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Abstract

Procedural text understanding requires machines to reason
about entity states within the dynamical narratives. Cur-
rent procedural text understanding approaches are commonly
entity-wise, which separately track each entity and inde-
pendently predict different states of each entity. Such an
entity-wise paradigm does not consider the interaction be-
tween entities and their states. In this paper, we propose a
new scene-wise paradigm for procedural text understanding,
which jointly tracks states of all entities in a scene-by-scene
manner. Based on this paradigm, we propose Scene Graph
Reasoner (SGR), which introduces a series of dynamically
evolving scene graphs to jointly formulate the evolution of
entities, states and their associations throughout the narra-
tive. In this way, the deep interactions between all entities
and states can be jointly captured and simultaneously de-
rived from scene graphs. Experiments show that SGR not
only achieves the new state-of-the-art performance but also
significantly accelerates the speed of reasoning.

Introduction
Understanding how events will affect the world is the
essence of intelligence (Henaff et al. 2017). Procedural text
understanding, aiming to track the state changes (e.g., cre-
ate, move, destroy) and locations (a span in the text) of
entities throughout the whole procedure, is a representa-
tive task to estimate the machine intelligence on such abil-
ity (Mishra et al. 2018). For example, in Figure 1 (a),
given a narrative describing the procedure of photosyn-
thesis, as well as a pre-specified entity “water”, a pro-
cedural text understanding model is asked to predict the
corresponding {State, location} sequences: {Move, root},
{Move, leaf}. Compared with conventional factoid-style
reading comprehension tasks (Seo et al. 2017; Clark and
Gardner 2018), procedural text understanding is more chal-
lenging because it requires to model and reason with the dy-
namical world (Mishra et al. 2018; Bosselut et al. 2018).

Most approaches resolve procedural text understanding
task in an entity-wise paradigm, where each entity is tracked
separately, and state changes and locations of each entity
are independently predicted. Along this line, as Figure 1 (a)
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Figure 1: Comparison between the traditional entity-wise
paradigm and the proposed scene-wise paradigm for pro-
cedural text understanding. We can see that: (a) the entity-
wise paradigm tracks each entity separately, and predict state
changes and locations of each entity independently; (b) the
scene-wise paradigm jointly tracks the state changes and lo-
cations of all entities scene-by-scene.

shows, current procedural text understanding models mainly
resort to hierarchical neural network architectures, which
first encode the document-entity pair using a token-level en-
coder, then track the state changes and locations by two sep-
arate sentence-level trackers (Mishra et al. 2018; Du et al.
2019a,b; Tang, Feng, and Zhao 2020; Gupta and Durrett
2019b). More recently, the main research hot spot in this di-
rection is how to obtain more effective document-entity rep-
resentations by introducing graph-based architectures (Das
et al. 2019; Zhong et al. 2020; Huang et al. 2021), pre-
trained language models (Gupta and Durrett 2019a; Amini
et al. 2020; Zhang et al. 2020) or external knowledge
bases (Ribeiro et al. 2019; Tandon et al. 2018).

Unfortunately, the traditional entity-wise paradigm ig-
nores the interactions between different entities in the same
narrative, as well as the associations between the state
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changes and locations of one entity. Specifically, the multi-
ple entities mentioned in the same narrative are highly corre-
lated with each other. For example, if we know “water” and
“minerals” will be combined into a “mixture”, we can con-
firm that they must in the same location “leaf ”. Furthermore,
the states and locations of an entity are highly associated.
For example, if we know the location of “water” changes
from “root” to “leaf ”, we can easily predict the state of “wa-
ter” is “Move”. Besides, the states/locations at current step
depend on the states/location at previous steps. For example,
if we know “root” and “leaf ” are parts of “plant”, we will
tend to predict the location “leaf ” after the location “root”.
However, current entity-wise paradigm is unable to exploit
the above-mentioned interactions and associations. In addi-
tion, reasoning procedures entity-by-entity is time-intensive
and inefficient. Therefore, it is still far from achieving de-
cent procedure text understanding models in both accuracy
and efficiency.

