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Abstract

Transformer language models have made tremendous strides
in natural language understanding tasks. However, the com-
plexity of natural language makes it challenging to ascertain
how accurately these models are tracking the world state un-
derlying the text. Motivated by this issue, we consider the task
of language modeling for the game of chess. Unlike natural
language, chess notations describe a simple, constrained, and
deterministic domain. Moreover, we observe that the appro-
priate choice of chess notation allows for directly probing the
world state, without requiring any additional probing-related
machinery. We find that: (a) With enough training data, trans-
former language models can learn to track pieces and pre-
dict legal moves with high accuracy when trained solely on
move sequences. (b) For small training sets providing access
to board state information during training can yield signifi-
cant improvements. (c) The success of transformer language
models is dependent on access to the entire game history i.e.
“full attention”. Approximating this full attention results in a
significant performance drop. We propose this testbed as a
benchmark for future work on the development and analysis
of transformer language models.

1 Introduction
Recently, transformer-based language models have stretched
notions of what is possible with the simple self-supervised
objective of language modeling, becoming a fixture in state
of the art language technologies (Vaswani et al. 2017; De-
vlin et al. 2019; Brown et al. 2020). However, the black
box nature of these models combined with the complexity
of natural language makes it challenging to measure how
accurately they represent the world state underlying the text.

In order to better measure the extent to which these models
can capture the world state underlying the symbolic data they
consume, we propose training and studying transformer lan-
guage models for the game of chess. Chess provides a sim-
ple, constrained, and deterministic domain where the exact
world state is known. Chess games can also be transcribed
exactly and unambiguously using chess notations (Section 2).
Most importantly, the form of chess notations allows us to
probe our language models for aspects of the board state us-
ing simple prompts (Section 3) and without changing the
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language modeling objective or introducing any new classi-
fiers.1

Due to the simplicity and precision of chess, we can eval-
uate language model predictions at a more fine-grained level
than merely comparing them to the ground truth. For ex-
ample, even if the next move prediction doesn’t match the
ground truth move, we can still evaluate whether the move
is legal given the board state, and if it is illegal, the error can
be automatically analyzed. Moreover, since world state tran-
sitions are deterministic and known, we can evaluate models
using counterfactual queries as well. Our proposed evalua-
tion sets and metrics are described in Section 3.2.

While chess represents a controlled domain, it is by no
means trivial for a language model. To illustrate the chal-
lenges of language modeling for chess, consider the left
board shown in Figure 1b, where white is next to move. In or-
der to generate a valid next move, the language model needs
to (a) infer that it is white’s turn, (b) represent the locations
of all pieces, both white and black, (c) select one of the white
pieces which can be legally moved, and finally (d) make a
legal move with the selected piece. Thus, a language model
has to learn to track the board state, learn to generate moves
according to the rules of chess, and on top of that learn chess
strategies to predict the actual move.

We find that when given enough training data, transform-
ers can learn to both track piece locations and predict legal
moves with high accuracy. However, when trained on small
training sets, predictive ability suffers. In this more challeng-
ing setting, introducing parts of the board state as tokens in
the training sequences (Section 3.1) improves piece tracking
significantly.

Our results also provide some key insights on transformer
language models: (i) They are robust to changes in input dis-
tribution where additional tokens, related to board state, are
added to input sequence only during training (Section 3.1).
In contrast to LSTMs, transformers achieve this robustness
even with smaller training sets (Section 5.3). (ii) Even
though chess is Markovian, the model relies on having ac-
cess to the whole history, and the performance drops when
limiting this access (Section 5.3).

1Code and data available at - https://github.com/shtoshni/
learning-chess-blindfolded
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(a) Square naming (b) Board state before (left) and after (right) the bishop at f1 is moved to b5. UCI
notation represents the move as f1b5.

Figure 1: Chess Notation

To summarize, our contributions are to:

• Propose chess as a testbed for evaluating world state track-
ing capabilities of language models which can be used for
development and analysis of these models.

