supervised
approaches.1 Among these, many studies have been con-
ducted on weakly supervised approaches (Karamanolakis
et al. 2019; Angelidis and Lapata 2018; Zhuang et al. 2020)
since they allow the model to be trained without substan-
tial human-labeled data. For example, Angelidis and Lapata
(2018) initialize fine-grained aspect representations using

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1We touch on unsupervised and supervised approaches in the
related work section.

Figure 1: a) Seed word color and its hypernym pairs. b) An
illustration of latent semantics under seed word picture. For
example, in the TV domain’s image aspect, pixel of picture
and screen picture exist.

only a small number of descriptive keywords, or seed words,
to identify highly salient opinions in review segments. Also,
Karamanolakis et al. (2019) propose a student-teacher frame-
work that more effectively leverages seed words by using a
bag-of-words classifier teacher.

However, there is room for improvement in such seed word
based methods. First, they neglect to consider the latent hier-
archies between words, and it is assumed that capturing latent
hierarchies between words will further improve seed word
based methods on aspect inference, for instance by better
identifying and organizing seed words and their hypernym
pairs (Huang et al. 2020; López, Heinzerling, and Strube
2019). For example, as shown in Fig. 1(a), the general seed
word color near the top can be used to find the more specific
words blue or green in the middle, after which even more spe-
cific words can be found such as ultramarine or azure celeste.
If seed words or their hypernym pairs exist in one review
segment, the model can infer that it is of the corresponding
aspect.

To allow the model to fully capture latent hierarchies be-
tween words, we introduce hyperbolic space (Nickel and
Kiela 2017; Murty et al. 2018; Xu and Barbosa 2018; López,
Heinzerling, and Strube 2019; López and Strube 2020). Com-
pared to Euclidean space, hyperbolic space effectively en-
codes hierarchical structure information (Nickel and Kiela
2017), the latent hierarchies between words in this paper. In
particular, when embedding tree-like structures, compared
to the volume in Euclidean space, which leads to high dis-
tortion embeddings (Sa et al. 2018; Sarkar 2011), volume in
hyperbolic space grows exponentially and can embed trees
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with arbitrarily low distortion (Sarkar 2011; Nickel and Kiela
2017). By virtue of such a hierarchy, a seed word based model
can better identify and utilize seed words and their hypernym
words and thus achieve better aspect inference in hyperbolic
space.

Second, existing seed word-based approaches model each
seed word representation in a uniform manner while neglect-
ing the fact that each seed word should have different latent
semantics when conducting aspect extraction. For example,
for the Amazon product review dataset (Angelidis and Lapata
2018), in the TV domain’s picture aspect, the latent seman-
tics under the seed word picture can be pixel of the picture,
screen picture, or HD picture, as shown in Fig. 1(b). It is
essential to select the most relevant latent semantics of the
seed word when using the seed word picture to infer review
aspects of segments. Furthermore, the latent semantics of
the seed word should be different in different aspects: this is
also neglected by the current uniform representation. Such a
uniform approach to modeling seed words tends to result in
sub-optimal representations.

Thus, we propose HDAE, a hyperbolic disentangled as-
pect extractor which captures words’ latent hierarchies and
disentangles the latent semantics of each seed word. First,
we propose a hyperbolic aspect classifier, using a hyperbolic
distance function to calculate the relationship between the
segment vector and the aspect representation generated from
the seed word. Second, we introduce an aspect disentangle-
ment module to model each seed word’s latent semantics and
then generate an aspect-refined representation of each review
segment by selecting the most relevant latent semantics. In
addition, we propose aspect-aware regularization to model
each latent semantic meaning under its aspect scope while
encouraging the independence of different latent semantic
meanings. We conduct experiments on two datasets, demon-
strating that HDAE achieves better aspect inference, which is
further substantiated by embedding visualizations. We also
provide two case studies to investigate HDAE’s aspect infer-
ence ability compared with baselines without fully capturing
words’ latent hierarchies and the interpretability of the seed
words’ disentangled latent semantics.