To this end, this paper proposes scene-wise procedural
text understanding, a new paradigm that jointly tracks the
state changes and locations of all entities scene-by-scene.
Instead of the entity-wise paradigm, we formulate the world
described in the procedural text at different timesteps using
a sequence of dynamically evolving scenes1. Figure 1 (b) il-
lustrates the whole process of the scene-wise procedural text
understanding. Specifically, each scene contains concepts
(e.g., entities, locations or elements from external knowl-
edge) and their relations at current timestep. As the narrative
develops, the concepts and relations in the scene are dynam-
ically evolved scene-by-scene. In this way, the state changes
and locations of all entities are jointly exploited and then can
be simultaneously derived from the scenes.

Based on this paradigm, we propose Scene Graph
Reasoner (SGR), a specific implementation for scene-wise
procedural text understanding. SGR uses a graph structure
to model scene. Each node in the graph represents a con-
cept, and each edge in the graph represents a relation be-
tween two concepts. Then the scene evolution is modeled by
the graph evolution throughout the whole procedure. Specif-
ically, SGR consists of four basic components: 1) a graph
structure encoder, which summarizes critical information
from the current scene graph; 2) a context encoder, which
captures the new events occurring from the sentence describ-
ing next narrative timestep; 3) a graph structure predic-
tor, which predicts the evolution of the scene graph after the
new events occurring; 4) a state reasoner, which distills the
state changes and locations via comparing the adjacent scene
graphs. By jointly exploiting all concepts and their relations
in the scene graphs, SGR is able to better capture their in-
teractions and associations throughout the whole procedure,
and therfore enables to track the state changes and locations
of all entities simultaneously in a graph evolution process.

Generally, the main contributions of this paper are:

• We propose a new scene-wise paradigm for procedural
text understanding, which jointly tracks the state changes
and locations of all entities scene-by-scene.

1In procedural text understanding task, the division of timesteps
is consistent with the division of sentences.

• We design a specific implementation SGR for scene-wise
procedural text understanding, which can fully consider
the interactions of multiple entities, as well as the associ-
ations of state changes and locations.

• We conduct experiments on ProPara (Mishra et al. 2018)
and Recipes (Bosselut et al. 2018), two of the repre-
sentative procedural text understanding benchmarks. Ex-
periments show that SGR in the scene-wise paradigm
achieves the new state-of-the-art procedural text under-
standing performance, and the reasoning speed is signif-
icantly accelerated.

Backgrounds
Task Definition
In this paper, we focus on ProPara (Mishra et al. 2018),
which includes a variety of natural procedures, and the task
is to answer the questions about the state changes and loca-
tions of the entities. Specifically, given:
• A paragraph P consists of T sentences {S1, S2, ..., ST };
• A set of pre-specified entities E = {e1, e2, ..., eN} need

to be tracked;
the procedural text understanding model is required to rea-
son with the described world, and output:
• State change sequences Y s = {Y s

e1 , Y
s
e2 , ..., Y

s
eN }

for all pre-specified entities E, where Y s
ei =

{ysei,1, y
s
ei,2, ..., y

s
ei,T
}, ysei,t ∈ {Other (O), Exist (E),

Move (M), Create (C), Destroy (D)}2.
• Location sequences Y l = {Y l

e1 , Y
l
e2 , ..., Y

l
eN } for all pre-

specified entitiesE, where Y l
ei = {y

l
ei,1, y

l
ei,2, ..., y

l
ei,T
},

ylei,t is a text span in the paragraph. A special “?” token
indicates the location is unknown.

Entity Recognition and
Location Candidates Generation
In procedural text understanding, identifying entities is nec-
essary because they are participants in the narrative. Thus,
we first use SpaCy to tokenize the paragraph and all entities.
All text are cleaned and lower-cased. And then the simple
string matching algorithm is used to recognize entities.

Unlike entities, location information in this task is not
given initially. Due to the difficulty to consider arbitrary
text spans as possible locations, we follow the previous
works (Gupta and Durrett 2019b; Zhang et al. 2020) to gen-
erate candidates, and transform the original text span extrac-
tion into the candidate classification for tracking locations.
Specifically, we first extract the POS tags by flair (Akbik
et al. 2019), and then generate location candidates by POS-
based rules3.