• Show that with the appropriate chess notation, we can
probe language models for aspects of the world state using
simple prompts (Section 3).

• Show that given enough training data, transformer lan-
guage models can learn to track piece locations and pre-
dict legal moves with high accuracy.

• Demonstrate that transformer language models are robust
to certain changes in input distribution, and that access
to world state during training improves performance with
small datasets.

2 Chess Preliminaries
We represent moves using Universal Chess Interface (UCI)
notation, which combines the starting square and the destina-
tion square to represent a move.2 The move in Figure 1b is
represented as f1b5 in UCI where f1 indicates the starting
square and b5 denotes the ending square. While the SAN
notation is the standard choice for gameplay, we prefer UCI
as it allows for pieces to be referenced unambiguously via
their starting square, something we later exploit in designing
prompt-based probes in Section 3.

For training language models, we first tokenize games rep-
resented in UCI notation using a simple regular expression
based tokenizer, which considers a board square symbol such
as b1 as a single token. This gives us a vocabulary of 77
token types, which includes the 64 squares, piece type sym-
bols, and other special symbols (see Table 1).3 For example,
the move sequence “e2e4 e7e5 g1f3” is tokenized to

2For more details see https://en.wikipedia.org/wiki/Universal
Chess Interface

3In initial experiments we used a delimiter token to indicate
move boundary. However, removing it did not degrade performance
and made training faster due to reduced sequence length.

Type Examples Count

Square names e4, d1 64
Piece type P, K, Q, R, B, N 6
Promoted Pawn Piece type q, r, b, n 4
Special symbols BOS, EOS, PAD 3

Total 77

Table 1: Model Vocabulary

“e2, e4, e7, e5, g1, f3”. We then train an autoregressive
language model on these move sequences, using the standard
maximum likelihood objective.

3 Language Model Prompts as Board State
Probes

One attractive property of having a language model
trained on chess games represented in UCI notation (as
described in the previous section) is that the notation
itself allows us to probe the trained model’s state tracking
abilities. In particular, by feeding the trained language
model a prefix of a game as a prompt, we can determine
— using the language model’s next-token predictions —
what the model understands about the board state im-
plied by this prefix. For example, consider the prompt
“e2e4 e7e5 g1f3 b8c6 d2d4 h7h6 f1,” where
the underlined move sequence leads to the left board state in
Figure 1b. A language model’s next-token prediction (after
consuming the prompt) can be interpreted as the ending
square predicted for the bishop at f1, which can be used to
determine the level of board state awareness of the model.
If, for instance, the model predicts g1, this may indicate
that the model does not recognize that the piece type at f1
is a bishop, as such a move is not possible for a bishop. If,
on the other hand, the model predicts g2, that may indicate
that the model is not aware that another piece is currently at
g2.
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Notation Training Inference

UCI e2, e4, e7, e5, g1, f3 e2, e4, e7, e5, g1, f3
UCI + RAP 15 e2, e4, P, e7, e5, g1, f3 e2, e4, e7, e5, g1, f3
UCI + RAP 100 P, e2, e4, P, e7, e5, N, g1, f3 e2, e4, e7, e5, g1, f3
UCI + AP P, e2, e4, P, e7, e5, N, g1, f3 P, e2, e4, P, e7, e5, N, g1, f3

Table 2: Token sequences corresponding to the move sequence e2e4 e7e5 g1f3 for different notations during training and
inference. Notice that regardless of the RAP probability used during training, at inference time the token sequences have no
piece types.