We summarize our contributions: first, we propose a novel
hyperbolic disentangled aspect extractor. To the best of our
knowledge, this is the first work to investigate how to lever-
age hyperbolic components and disentangled representations
for weakly supervised approaches to aspect extraction.2 Sec-
ond, we propose a hyperbolic aspect classifier which captures
word’s latent hierarchies and generates associations between
the review segment and aspects of interest. Third, we intro-
duce the aspect disentanglement module and aspect-aware
latent semantic regularization to model the latent semantic
meaning of each seed word. Experiments and a case study
demonstrate the effect of the proposed methods for aspect
extraction.

Related Work
Aspect Extraction In addition to weakly supervised ap-
proaches, there are also supervised approaches and unsuper-

2The codes is at https://github.com/johnnyjana730/HDAE/

vised approaches. Supervised neural networks achieve better
performance than traditional rule-based approaches by view-
ing aspect extraction as a sequence labeling problem which
can be tackled with hidden Markov models (Jin, Ho, and Sri-
hari 2009), conditional random fields (Yang and Cardie 2012;
Mitchell et al. 2013), or recurrent neural networks (Wang
et al. 2016; Liu, Joty, and Meng 2015). However, super-
vised approaches require large amounts of labeled data for
training. Unsupervised approaches, in contrast, do not use
annotated data. Early examples are latent Dirichlet alloca-
tion (LDA)-based methods (Chen, Mukherjee, and Liu 2014;
Garcı́a-Pablos, Cuadros, and Rigau 2018). Recently, neural
network-based methods (Iyyer et al. 2016; Srivastava and
Sutton 2017; He et al. 2017; Luo et al. 2019; Shi et al. 2020)
have shown remarkable performance and have outperformed
LDA-based methods. However, unsupervised approaches are
not effective when used directly for aspect extraction (Kara-
manolakis et al. 2019; Angelidis and Lapata 2018; Tulkens
and van Cranenburgh 2020). For example, many-to-one map-
ping or high-resolution selective mapping is required by He
et al. (2017) and Shi et al. (2020) to manually associate the
model-inferred aspect with gold-standard aspects.

Hyperbolic representations have been used to model
complex networks (Krioukov et al. 2010; Nickel and Kiela
2017, 2018; Tay, Luu, and Hui 2017; Gülçehre et al. 2018;
Huang et al. 2020) and have proven more suitable than Eu-
clidean space in representing hierarchical data (Sala et al.
2018; Nickel and Kiela 2017). For example, López and Strube
(2020) introduce hyperbolic representations to capture latent
hierarchies arising from the class distribution for multi-class
multi-label classification. Aly et al. (2019) use Poincaré em-
beddings to improve existing methods for domain-specific
taxonomy induction. Le et al. (2019) propose utilizing hyper-
bolic representations to infer missing hypernymy relations.
Sun et al. (2021) show that points in hyperbolic space can be
more concentrated while maintaining the desired separation
and revealing nuanced differences. To our knowledge, this is
the first work to apply hyperbolic representations to weakly
supervised approaches for aspect extraction.

Disentangled representations improve model perfor-
mance by identifying and disentangling latent explanatory
factors in the observed data (Yoshua Bengio and Vincent
2012) and have shown their success in the NLP domain (Shen
et al. 2017; Zhao et al. 2018; Chen et al. 2019; Hu et al. 2017).
For instance, Hu et al. (2017) propose disentangled repre-
sentations with designated semantic structure, which gen-
erates sentences with dynamically specified attributes. Hou
et al. (2021) derive disentangled representations which sepa-
rate the distinct and informative factors of variations to im-
prove content-based detection. Disentangled representation
has been successively applied to the recommendation (Ma
et al. 2019b,a; Hu et al. 2020) and computer vision (Liu
et al. 2020; Dupont 2018) domains. For example, Wang et al.
(2020) model diverse relationships and disentangle user in-
tents to achieve better-performing representations. To our
knowledge, this is the first work to apply disentangled repre-
sentations to weakly supervised approaches for aspect extrac-
tion.
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Preliminaries
Problem formulation The goal of aspect extraction is to
predict an aspect category ai ∈ AC = {aj}Kj=1 given a re-
view segment xs = {x1, x2, ..., xT} from a specific domain
dC, where the review segments are created by splitting each
review in the corpus; xi is the word index in the segment;
ai is an aspect and AC refers to the aspect set pertaining to
domain dC; K is the number of total aspects and T is the
segment’s length.
Hyperbolic Geometry We introduce two hyperbolic mod-
els:3 the Poincaré ball model and the Klein model.
The Poincaré ball model is defined as a Riemannian man-
ifold Pn = (β ,gβx ), where βn = {x ∈ Rn : ||x|| < 1} is
an open unit ball, with the metric tensor gβx = λ2