For the train and dev sets, if the gold location is not in-
cluded in the candidates, we manually add them to the can-
didate set. This is mainly for expanding the size of train-
able instances in location prediction. For the test set, we do

2Other (O) is further devided into OA, OB , which mean none
state before and after existence separately.

3See details at https://github.com/ytyz1307zzh/NCET-ProPara.
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Figure 2: An overview of the proposed SGR in the scene-wise paradigm, which is composed of four parts: (a) graph structure
encoder; (b) context encoder; (c) graph structure predictor and (d) state reasoner.

not use such method because we obviously cannot know the
gold location while testing.

Scene Graph Reasoner
In this section, we describe how to train an effective proce-
dural text understanding model in the scene-wise paradigm,
and track state changes and locations of all entities simulta-
neously. As illustrated in Figure 2, we propose Scene Graph
Reasoner (SGR), a specific implementation for scene-wise
procedural text understanding. SGR constructs scene graphs
for each training instance. To evolve the scene graphs,
SGR first summarizes critical information from the current
scene graph by a graph structure encoder, captures the new
events occurring from the sentence describing next narrative
timestep by a context encoder, and then predicts the evolu-
tion of the scene graph after the new events by a graph struc-
ture predictor. During testing, SGR utlizes a state reasoner to
simultaneously distills the state changes and locations of all
entities via comparing the adjacent scene graphs.

Scene Graph Construction for Training
For each training instance, we transform the original gold
state change and location annotations {Y s, Y l} into a se-
quence of scene graphs Y g to adapt for the proposed scene-
wise paradigm, where Y g = {yg1 , y

g
2 , ..., y

g
t , ..., y

g
T }. Each

node in the scene graph represents a concept (entities, lo-
cations or elements from external knowledge), and each
edge represents a predefined relation between two con-
cepts. As the narrative develops, the nodes and edges in the
scene graphs are dynamically created or deleted. Enlight-
ened by (Skardinga, Gabrys, and Musial 2021), we utilize

a complete graph with two matrices to record the dynam-
ics of nodes and edges. And each scene graph can be rep-
resented as ygt = {Ĝ,Maskt, Relt}: Ĝ for the complete
graph, Maskt for node masking and Relt for edge indicat-
ing at time t. Consequently, the model training objectives is
reformulated to predict these scene graphs.

Specifically, SGR first uses the recognized entities and the
generated location candidates as nodes4, and use three SRL-
based relations (entity-entity, location-location and entity-
location) as edges to construct the complete graph. Then
SGR enhances the complete graph with the external com-
monsense knowledge from ConceptNet (Speer, Chin, and
Havasi 2017) because it can provide abundant concept re-
lation, and help the model to understand composition of the
world5. Finally SGR generates the node mask Maskt and
the edge indication Relt for each scene graph ygt , where
Maskt ∈ RM masks the entities that are not created or are
already destroied, Relt ∈ RM∗M∗R indicates different rela-
tions whose arguments are not masked, M is the number of
concepts, and R is the number of relations.

In this way, the state changes and locations can be jointly
modeled in the scene graphs, e.g., the state changes like Ex-
ist, Create and Destroy are record byMaskt; the location of
each entity are record by Relt.

4It is worth to notice that we do not treat events/actions as one
kind of nodes as Huang et al. (2021) dose, because events are more
suitable for evolving scene graphs.

5We retrieve and add the corresponding entities and relations
(e.g, HasA, PartOf, and so on) into complete graphs using the same
heuristic rules as Zhang et al. (2020).
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Graph Structure Encoder for Summarizing Scenes
At timestep t, SGR adopts a graph attention network
(GAT) (Velickovic et al. 2018) to summerize critical in-
formation from the current scene graph ygt since its strong
representation capacity. In this way, the entities and their
states/locations are jointly modeled by rich types of relations
among different concepts.