3.1 Randomly Annotated Piece type (RAP)

While predicting the token representing the ending-square of
a move given a prompt allows us to assess the model’s state
tracking abilities, it also to some extent conflates the model’s
understanding of the board state with its understanding of
chess strategy. If we could easily probe for where the model
thinks a piece currently is (rather than where it is likely to
end up) given a game prefix, this would allow us to more
directly probe the model’s state tracking abilities. In partic-
ular, we would like to give a language model a prompt such
as “e2e4 e7e5 g1f3 b8c6 d2d4 h7h6 N”, where
N represents knight, and expect it to generate a valid starting
position for a knight of the correct color. While UCI nota-
tion does not ordinarily include these piece type tokens, to
allow for testing the model with such prompts, we propose
to randomly include these piece types tokens in moves dur-
ing training with some fixed probability p. We refer to this
strategy as “randomly annotated piece type” (RAP) and use
the nomenclature “UCI + RAP p” to indicate that with p%
probability, piece type is part of the move notation during
training. Note that for p = 0, the notation reduces to UCI.

When testing with these starting square prediction
prompts, we only include piece type for the prompt, not for
any moves in the history. Thus, using RAP during training
allows us to probe, at test time, where the model thinks each
piece is, given any game history’s prefix; by simply provid-
ing the desired piece type (e.g., N) the model outputs the
predicted starting square for a piece of that type. For exam-
ple, given the prompt “e2e4 e7e5 g1f3 b8c6 d2d4
h7h6 N”, a prediction of f3 or b1 shows that the model is
aware of where the knights are.

We also experiment with an “oracle” variant of RAP
where piece types are added both during training and testing.
We refer to this notation as “UCI + AP ” where AP stands for
“always piece type”. For our running example the equivalent
prompt in this notation would be “Pe2e4 Pe7e5 Ng1f3
Nb8c6 Pd2d4 Ph7h6 N”.

In terms of the language modeling training objective, addi-
tion of RAP represents a distribution change between train-
ing and inference. Table 2 illustrates how the use of RAP
changes the token sequence during training but not during
inference. While there’s a distribution mismatch, we hy-
pothesize that addition of RAP can aid the model in learn-
ing to track the pieces by providing additional supervision
which, in turn, can improve language modeling performance
as well.

3.2 Board State Probing Tasks
In this subsection we describe the probing tasks introduced
above more concretely. In each probing task we feed the
model a prefix of a game followed by a single prompt token,
and the model is evaluated based on the highest probability
next-token under the model given this context. We show an
example of each probing task in Table 3 (which we further
describe below), assuming the model has been fed the move
sequence prefix e2e4 e7e5 g1f3 b8c6 d2d4 h7h6,
which is visualized as the left board in Figure 1b. The ac-
tual next move played in the game is f1b5, which takes the
white bishop at square f1 to square b5, as shown in the right
board of Figure 1b.

3.3 Ending Square Tasks
In this set of tasks, the model is given a game prefix and
prompted with the starting square of the next move (f1 in
the example of Table 3). The model’s next-token prediction
represents its prediction for the ending square of this move,
which tests the model’s ability to track the board state and
follow the rules of chess, as well as strategic awareness.4 We
consider two task variants:

1. End-Actual: Given a move sequence prefix, the model
is prompted with the starting square of the actual piece
moved next in the game.

2. End-Other: Given a move sequence prefix, the model
is prompted with the starting square of any piece on the
board that can be legally moved according to the rules of
chess.

We evaluate End-Actual predictions in terms of both exact
move (ExM) accuracy (whether the model predicted the true
ending square, b5 in our running example) and legal move
(LgM) accuracy (whether the model predicted a legal ending
square for the piece starting at the square in the prompt). For
LgM evaluation, we also calculate the R-Precision which is
the Precision@R where R is the total number of legal end-
ing squares (Manning, Raghavan, and Schütze 2008). In our
running example, there are 5 legal ending squares, and R-
Precision will be calculated for the model’s top-5 predictions.
ExM accuracy evaluation is similar to the typical evaluation
of language models on natural language data, while LgM is
less stringent and focuses on testing just the model’s under-
standing of chess rules and the board state. Note that for

4Strategic capabilities of a chess language model are strongly
tied to the quality of training games.
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Task Prompt Token Correct Answers (ExM) Correct Answers (LgM)