xg
E , where

λx = 2
1−||x||2 ; gE is the Euclidean metric tensor. The distance

on the manifold is defined as

dP(x, y) = arcosh
(
1 + 2 ||x−y||2

(1−||x||2)(1−||y||2)

)
. (1)

The Klein model is given by Kn = {x ∈ Rn : ||x|| < 1}
and is often used for aggregation since the Einstein mid-
point (Gülçehre et al. 2018) can be easily computed in the
Klein model. Formally, a point in the Klein model can be
obtained from Poincaré coordinates by

Pn → Kn : πP→K(xK) =
2xP

1 + ||xP ||2
(2)

and the backward transition formulas

Kn → Pn : πK→P(xP) =
xK

1 +
√
1− ||xK||2

. (3)

For the Poincaré ball model, the exponential map, from
tangent space to hyperboloid manifold, expx: TxP → P , and
the logarithmic map, from hyperboloid manifold to tangent
space, logx: P → TxP , can be found in Liu, Nickel, and
Kiela (2019). For simplicity, we denote dexpP as the hyper-
bolic distance of the tangent space vector after applying the
exponential map:

dexpP (x, y) = dP(exp0(x), exp0(y)). (4)

Methodology
Euclidean Aspect Extractor
Our work builds on the seed word based model developed
by Angelidis and Lapata. We describe the method, including
segment representation generation and the aspect classifier.

Segment Representation For each review segment xs =
{x1, x2, ..., xT}, the segment representation vs is generated
by a weighted sum of an individual word:

vs =
n∑

i=1

civxi
(5)

ci =
exp(ui)∑n
j=1 exp(uj)

;ui = v⊤
xi

· M · v′s, (6)

3For more details; see Robbin and Salamon (2011).

where vxi is the vector of the i-th word xi; v′
s is average

of the segment’s word vector; and M ∈ Rd×d denotes the
attention matrix.

Euclidean Aspect Classifier To predict a probability dis-
tribution over K aspects, the vector vs is fed to a hidden
classification layer followed by the softmax function:

pas = softmax(Wvs + b), (7)

where W and b are trainable parameters. To focus on the
aspect of interest, for each aspect ai, which has seed words
[si,1, si,2, ..., si,N ], the model generates the aspect vector ai
by using the labeled aspect seed words:

ai =
N∑
j

zi,jsi,j ;A = [a⊤i ; ...; a⊤K], (8)

where A ∈ RK×d denotes the aspect matrix; and si,j denotes
the j-th seed word representation; the weight vectors zi,j
are determined by the method mentioned in Angelidis and
Lapata (2018); and N is the number of seed words. Then, the
segment reconstructed vector rs is generated based on the
aspect vector:

rs = A⊤pasps . (9)

To optimize the performance, the model is trained by re-
construction loss, which maximizes the distance between
inner product rsvs and rsvn, where vni

is the vector of a
randomly sampled negative segment.

Jr(θ) =
∑
xs∈C

kn∑
i=1

max(0, 1− rsvs + rsvni
), (10)

Hyperbolic Disentangled Aspect Extractor
Here, we present HDAE, a hyperbolic aspect classifier with
an aspect disentanglement module proposed to model multi-
ple latent semantic meanings for each seed word according
to its aspect category.