Specifically, the input to the graph attention network is a
set of node features H = {ĥs,t1 , ĥs,t2 , ..., ĥs,tM } at timestep t,
where M is the number of concepts6. SGR then performs
self-attention on the nodes — a shared masked attentional
mechanism computes attention coefficients:

etij = a(W1ĥ
s,t
i ,W1ĥ

s,t
j ,W2Rel

t
ij) (1)

that indicate the importance of node j to node i, whereReltij
is the relation embedding, W1,W2 are learnable parame-
ters. To make coefficients easily comparable across different
nodes, we normalize them across all choices of j using the
softmax function:

αt
ij = softmaxj(e

t
ij) =

exp(etij)∑
k∈N t

i
exp(etik)

(2)

where N t
i is the neighborhood of node i in the scene graph

at timestep t, which is determined by the complete graph Ĝ,
the node mask Maskt and the edge indication Relt. Once
obtained, the normalized attention coefficients are used to
compute a linear combination of the features correspond-
ing to them, to serve as the final features for every node at
timestep t:

hs,ti = σ(
∑
j∈N t

i

αt
ij ĥ

s,t
j ) (3)

Finally, we obtain the hidden state corresponding to the
special [Global] node as the graph structure representation:

hs,t[Gloabl] = GAT (ygt ) = GAT ({Ĝ,Maskt, Relt}) (4)

where hs,t[Gloabl] summerizes critical information from the
current scene graph before new events occur. The scene
graph structure and the enhanced external knowledge can
be fully learned by the graph structure encoder.

Context Encoder for Capturing New Events
Existing procedural text understanding models do have
the context encoder to obtain document-entity representa-
tions (Mishra et al. 2018; Du et al. 2019a,b; Tang, Feng, and
Zhao 2020; Gupta and Durrett 2019b). However, we lever-
age the power of context encoder differently. We utilize it
to capture the new events occurring in the sentence at the
next timestep t + 1. In this paper, we use BERT (Devlin
et al. 2019) to handle the nuances of procedural texts. As
suggested by Gupta and Durrett (2019a), we restructure the
input to guide the transformer model (Vaswani et al. 2017)
to focus on particular entities mentioned in the sentence.

Specifically, take S3 in Figure 2 as an example, we first re-
structure the input as: {[CLS] water [SEP] minerals [SEP]

6At timestep 0, node features are initialized by context encoder.

This combination of water and minerals flows from the stem
into the leaf . [SEP]}, where [CLS] and [SEP] are special
tokens. In this way, the transformer can always observe the
entities it should be primarily “attending to” from the stand-
point of building representations. For each token in the in-
put, its representation is constructed by concatenating the
corresponding token and position embeddings. Then, the
context representation will be inputted into BERT architec-
ture (Devlin et al. 2019), and updated by multilayer Trans-
former blocks (Vaswani et al. 2017).

Finally, we obtain the hidden state corresponding to the
special [CLS] token in the last layer as the context represen-
tation:

hc,t+1
[CLS] = BERT (restructure(St+1)) (5)

where hc,t+1
[CLS] captures the new events occured in the sen-

tence St+1 at the current timestep t + 1. The self-attention
mechanism of BERT supports the interactions of the multi-
ple relationships between entities, locations and events men-
tioned in the sentence St+1. And it can take advantage of the
knowledge learned via pretraining.

Graph Structure Predictor for Evolving Scenes
Based on the the structure representation hs,t[Gloabl] and the

context representation hc,t+1
[CLS], we can predict the new scene

graph structure at timestep t+ 1.
Specifically, we generate the new scene graph ygt+1 via

predicting the node mask Maskt+1 and the edge indication
Relt+1 with the guidance of the aggregate representation:

ˆMask
t+1

= f1(h
s,t
[Gloabl], h

c,t+1
[CLS])

R̂el
t+1

= f2(h
s,t
[Gloabl], h

c,t+1
[CLS])

(6)

where ˆMask
t+1
∈ RM , R̂el

t+1
∈ RM∗M∗R, f1, f2 are two

nonlinear output layers. And a sequence of scene graphs can
be generated through an autoregressive behavior:

ygt+1 = SGR(ygt , St+1) (7)

Model Training
Given a training corpus with constructed scene graphs (see
Section Scene Graph Construction for Training.), SGR
can be supervisedly learned by maximum log-likelihood es-
timation (MLE):