End-Actual f1 {b5} {e2, d3, c4, b5 ,a6 }
End-Other f3 N/A {d2, g1, h4, g5, e5}
Start-Actual B {f1} {f1, c1}
Start-Other N N/A {f3, b1}

Table 3: Examples of each probing task, as well as the corresponding exact move (ExM) and legal move (LgM) correct answers,
are shown below. All examples assume the language model was fed the prefix e2e4 e7e5 g1f3 b8c6 d2d4 h7h6 (see
Figure 1b), and that the actual next move was f1b5. While there is only one valid prompt token for both End-Actual and
Start-Actual tasks, there are many valid prompt tokens for the other tasks, and we show just one possibility for each. Start-tasks
(bottom sub-table) assume the model was trained on games described in UCI+RAP notation.

End-Other, only LgM evaluation is available. See Table 3
for examples.

3.4 Starting Square Tasks
In this category of task, the model is again given a game pre-
fix, but prompted with just the piece type of the next move,
such as B for bishop in the example in Table 3. The model’s
next-token prediction thus represents its prediction for where
the prompted piece type currently is on the board. This task
tests the model’s ability to track pieces.5 Note that only mod-
els which have seen piece types during training, i.e. “UCI +
RAP” models, can actually be tested on this task. Also, no
piece types are used in the game prefix. We again have two
variants of this task:
1. Start-Actual: Given a move sequence prefix, the model

is prompted with the piece type of the actual piece moved
next in the game.

2. Start-Other: Given a move sequence prefix, the model
is prompted with the piece type of any piece on the board
that can be legally moved according to the rules of chess.

We again evaluate Start-Actual both in terms of ExM accu-
racy (whether the model predicts the starting square of the
piece actually moved next in the game), as well as in terms
of LgM accuracy (whether the model predicts the starting
square of a legally movable piece of the given piece type) and
LgM R-Precision (precision of the model’s top-R predictions
with respect to all of the R starting squares of legally mov-
able pieces of the given piece type). For Start-Other, only
LgM evaluation is applicable; see Table 3 for examples.

4 Experimental Setup
Data We use the Millionbase dataset which is freely avail-
able and has close to 2.9 million quality chess games.6 Af-
ter filtering out duplicate games, games with fewer than 10
moves, and games with more than 150 moves (for the com-
plete game to fit into one transformer window), we are left
with around 2.5 million games. From this filtered set we ran-
domly select 200K games for training, 15K games each for
dev and test, and another 50K games to create board state

5In certain cases, this task also tests understanding of chess
rules. For example, in Figure 1b only the rook at h1 can be moved.

6Download link available at https://rebel13.nl/rebel13/rebel\
%2013.html

probing evaluation sets described in Section 3.2. The dev
and test sets are used for perplexity evaluations. The dev set
perplexity is used for choosing hyperparameters. From the
200K training set, we create subsets of size 15K and 50K
which we refer to as “Train-S” and “Train-M”, while the full
training set is referred to as “Train-L”. All the data process-
ing steps requiring chess knowledge, including parsing chess
databases, are carried out using python-chess (Fiekas 2012).

To create the board state probing evaluation sets, we use
the 50K games reserved for this task. We only consider
prompts for non-pawn pieces since the dynamics of pawns
are fairly limited. We ensure that the game prefixes selected
are never seen in the training data. The final evaluation set
consists of 1000 instances with prefix length (in number of
moves) in the range 51 ≤ l ≤ 100.