Hyperbolic Aspect Classifier To infer the review seg-
ment’s aspect probability pais in hyperbolic space, we follow
Balazevic, Allen, and Hospedales (2019) in using the hyper-
bolic distance function and biases to calculate the relationship
between segment vector vs and aspect representation ai as

pai
s = −dexpP (vs, ai)2 + bv + bai . (11)

Then, to generate the reconstructed embedding rs, the
Einstein midpoint is used to aggregate hyperbolic aspect
weights, with a simple form in the Klein disk model:

rs = log0(πK→P(
∑

ai∈AC

kiγ(aK
i )∑

j kjγ(aKj )
aKi )) (12)

ki = exp(βpai
s − c), (13)

where aK
i = πP→K(aPi ); aPi denotes the Poincaré aspect

embedding; aPi = exp0(ai); β and c are set parameters;
and Lorentz factors γ(t) = 1

(1−||t||2)1/2 .
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Aspect Disentanglement Module To generate multiple
latent semantic meanings for each seed word, we propose
a disentangled semantic representation. Then, we present
aspect-aware regularization, which models latent semantic
vectors for each seed word, after which we discuss refined
seed word representation.
Disentangled Semantic Representation For aspect ai, we
devise a representation function to output a disentangled
semantic vector sdi,j for the j-th seed word si,j , which is
composed of I independent components:

sdi,j = (sd1
i,j , sd2

i,j , sd3
i,j , ..., sdI

i,j), (14)

where disentangled semantic vector sdk
i,j is generated by

adding a standard Gaussian random variable to the original
seed word representation si,j .
Aspect-Aware Regularization This models the latent se-
mantic representation of each seed word according to its
aspect category and has three objectives, as shown in Fig. 2:
(a) seed word dependence, (b) latent semantic independence,
and (c) aspect scope confinement, which are controlled by
latent semantic modeling distances d1, d2, and d3.

Figure 2: The proposed aspect disentanglement module gen-
erates disentangled semantic representations for each seed
word and models latent semantics using (a) seed word de-
pendence, (b) latent semantic independence, and (c) aspect
scope confinement.

Seed Word Dependence The interdependence between seed
word pairs sheds light on the modeling of the seed word’s
latent semantics within the scope of its aspect. For example,
for seed word design in the boot domain’s look aspect, the
latent semantic meaning, which facilitates fine-grained aspect
inference, can be color design, design style, cute design, and
attractive design. The desired latent semantic meaning can
be modeled by narrowing the gap between either the latent
semantic meaning of design and the latent semantic meanings
of other seed words, such as color, style, cute, and attrac-
tive in the same look aspect. Likewise, in the TV domain’s
service aspect, latent semantic meanings shipping service,
replacement service, and delivery service can be generated by
minimizing the distance between either the latent semantic
meaning of service and that of shipping, replacement, and
delivery, which are seed words in the same aspect.

To model the interdependence of seed word pairs, we
use the hyperbolic distance function dP() to achieve fine-

grained relationship modeling, since hyperbolic space offers
the ability to not only preserve hierarchical (tree-like) in-
formation (Nickel and Kiela 2017; Zhang and Gao 2020;
Gülçehre et al. 2018; Chami et al. 2019) but also nuanced
differences (to better group them) (Sun et al. 2021; Tai et al.
2021) and outperforms Euclidean counterparts in various
kinds of data (Zhang and Gao 2020; Gülçehre et al. 2018;
Chami et al. 2019, 2020; Sun et al. 2021; Tai et al. 2021).
Thus, it is assumed that with more space (hyperbolic space)
to organize points, the model can divide disentangled rep-
resentations and better group them. Given seed word pairs
such as design si,j and color si,j′ in the specific aspect, we
require at least one latent semantic pair distance to be close
enough:

sim(si,j , si,j′) = argmin{

dexpP (sdk
i,j , sdk′

i,j′)|s
dk
i,j ∈ sdi,j , sdk′

i,j′ ∈ sdi,j′}
(15)

Jd1(θ) =
∑

ai∈AC

N∑
j=1

N∑
j′=j+1

max(0,

sim(si,j , si,j′)− d1),

(16)

where sim outputs the minimal distance from all possible
seed word latent semantic meaning pairs; d1 is the inter seed
word alignment distance, which maintains two latent seman-
tic meanings within a certain distance. Intuitively, for differ-
ent aspect word pairs, the alignment score should be different,
as in Wang et al. (2020). For example, in the boot domain’s
look aspect, the seed word dependence between design and
color should be more significant than design and going. We
leave this to future work.
Latent Semantic Independence Latent semantic meanings
should be distinct from each other. Independent latent se-
mantic meanings reduce redundancy and confusion in aspect
inference. To achieve this, we maintain the distance between
the seed word’s latent semantic meanings.