L =
T∑

t=1

M∑
i=1

Maskti log
ˆMask

t

i

+

T∑
t=1

M∑
i=1

M∑
j=1

R∑
k=1

Reltijk log R̂el
t

ijk

(8)

where T is the number of timesteps,M is the number of con-
cepts, including entities, location candidates and elements
from external knowledge and R is the number of relations.
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Algorithm 1: : State Reasoner.
Input: SGR: the trained procedural text understanding model;

ConceptNet: the external commonsense knowledge base;
P = {S1, S2, ..., ST }: the procedural text;
E = {e1, e2, ..., eN}: pre-specified entities;
Constraints: used for postprocessing;

1: The complete graph G ← Construct(P,E)
2: The enhanced complete graph Ĝ ← Enhance(G, ConceptNet)
3: Y g ← ∅
4: yg

0 ← (Ĝ, Mask0, Rel0)← (Ĝ, ∅, ∅)
5: Y g .append(yg

0)
6: for St in P do
7: hs,t

[Gloabl] ← Graph Structure Encoder(yg
t )

8: hc,t+1
[CLS]← Context Encoder(St+1)

9: yg
t+1← (Ĝ, ˆMask

t
, R̂el

t
)←

Graph Structure Predictor(hs,t
[Gloabl], h

c,t+1
[CLS])

10: Y g .append(yg
t+1)

11: (Y s, Y l)← Transform(Ĝ, Y g, Constraints)
Return: Y s, Y l;

State Reasoner for Tracking All Entities
During testing, on the basis of the trained procedural text

understanding model SGR, we can construct scene graphs
for new narratives, and then simultaneously track the state
changes and locations of all entities scene-by-scene. Specif-
ically, we can infer the state change and location sequences
via comparing the adjacent scene graphs, e.g., if we find
out that “water” is not masked at scene ygt−1 but masked
at scene ygt , we can deterministically infer the state of “wa-
ter” is “Destroy (D)” at timestep t; if we find that “water”
has a “LocateIn” realtion with “root”, the current location
of “water” must be “root”. It is worth to notice that these
transformations of all entities can be processed in parallel.

To facilitate the description of state reasoner, we summa-
rize this process in Algorithm 1. Specifically, we first prepro-
cess the raw input {P,E} to construct the complete graph,
and then utilize the external commonsense knowledge Con-
ceptNet (Speer, Chin, and Havasi 2017) to get the enriched
complete graph (Line 1-2). Second, we initialize the scene
graphs Y g as ∅ (Line 3). However, during testing, we cannot
access the gold state change and location annotations. Thus,
we initialize Mask0 and Rel0 as zeros, which means that
we know nothing about the current world at timestep 0 (Line
4). After these preparations, we utilize the trained model
SGR to evolve the scene graphs from yg0 to ygT , which con-
tains graph structure encoding, context encoding and graph
structure predicting (Line 6-10). Finally, we transform the
scene graphs Y g into the state change sequence Y s and the
location sequence Y l for all pre-specified entities (Line 6-
11). The constraints used in previous works can be easily
inject into the final transformation process, e.g., correct in-
valid actions according to the whole action sequence (Tang,
Feng, and Zhao 2020).

In this way, the state change and location sequences of all
entities can be tracked simultaneously, and the efficiency of
reasoning can be significantly improved.

Statistics ProPara Recipes
train dev test train dev test

#Instance/Para 391 43 54 693 86 87
#Sentence 2,620 288 372 6,098 765 783
#Entity 1,504 175 236 5,932 756 737
Avg.#sent/para 6.7 6.7 6.9 8.8 8.9 9.0
Avg.#enti/para 3.8 4.1 4.4 8.6 8.8 8.5

Table 1: Statistics of ProPara and Recipes datasets. We re-
gard one paragraph with all pre-specified entities as an in-
stance. Thus, the number of instances is equivalent to the
number of paragraphs.

Experiments
Experimental Settings
Dataset. We conduct main experiments on ProPara (Mishra
et al. 2018) and auxiliary experiments on Recipes (Bosselut
et al. 2018). For ProPara, we follow the official split (Mishra
et al. 2018) for train/dev/test set. For Recipes, following the
previous works (Zhang et al. 2020; Huang et al. 2021), we
only use the human-labeled data in our experiments, and
re-split it into 80%/10%/10% for train/dev/test sets. More
statistics about these two datasets are shown in Table 17.