Model Details We use the GPT2-small architecture for our
base language model (Vaswani et al. 2017; Radford et al.
2019). GPT2-small is a 12-layer transformer model with 12
attention heads and an embedding size of 768 dimensions.
The context size of the model is limited to 512, which is
sufficient to cover the longest game in our training set. Note
that we only borrow the model architecture; the models them-
selves are trained from scratch. 7

For the UCI + RAP p models, we tune over p ∈
{5, 15, 25, 50, 75, 100} based on perplexity on the validation
set. Note that for perplexity evaluation, logits corresponding
to piece type tokens are masked out since piece type tokens
are only available during training. We find that p = 25 per-
forms the best for Train-S and Train-M, while p = 15 is best
for Train-L (Figure 2). Larger values of p lead to greater mis-
match between training and inference, while smaller values
likely do not provide enough training signal.

We also experiment with other transformer and non-
transformer models in Section 5.3. Among the transformer
models, we experiment with two “approximate” attention
models (i.e., models which approximate the full attention
of vanilla transformer models), namely, Reformer (Kitaev,
Kaiser, and Levskaya 2020) and Performer (Choromanski
et al. 2021). We set the number of layers and attention heads
to 12 for both architectures, as in GPT2-small. We also train
LSTM language models with and without RAP.

7Colab notebook to play chess against the base lan-
guage model https://github.com/shtoshni/learning-chess-
blindfolded/blob/master/GPT2 Chess Model.ipynb
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Training Set Model Dev set Test set

Train-S UCI 23.6 23.6
UCI + RAP 15.9 15.9
UCI + AP 16.1 16.2

Train-M UCI 11.6 11.6
UCI + RAP 10.4 10.4
UCI + AP 10.1 10.0

Train-L UCI 7.7 7.7
UCI + RAP 7.4 7.4
UCI + AP 7.2 7.2

Table 4: Canonical validation and test set perplexity. By
canonical we mean that one move, say f1b5, counts as one
token.

Figure 2: Validation set perplexities as a function of RAP
probabilities for the different training set sizes. RAP 0 is the
standard UCI notation. RAP 100 is not shown as perplexities
are too high.

Training Details Models are trained for 10 epochs with a
batch size of 60. Validation is performed at the end of every
epoch and training stops whenever the validation loss starts
increasing. For optimization we use Adam (Kingma and Ba
2014) with learning rate of 5×10−4 and L2 weight decay of
0.01. The learning rate is warmed up linearly over the first
10% of training followed by a linear decay. To accelerate
training, we use mixed precision training (Micikevicius et al.
2018). All experiments are carried out using the PyTorch
Lightning framework built on top of PyTorch (Falcon et al.
2019; Paszke et al. 2019). We use the transformers library
(Wolf et al. 2019) for all models8 except for the Performer
model for which we use a popular unofficial implementation.
9

5 Results
We first present language modeling results, where we show
significant improvements with the addition of RAP (Sec-
tion 5.1). Next, we show results on the board state probing
tasks for the base language model, where we demonstrate
that the model trained on the large training set can learn to
track pieces and predict legal moves with high accuracy (Sec-
tion 5.2). Finally, we present results on the probing task with
approximate attention transformer architectures and LSTMs,
where we show a performance drop in comparison to the
base model with full attention (Section 5.3).

5.1 Language Modeling
Table 4 presents the perplexity results on the validation and
test sets. Figure 2 plots the validation set perplexities as a
function of RAP probability for different training set sizes.
The addition of RAP and AP leads to a decrease in perplexity
for all training sizes, particularly for small training sets. For
small training sets, RAP probabilities as high as 50% can
improve the validation perplexity, but for larger training sets,

8Reformer implementation in transformers library is still a
work in progress. The presented results are with the 4.2.2 version.

9https://github.com/lucidrains/performer-pytorch

lower RAP probabilities are preferred. The reductions in
perplexity for RAP are surprising given that the extra tokens
added via RAP are not present in the validation and test sets,
and thus there is a data distribution shift. Models trained with
UCI + AP achieve the lowest perplexities on larger training
sets. Both RAP and AP aid the model in piece tracking,
as we will see in later results, and in the case of chess this
can significantly improve the language modeling results as
well. Note that for calculating the perplexity of UCI + RAP
models, we mask out the logits corresponding to piece type
tokens since they are never present during inference.