Jd2
(θ) =

∑
ai∈AC

N∑
j

I∑
k=1

I∑
k′=k+1

max

(0, d2 − dexpP (sdk
i,j , sdk′

i,j )),

(17)

where d2 is the latent semantic distance.
Aspect Scope Confinement For each seed word, all latent se-
mantic meanings should be limited in terms of aspect scope.
For example, in the boot domain’s color aspect, all latent
semantic meanings of seed word style should refer to color’s
style. However, in the look aspect, all latent semantic mean-
ings of the same seed word style should refer to outlook style.
To thus limit all latent meanings of a seed word to its aspect
scope, we introduce another regularization:

Jd3
(θ) =

∑
ai∈AC

N∑
j

I∑
k=1

max(0, dexpP (sdk
i,j , ai)− d3), (18)
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where d3 is the aspect scope confinement distance and ai is
the aspect representation from Eq. 8. Note compared to seed
word dependence and Eq. 16, which focuses on dependence
between seed word pairs, Eq. 18 ensures all latent semantic
meanings are modeled within the specific aspect scope.
Refined Seed Word Representation This constructs refined
seed representations based on its latent semantics. For each
seed word, the latent semantics should be independent from
each other; only one latent semantic meaning should be used
to find the aspect relevant content. For example, for the boot
domain’s look aspect, possible latent semantics of seed word
style include cute style, casual style, or attractive style; as
we can see these latent semantics are of different meanings,
and combining them together may led to a sub-optimal seed
word representation. Also, according to each review segment,
the most relevant latent semantic meaning should be selected
when predicting its aspect distribution. Thus, we introduce
the Gumbel softmax, a differentiable softmax function for
generating discrete variables, and use this to generate the
desired refined seed word representation sri,j according to
each segment vs:

sri,j =
I∑

k=1

gksdk
i,j , gk =

ck∑
k′ ck′

, (19)

ck = exp(
−dP (vs, sdk

i,j)

τ
) (20)

where τ , the temperature parameter, controls the extent to
which the output becomes a one-hot vector. With the refined
seed word representation sri,j , the aspect representation can
be generated by Eq. 8.

Algorithm 1: HDAE Learning
Input: review segments S = {s | s ∈ C}, aspect seed

words
1 Initialize HDAE parameter with pre-trained word vector
2 foreach epoch do
3 for xs ∈ S do
4 Generate segment embedding vs (Eq 5)
5 for i← 1 to K do
6 Generate refined aspect seed word vector sri,j

(Eq 19)
7 Calculate aspect embedding ai (Eq 8)
8 Generate aspect probability pai

s (Eq 11)

9 Generate reconstructed embedding rs (Eq 12)
10 Calculate objective J (Eq 21)

11 Update parameters by Adam optimizer

Learning Algorithm
The formal description of the above aspect inference process
is presented in Algorithm 1. To train HDAE, we rely on the
previously introduced reconstruction loss Jr (Eq. 10). Since
the reconstruction objective only provides a weak training
signal (Angelidis and Lapata 2018), the distillation objective
Jd from the teacher (Karamanolakis et al. 2019) is used to
provide an additional training signal. Also, the disentangled

modeling objectives Jd1 , Jd2 , and Jd3 are used to model
each latent semantic meaning according to its aspect category.
Thus, the overall objective is

J(θ) = Jr(θ) + λJd(θ) + Jd1(θ) + Jd2(θ) + Jd3(θ). (21)

The λ controls the influence of the distillation objective loss.