Implementation Details. For graph structure encoder, we
apply a one-layer graph attention network (GAT) (Velick-
ovic et al. 2018). For context encoder, we use the BERT base
implemented by HuggingFace’s transformers library (Wolf
et al. 2020). Hyper-parameters are manually tuned accord-
ing to the accuracy on the dev set: batch size is set to 16,
hidden size is set to 128 and learning rate is set to 5e-5. The
final model is trained on an Nvidia TITAN RTX GPU with
Adam optimizer (Kingma and Ba 2015), and is selected with
the highest prediction accuracy on dev set.

Evaluation Metrics For ProPara, following the previous
works, we perform document level (Tandon et al. 2018) and
sentence level (Mishra et al. 2018) tasks in our main experi-
ments. Specifically, the document level task requires models
to answer the four document-level questions:

Q1: What are the inputs to the procedure?
Q2: What are the outputs of the procedure?
Q3: What conversions occur, when and where?
Q4: What movements occur, when and where?

The evaluator compute precision, recall and F1 score for
each question, and the overall F1 score is the macro-average
of the above four questions8. The sentence-level task re-
quires models to answer ten fine grained sentence-level
questions, which can be summarized into three categories:

Cat-1: Is entity created (destroyed, moved)?
Cat-2: When is entity created (destroyed, moved)?
Cat-3: Where is entity created (destroyed, moved from/to)?

7The number of instances is different from the previous entity-
wise works because they regard one entity-paragraph pair as an
instance, and result in 1.9k instances

8https://github.com/allenai/aristo-leaderboard/tree/master/
ProPara
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Models Document-level task Sentence-level task
Precision Recall F1 Cat-1 Cat-2 Cat-3 Macro-Avg Micro-Avg

Entity-wise Models
Models with context encoder

EntNet (Henaff et al. 2017) 54.7 30.7 39.4 51.6 18.8 7.8 26.1 26.0
QRN (Seo et al. 2017) 60.9 31.1 41.4 52.4 15.5 10.9 26.3 26.5
ProLocal (Mishra et al. 2018) 81.7 36.8 50.7 62.7 30.5 10.4 34.5 34.0
ProGlobal (Mishra et al. 2018) 48.8 61.7 51.9 63.0 36.4 35.9 45.1 45.4
• AQA (Ribeiro et al. 2019) 62.0 45.1 52.3 61.6 40.1 18.6 39.4 40.1
• ProStruct (Tandon et al. 2018) 74.3 43.0 54.5 - - - - -

XPAD (Du et al. 2019a) 70.5 45.3 55.2 - - - - -
LACE (Du et al. 2019b) 75.3 45.4 56.6 - - - - -
NCET (Gupta and Durrett 2019b) 67.1 58.5 62.5 73.7 47.1 41.0 53.9 54.0
� ET BERT (Gupta and Durrett 2019a) - - - 73.6 52.6 - - -
∗ IEN (Tang, Feng, and Zhao 2020) 69.8 56.3 62.3 71.8 47.6 40.5 53.3 53.0
� DYNAPRO (Amini et al. 2020) 75.2 58.0 65.5 72.4 49.3 44.5 55.4 55.5
• � KOALA (Zhang et al. 2020) 77.7 64.4 70.4 78.5 53.3 41.3 57.7 57.5
Models with structure encoder

KG-MRC (Das et al. 2019) 69.3 49.3 57.6 62.9 40.0 38.2 47.0 46.6
• ProGraph (Zhong et al. 2020) 67.3 55.8 61.0 67.8 44.6 41.8 51.4 51.5
� TSLM (Faghihi and Kordjamshidi 2021) 68.4 68.9 68.6 78.8 56.8 40.9 58.8 58.3
� REAL (Huang et al. 2021) 81.9 61.9 70.5 78.4 53.7 42.4 58.2 57.9

Scene-wise Models
• � ∗ SGR (our method) 84.9 62.9 72.2 79.9 55.1 43.5 59.5 59.2

w/o Graph Structure Encoder 72.4 51.1 59.9 69.9 42.7 39.9 50.8 51.0
w/o Context Encoder 76.1 55.4 64.1 74.9 47.9 40.0 54.3 54.2
w/o ConceptNet 82.7 63.2 71.6 78.3 56.0 42.5 58.9 58.6
w/o Pre-trained Bert 81.8 59.2 68.7 76.2 53.3 41.4 57.0 56.7

Table 2: Experimental results on ProPara document-and sentence-level tasks. ∗, • and � indicate the models consider the
interactions between multiple entities, use the external knowledge base and are equipped with the pre-trained model separately.