5.2 Board State Tracking
Tables 5 and 6 show results when predicting starting squares
and ending squares, respectively. There are several obser-
vations to note. First, transformers can learn to identify
where pieces are located. This is shown by the LgM ac-
curacies in Table 5. UCI + RAP can predict legal starting
positions with perfect accuracy and R-Precision. However,
this capability requires Train-L, and the accuracy drops to
91.3% for Train-S. The gap between UCI + RAP and its “or-
acle” counterpart, UCI + AP, also reduces with an increase
in training set size with UCI + RAP achieving parity for
Train-L. When asked to identify the location of a piece other
than the one selected to be moved next, this accuracy drops
only slightly to 99.6%. Typically, the piece location track-
ing is slightly better for the piece type that is actually moved
than for other piece types.

The difference between the location of the piece in the
exact move (ExM) and the location of either piece of the
given type (LgM) is substantial, at more than 8% absolute.
However, this difference relates to chess strategy rather than
board state tracking.

Second, transformers can learn to predict legal moves.
This is shown by the LgM accuracies in Table 6, for which
both UCI and UCI + RAP exceed 97% accuracy. However,
while the top predictions of the models have high accuracy,
their ability to predict all legal moves is significantly lower,
with R-precision of about 85%. This is to be expected, since
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Notation LgM ExM
Actual Other

Acc. R-Prec. Acc. R-Prec. Acc.

S UCI + RAP 91.3 90.2 89.3 89.2 78.8
UCI + AP 99.2 99.1 98.8 98.8 86.9

M UCI + RAP 98.2 98.0 98.6 98.7 88.0
UCI + AP 99.9 99.8 100.0 100.0 90.2

L UCI + RAP 100.0 100.0 99.6 99.5 91.8
UCI + AP 99.9 99.9 99.7 99.7 91.1

Random Legal - - - - 86.0

Table 5: Accuracies and R-Precisions (%) for predicting
starting squares (“Start-Actual” and “Start-Other” tasks). S,
M, L in the first column refer to the training set sizes.

Notation LgM ExM
Actual Other

Acc. R-Prec. Acc. R-Prec. Acc.

S
UCI 74.0 61.1 65.5 57.7 26.7
UCI + RAP 88.4 75.5 80.4 72.1 33.3
UCI + AP 87.0 77.0 78.8 72.3 36.1

M
UCI 92.9 80.6 85.8 78.5 42.2
UCI + RAP 94.9 82.2 87.9 78.0 45.9
UCI + AP 94.7 82.4 88.3 79.1 47.3

L
UCI 97.7 85.6 91.9 83.8 52.0
UCI + RAP 97.0 86.1 93.1 83.9 54.7
UCI + AP 98.2 87.3 95.2 86.3 56.7

Random Legal - - - - 19.6

Table 6: Accuracies and R-Precisions (%) for predicting end-
ing squares (“End-Actual” and “End-Other” tasks). S, M, L
in the first column refer to the training set sizes.

the model is trained on only actual games, where the em-
phasis is on “meaningful” moves rather than any legal move.
Due to similar reasons, there’s a significant drop in perfor-
mance when predicting ending squares for starting squares
other than the one in the actual game. The “other” starting
square would, by design, have legal continuations, but lack
any “meaningful” ones.

We find consistent gains in almost all metrics with the
addition of RAP during training, with the gains being par-
ticularly impressive for small training sets. Thus, not only
are the transformers robust to distribution shift due to RAP
(available only during training), they are in fact able to utilize
this additional information. Error analysis of illegal predic-
tions shows that the addition of RAP improves piece tracking
related errors.

The relatively low ExM accuracies of the models can be
attributed to the inherent difficulty of the task. Randomly
selecting an ending square from all legal ending squares has
an accuracy of only around 20%, implying that on average
there are roughly 5 legal choices, which might explain the

Model LgM ExM
Actual Other

Acc. R-Prec. Acc. R-Prec. Acc.