Experiments and Results
Datasets We used Amazon product reviews from the OPO-
SUM dataset (Angelidis and Lapata 2018) and restaurant
reviews from the SemEval-2016 Aspect-based Sentiment
Analysis task (Pontiki et al. 2016). The Amazon product re-
views cover six domains, ranging from laptop bags (Bags),
bluetooth headsets (B/T), boots, keyboards (KBs), and televi-
sions (TVs) to vacuums (VCs). The restaurant reviews dataset
covers six languages: English (En), Spanish (Sp), French (Fr),
Russian (Ru), Dutch (Du), and Turkish (Tur). During train-
ing, seed words are provided but not segment aspect labels.
Details are provided in the appendix.
Baseline LDA-Anchors (Lund et al. 2017), an interactive
topic model which utilizes seed words as “anchors” to iden-
tify the segment aspect. ABAE (He and Chua 2017), an
unsupervised method which adopts reconstruction loss to
make the reconstructed embedding similar to a segment vec-
tor. This requires a manual mapping between the model-
inferred aspect and gold-standard aspects. SSCL (Shi et al.
2020), an unsupervised method that uses a contrastive learn-
ing algorithm and knowledge distillation for aspect inference.
For manual mapping, the high-resolution selective mapping
(HRSMap) is used. MATE* (Angelidis and Lapata 2018), a
seed-based weakly supervised method which generates pre-
defined aspect representations by seed word vector. This can
be trained by an extra multitask training objective (MT).4
TS-* (Karamanolakis et al. 2019), a seed based weakly su-
pervised method which adopts a teacher-student iterative
co-training framework, where the teacher (TS-Teacher) is a
bag-of-words classifier based on seed words and the student
uses the attention-weighted average of word2vec embeddings
(TS-ATT). Gold-*, supervised models trained using ground
truth aspect labels, only available for restaurant reviews, and
not directly comparable with other weakly supervised base-
lines (Karamanolakis et al. 2019).

Note that for SSCL and TS, the BERT model also can be
used as the encoder (SSCL-BT, TS-BT). The results of the
compared models are obtained from the corresponding pub-
lished papers. We also report our re-implemented version of
SSCL-BT*. We do not provide the ABAE and SSCL results
for restaurant reviews for non-English datasets, since this
requires domain knowledge for manual aspect mapping.5

Experimental Results
Overall Inference Performance Tables 1 and 2 show the
results for aspect extraction on both datasets. We observe that

4MT cannot be applied in restaurant reviews since it requires
datasets from different domains but the same language.

5We report ABAE and SSCL results for EN restaurant reviews
in the appendix in our arxiv version.
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Product review domain
Model Bags KBs Boots B/T TVs VCs
LDA-Anchors 33.5 34.7 31.7 38.4 29.8 30.1
ABAE 38.1 38.6 35.2 37.6 39.5 38.1
SSCL 61.0 60.6 57.3 65.2 64.6 57.2
SSCL-BT 65.5 62.3 60.4 69.5 67.0 61.0
SSCL-BT* 56.5 61.7 41.5 51.4 58.2 52.4
MATE 46.2 43.5 45.6 52.2 48.8 42.3
MATE-MT 48.6 45.3 46.4 54.5 51.8 47.7
TS-Teacher 59.3 58.2 50.6 63.3 61.0 58.4
TS-ATT 58.7 57.0 52.6 67.6 63.2 58.8
TS-BT 59.1 59.0 53.9 65.8 66.1 61.0
HDAE 68.8 72.2 64.0 72.0 71.2 66.9

Table 1: Micro-averaged F1 for 9-class EDU-level aspect
detection in product reviews

Restaurant review domain
Model En Sp Fr Ru Du Tur
W2V-Gold 58.8 50.4 50.4 69.3 51.4 55.7
BERT-Gold 63.1 51.6 50.6 64.6 53.5 55.3
HDAE-Gold 70.5 72.5 65.4 67.9 73.8 65.4
LDA-Anchors 28.5 17.7 13.1 14.8 25.9 27.7
MATE 41.0 24.9 25.8 18.4 36.1 39.0
MATE-UW 40.3 18.3 27.8 21.8 31.5 25.2
TS-Teacher 44.9 41.8 34.1 54.4 40.7 30.2
TS-ATT 47.8 41.7 32.4 59.0 42.1 42.3
TS-BT 51.8 42.0 39.2 58.0 43.0 45.0
HDAE 57.9 65.7 48.6 62.9 57.2 50.8