Models Precision Recall F1
NCET (re-implementation) 56.5 46.4 50.9
IEN (re-implementation) 58.5 47.0 52.2
KOALA (Zhang et al. 2020) 60.1 52.6 56.1
REAL (Huang et al. 2021) 55.2 52.9 54.1
SGR (our method) 69.3 50.5 58.4

Table 3: Experimental results on re-split Recipes.

Evaluation metrics are macro-average and micro-average ac-
curacy of three sets of questions. More details can be found
in the official script9. The answers of both document- and
sentence-level questions can be deterministically computed
from the state change and location sequences.

For Recipes, we follow Zhang et al. (2020); Huang et al.
(2021) to predict the location changes of the ingredients dur-
ing the procedure. For each movement, the model should
predict the new location of the entity, plus the timestep
when the movement occurs. We take precision, recall, and
F1 scores to evaluate models.

Baselines
For ProPara, we compare SGR with the following baselines,
most of them are on the official leaderboard10:

9https://github.com/allenai/ProPara/tree/master/ProPara/
evaluation

10https://leaderboard.allenai.org/ProPara/submissions/public

• Models with context encoder rely on Bi-LSTM/Bert to
obtain the document-entity representations and track the
states/locations separately.

• Models with structure encoder leverage the power of
the static graph to obtaion more effective document rep-
resentations. Different from our work, they lack the dy-
namical representations of the procedures.

For Recipes, we compare SGR with the state-of-the-art mod-
els: NCET (Tang, Feng, and Zhao 2020), KOALA (Zhang
et al. 2020) and REAL (Huang et al. 2021).

Overall Results
Table 2, 3 and 4 show the overall results. We can see that:

1. The proposed SGR in the scene-wise paradigm
achieves the state-of-the-art performance. SGR can sig-
nificantly outperform the state-of-the-art model REAL
and achieves 72.2 F1 on ProPara document-level task
and 59.5/59.2 Macro-Avg/Micro-Avg scores on ProPara
sentence-level task. On Recipes, SGR also outperforms the
corresponding baselines and achieves 58.4 F1. We believe
this is because that the entities and their states/locations are
jointly modeled in the scenes. Therefore, the association of
two track targets and the interaction of the multiple entities
are fully explored.

2. Reasoning states and locations of all entities scene-
by-scene significantly improves the inference efficiency.
We compare the inferencing time of SGR with NCET and
IEN on an Nvidia TITAN RTX GPU in Table 4. NCET
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Models ProPara
Total Avg./para Avg./enti

NCET (re-implementation) 51.31 0.95 0.22
IEN (re-implementation) 42.50 0.79 0.18
SGR (our method) 17.99 0.33 0.08

Table 4: Inference time (seconds) on ProPara.

ConceptNet Document-level task
Train Test Precision Recall F1

SGR M X X 84.9 62.9 72.2
SGR(test) M X 83.7 62.9 71.8
SGR(train) O X 81.5 60.4 69.4
SGR(none) 82.7 63.2 71.6

Table 5: Effect of the usage of ConceptNet on ProPara. All
improvements of SGR are statistical significance at p<0.01.

is the traditional model in the entity-wise paradigm, while
IEN considers the interactions between multiple entities via
the entity-location attention mechanism11. However, both
NCET and IEN rely on separate trackers with CRF to predict
state changes and locations. Thus they are time-intensive
and take almost 3-4 times as long as SGR to track each en-
tity. These results verifies that reasoning questions scene-by-
scene is efficient and promotes the application of the proce-
dural text understanding model in real-world scenes.