S

GPT2 74.0 61.1 65.5 57.7 26.7
GPT2 (w = 50) 69.5 57.4 60.4 53.2 23.1
Reformer 71.0 57.2 61.5 53.5 24.8
Performer 65.4 54.3 57.9 49.5 20.5
LSTM 60.2 51.0 52.5 46.4 20.9
LSTM + RAP 59.5 50.5 52.4 46.0 21.9

M

GPT2 92.9 80.6 85.8 78.5 42.2
GPT2 (w = 50) 86.0 74.9 80.9 71.3 35.8
Reformer 86.4 73.2 76.6 68.6 32.4
Performer 89.2 76.3 80.5 71.5 36.0
LSTM 73.8 61.6 67.2 59.8 32.0
LSTM + RAP 77.5 64.9 69.7 61.7 32.1

L

GPT2 97.7 85.6 91.9 83.8 52.0
GPT2 (w = 50) 95.8 84.5 90.5 82.7 51.6
Reformer 88.0 74.9 77.0 68.1 33.5
Performer 95.8 84.5 90.5 82.7 51.6
LSTM 93.4 79.5 86.1 76.0 45.2
LSTM + RAP 92.8 80.4 87.3 77.1 46.0

Table 7: Accuracy and R-Precision (%) for predicting end-
ing squares (“End-Actual” and “End-Other” tasks) with vary-
ing attention window sizes. LSTM + RAP refers to LSTM
trained with UCI + RAP.

difficulty of the task.

5.3 Compressing the Game History
The base transformer language model, based on GPT2, at-
tends to the entire history (i.e., it uses “full attention”), which
results in complexity quadratic in the length of the sequence.
We might wonder whether attending to this entire history
is necessary for the impressive state tracking performance
observed in the previous section. We accordingly explore
models that do not attend to the entire history in Table 7.

We first experiment with a variant of the GPT2 model that
limits its attention to a window of only the 50 most recent
tokens (“GPT2 (w = 50)”). In Table 7 we see worse per-
formance for this model across data sizes, but especially for
small- and medium-sized datasets.

In Table 7 we also consider a language model based on the
LSTM (Hochreiter and Schmidhuber 1997), which considers
only its current hidden state and cell state in making its pre-
dictions, and does not explicitly attend to the history. Here
we find an even more significant drop in performance, in
all settings. (Interestingly, we also find that training LSTM
language models on sequences with RAP improves perfor-
mance, but only for larger training sets; transformer language
models generally improve when trained with RAP data).

The results of GPT2 (w = 50) and of the LSTM language
model suggest that attending to the full game history is, un-
surprisingly, useful for board state tracking in chess. This
finding further suggests that the task of board state track-
ing in chess can serve as an excellent testbed for recently

11390



proposed transformer variants (Kitaev, Kaiser, and Levskaya
2020; Katharopoulos et al. 2020; Choromanski et al. 2021,
inter alia) that attempt to make use of long histories or con-
texts, but without incurring a quadratic runtime.

Approximate Attention Transformers We experiment
with the recently proposed Reformer (Kitaev, Kaiser, and
Levskaya 2020) and Performer (Choromanski et al. 2021)
architectures. Reformer replaces the “full attention” with at-
tention based on locality-sensitive hashing, while Performer
approximates the “full attention” with random features.10

The results, in Table 7, suggest that the Performer gener-
ally outperforms the Reformer, except in the small dataset-
setting. Furthermore, we find that neither of these architec-
tures significantly outperforms the GPT2 (w = 50) baseline,
except for Performer in the medium-sized data setting. These
models do, however, typically outperform the LSTM models.
These results demonstrate the challenge of modeling chess
with an approximate attention. We hope that future work
will use this task as a way of benchmarking more efficient
transformer architectures.