Table 2: Micro-averaged F1 for 12-class sentence-level aspect
detection in restaurant reviews

HDAE achieves superior performance. For example, in Ama-
zon product reviews, compared to TS-W2V, HDAE yields F1
performance gains of 16.0%, 8.1%, 31.9%, 24.7%, 11.3%,
and 17.4% on Bags, KBs, Boots, B/T, TVs, and VCs, re-
spectively; similar trends are observed in the restaurant re-
view dataset. Moreover, the reduction in the parameter size
of HDAE is also remarkable: 97.8% versus TS-BT.6 These
results demonstrate the effectiveness of the proposed hyper-
bolic disentangled aspect extractor (HDAE).

We also observe the weakly unsupervised approaches
MATE* and TS-* significantly outperform the unsupervised
approaches LDA-Anchors and ABAE, suggesting the effec-
tiveness of seed words. Note our reproduced SSCL-BT* does
not consistently outperform MATE, perhaps because SSCL-
BT relies heavily on the quality of initial k-means centroids
since poorly initialized centroids may cause model-inferred
aspects after training to lack good coverage for gold-standard
aspects, and thus make manual mapping more difficult.

Compared to fully supervised (*-Gold) models, HDAE
dramatically reduces the performance gap between weakly
supervised approaches and fully supervised approaches and
even outperforms in Spanish and Dutch restaurant reviews.
Moreover, we investigate HDAE’s performance when given
ground-truth aspect labels denoted by HDAE-Gold in Ta-
ble 2. The result shows that HDAE-Gold outperforms both
W2V-Gold and BERT-Gold, showing the effectiveness of the
proposed hyperbolic disentangled based approach. Note that

6The parameter sizes of HDAE and TS-BT are 2.5M and
109.5M.

Ablation Bag KBs B/T Boots TV VCs
HDAE 68.8 72.2 72.0 64.0 71.2 66.9
HDAE (λ = 0) 67.3 65.6 70.1 60.5 54.1 59.1
MATE 46.2 43.5 52.2 45.6 48.8 42.3

Table 3: HDAE ablation study. The λ is the ratio of distillation
objective loss. When λ is 0, the distillation objective Jd is
not used.

we vary the ratio of ground-truth aspect labels and compare
model performance for different label ratios; these result are
provided in the appendix.

Figure 3: Inference performance per aspect of HDAE, TS-
W2V, and MATE on the a) Bags dataset. On Bags, we use
t-SNE to compare b) the embedding of each model, where
the different colors represent different aspects.

Inference Performance per Aspect Here we investigate the
abilities that seed word based approaches infer on different
aspects, shown in Fig. 3(a). First, we observe that TS-W2V
puts a greater focus on the general aspect, possibly because
the teacher always predicts review segments as general aspect
if no seed word appears. Second, compared to MATE and TS-
W2V, HDAE yields better inference performance in almost all
aspects without putting excessive bias on certain predictions,
showing better aspect inference ability. To further investigate
the performance on Bags. we compared sentence vectors
vs of each model7 by using t-SNE to visualize vectors, as
shown in Fig. 3(b). We find that a well-differentiated sentence
vector benefits the model’s aspect inference ability. First,
compared to HDAE and MATE, less-separated vectors are
found for TS-W2V, which correlates to the fact that TS-
W2V performs poorly in every aspect except the general
aspect. Second, we observe for both the looks (red) and size
fit (yellow) aspects, differentiated vector clusters are found
in HDAE and MATE, which correlates to the good accuracy
in both aspects. Third, compared to MATE, the differentiated
vector clusters of the handles (green), protection (pink), price
(brown), and compartments (blue) aspects explain HDAE’s
better inference ability in those aspects.