3. The graph structure encoder and the context en-
coder are indispensable, and are complementary with
each other. When compared with the full model SGR, its
two variants SGR w/o Graph Structure Encoder and SGR
w/o Context Encoder show declined performance in differ-
ent degrees, which indicates that the current scene modeled
by the graph structure encoder and the new events captured
by the context encoder are necessary. Surprisingly, we find
that SGR w/o Context Encoder still perform quite well. The
insight in those observations may be that it can be regard
as a graph-structured language model — predicts snapshots
through an autoregressive behavior, and builds label consis-
tency in the same topic (Du et al. 2019b).

Detailed Analysis
The external knowledge can be easily injected into SGR. To
investigate the effectiveness of difference kinds of external
knowledge, we design the following experiments.

Effects of the External Knowledge from the Pre-
trained language model. From Table 2, we can see that
models indicates with � outperform other baselines. When
compared with SGR, the performance of SGR w/o Pre-
trained BERT clampes between SGR and SGR w/o Context
Encoder. It means that not only the context encoder but also
the external knowledge learned via pre-training is helpful for
procedural text understanding.

Effects of the External Knowledge from the Knowl-
edge Base. First of all, from Table 2, we can see that mod-
els indicates with • outperform other baselines. And the de-

11Other state-of-the-art models spend more reasoning times than
NCET and IEN due to exquisitely designed archectures.

cay of SGR w/o ConceptNet is also appreciable when com-
pared with SGR. These results verify the effectiveness of the
external knowledge from knowledge base. Furthermore, we
investigate the usage of ConceptNet in Table 5. We can see
that: 1) Compared with SGR(none), SGR and SGR(test) lead
to improvements. The reason behinds it is that ConceptNet
can constrain the prediction space of graph structure pre-
dictor and help the model to understand composition of the
world. 2) SGR(train) even perform worse than SGR(none).
It is because that the inconsistency between train and test
introduces too many noisies rather than knowledge. In other
words, the exposure bias of the autoregressive behavior hurts
the performance of the model (Zhang et al. 2019).

Related Work
Procedural Text Understanding is important and chal-
lenging. Many datasets have been proposed such as
bAbI (Henaff et al. 2017), RECIPES (Kiddon et al. 2015)
and ProPara (Mishra et al. 2018). Blessed with valuable
benchmarks, there emerge abundant procedural text under-
standing models which are in the question-answering frame-
work (Henaff et al. 2017; Seo et al. 2017; Das et al. 2019)
or hierarchical neural network framework (Mishra et al.
2018; Tandon et al. 2018; Du et al. 2019b; Gupta and Dur-
rett 2019b,a; Zhang et al. 2020; Zhong et al. 2020). Some
of them utilize graph encoder to obtaion more effective
document-entity representations (Huang et al. 2021) and al-
most of them in the entity-wise paradigm. Different from
them, this paper propose a new scene-wise paradigm to
jointly tracks the state changes and locations of all entities
scene-by-scene.

Dynamic Graph Neural Networks (DGNNs) are used
in a wide range of fields, including social network anal-
ysis, recommender systems and epidemiology (Yin et al.
2019; Skardinga, Gabrys, and Musial 2021). DGNNs add a
new dimension to network modeling and prediction – time.
This new dimension radically influences network properties
which enable a more powerful representation of network,
and increases predictive capabilities of methods (Aggarwal
and Subbian 2014; Li et al. 2018). In this paper, we utilize a
graph structure to model scene, and an evaluation algorithm
is proposed to adapt for the proposed scene-wise paradigm.

Conclusions
In this paper, we propose a new scene-wise paradigm for
procedural text understanding and Scene Graph Reasoner
(SGR) is designed to jointly model the associations of state
changes and locations, as well as the interactions of multi-
ple entities. In this way, the state changes and locations of
all entities are jointly exploited and then can be simultane-
ously derived from the scene graphs. Experiments show that
SGR achieves the new state-of-the-art procedural text un-
derstanding performance, and the reasoning speed is signif-
icantly accelerated. For future work, we want to pretrain a
graph-structured language model to build label consistency
in the same topic (Du et al. 2019b) and design new training
and reasoning methods to overcome the exposure bias of the
autoregressive behavior (Zhang et al. 2019).
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