7For HDAE, the hyperbolic sentence vector exp0(vs) is used.
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a) The keyboard works very well. GT: General
Seed Words: think, recommend, purchase, using, unit, star, microsoft
HDAE: General! MATE: General! TS-W2V: General!
b) The color is nice, more light blue. GT: Color
Seed Words: color, love, style, unbelievably, gorgeous, blue

HDAE: Color! MATE: Color! TS-W2V: Color!
c) What I received is a grayish brown shoe. GT: Color
Seed Words: color, love, style, unbelievably, gorgeous, blue

HDAE: Color! MATE: General% TS-W2V: Price%
d) It’s not leather. GT: Quality
Seed Words: quality, material, handle, poor, broke, durable, month
HDAE: Quality! MATE: Handles% TS-W2V: General%
e) On the other hand, find it to be too stiff. GT: Comfort
Seed Words: feel, comfortable, mushy, key, like, difficult
HDAE: Comfort! MATE: Function% TS-W2V: General%

Table 4: Comparison of predictions on sample Product re-
view segments between HDAE, MATE, and MATE. For each
review segment, the ground truth (GT) aspect and its corre-
sponding seed words are provided.

Ablation Study
To verify the effectiveness of the proposed components, we
conducted an ablation study for HDAE, as shown in Table 3.
After removing the hyperbolic aspect classifier (3) and aspect
disentangle module (4), we observe drops in performance,
indicating the effect of the proposed components. Note that
(4), which only contains the hyperbolic aspect classifier, out-
performs the MATE-* and TS-* models, showing that the
proposed hyperbolic aspect classifier effectively leverages the
seed words. Furthermore, removing the hyperbolic distance
function for the disentangled aspect representation, shown
by (2), degrades performance, suggesting that the hyperbolic
distance function is indispensable for modeling the latent
semantic meanings of seed words. 8

Case study
To more closely investigate the aspect inference ability of
HDAE, we compare the predictions made by HDAE, MATE,
and TS-W2V, the results of which are shown in Table 4. For
the example in Table 4(b), we see that the review segment
contains keywords such as color and blue which are explic-
itly captured in aspect seed words. All models correctly infer
and review the segment’s aspect. However, for cases in Ta-
ble 4(c,d,e), the reviews’ segments do not explicitly match
their aspect seed words but instead match the hyponymic rela-
tions (is-a) present between seed words and review segments.
For example, there are hierarchical relations such as grayish
brown is a color, leather is a material, and stiff is a type
of difficult for cases in Table 4(c,d,e). We find only HDAE
correctly recognizes the review segments’ aspects. We thus
conclude HDAE captures and utilizes hyponymic relations
(is-a) present between seed words and review segments, de-
riving reasonable aspect inference for each review segment
and thus achieving better performance.

To explore the interpretability of the seed words’ latent
semantic meanings, we conducted a case study in which we

8we also conduct parameters sensitivity study, please refer to the
appendix in our arxiv version.

Figure 4: Interpretability of latent semantic meanigs of seed
words. Best viewed in color.

randomly selected review segments from the boot domain’s
look aspect and investigated its association with each aspect
of latent semantic meaning. Figure 4 shows the review seg-
ments captured by each seed word’s latent semantic meaning:
we find that each aspect’s latent semantics focus on a distinct
type of review segment. For example, for the seed word de-
sign, the latent semantic meaning sd1

i,j focuses on segments
with color information, whereas sd2

i,j focuses on segments
with the great keyword. Likewise, for the seed word attrac-
tive, the latent semantic meaning sd1

i,j′ focuses on segments
with cute information, whereas sd3

i,j′ focuses on segments with
unattractive information. These results demonstrate that the
proposed aspect disentanglement module assists HDAE in
modeling different latent semantics for each seed word. Also,
HDAE finds the most relevant latent semantic meanings for
each review segment, explaining the improvements in the
aspect inference ability.

Conclusions and Future Work
We present HDAE, which includes a hyperbolic aspect classi-
fier and an aspect disentanglement module. On two datasets,
HDAE, with its 97.8% reductions in parameter size versus
TS-BT, shows superior aspect inference ability, further sub-
stantiated by an embedding visualization. The effect of the
proposed components is proved by an ablation study, a pa-
rameter sensitivity study, and a case study. In the future, we
plan to explore the proposed module on other aspect-based
sentiment analysis (ABSA) subtasks. We would also like
to further improve the performance of the proposed compo-
nents, for instance by setting up alignment scores for different
aspect word pairs when modeling seed word dependence.
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