6 Related Work
Simulated Worlds. There have been several prior efforts
in relating simulated worlds to natural language. The bAbI
framework simulates a world modeled via templates to gen-
erate question answering tasks (Weston et al. 2015). The
recent TextWorld framework facilitates generating, train-
ing, and evaluating interactive text-based games (Côté et al.
2018). Hermann et al. (2017) and Hill et al. (2017) de-
velop and use 3D world simulations for learning grounded
language. These efforts are similar to our work in the sense
that the true world state is, by construction, available, but
our setup differs in that it provides a natural way of probing
the state tracking of a model trained with an LM objective.

Cloze Tasks for Natural Language Models. There has
been a great deal of work on cloze tasks for evaluating nat-
ural language models (Hermann et al. 2015; Hill et al.
2016). These tasks range from testing general text under-
standing (Paperno et al. 2016) to targeting particular as-
pects of natural language, such as commonsense/pragmatics
(Mostafazadeh et al. 2016; Ettinger 2020), narrative under-
standing (Mostafazadeh et al. 2017), and factual knowledge
(Petroni et al. 2019). Creating these tasks often requires hu-
man curation, and the evaluation is typically limited to exact
match.11 Our proposed tasks are a form of cloze tasks, but
can be precisely automated so that they require no human
curation, and can be evaluated at a fine-grained level.

Probing. One of the goals of this work is to probe the lan-
guage model’s board state tracking capability. A typical so-
lution used by prior work is to train a probing model on top
of a pretrained model (Ettinger, Elgohary, and Resnik 2016;
Alain and Bengio 2017; Adi et al. 2017; Tenney et al. 2019;

10In practice, these models often use a combination of the pro-
posed approximate global attention and simple local attention.

11Automated cloze tasks without human filtering can yield in-
stances which even humans can’t answer (Hill et al. 2016).

Hewitt and Liang 2019). This setup is time-consuming as
it requires training probing models for all tasks. Moreover,
the complexity of the probing model can also affect the con-
clusions (Pimentel et al. 2020). In our case, by using an
appropriate choice of notation, probing for board state can
be accomplished via simple prompts (Section 3).

Deep Learning for Chess. Deep networks have been used
in prior work to predict the next move given the true game
state (David, Netanyahu, and Wolf 2016; Oshri and Khand-
wala 2015). For example, using only self-play and the rules
of chess, AlphaZero achieves superhuman performance start-
ing from random play (Silver et al. 2018). The focus of
this prior work is the quality of game play given the true
board state, while we use chess as a testbed for evaluating a
language model’s board state tracking capability. Recently
there has also been work focusing on transformer language
models for chess (Presser and Branwen 2020; Cheng 2020;
Noever, Ciolino, and Kalin 2020). This work is similar to
ours in the sense that the input is limited to the move se-
quence without the true board state, but the focus is again
the quality of game play rather than the model’s awareness
of the underlying state.

7 Conclusion
We propose the game of chess as a testbed for evaluating how
well language models capture the underlying world state. We
show that with an appropriate choice of chess notation, a lan-
guage model can be probed for different aspects of the board
state via simple prompts. The simple and precise dynamics
of chess allow for (a) training models with varying amount
of explicit state, and (b) evaluating model predictions at a
fine-grained level. Results show that transformer language
models are able to track the board state when given enough
data, but with limited data, providing access to board state in-
formation during training can yield consistent improvement.

Wider Implications for Natural Language Processing.
Our results shed light on the following properties of trans-
formers: (a) they are robust to RAP-like changes in input
distribution, and (b) for high performance the models re-
quire access to the entire context, as well as large training
sets (Section 5.3). Future work can use the first finding to
introduce the world state, or more specifically the output
of linguistic analyzers such as coreference, via RAP-like
tokens during pre-training and fine-tuning of transformers.
RAP-like tokens can also be used for debugging/diagnosing
a model’s understanding, similarly to the starting square pre-
diction tasks. The second finding implies that the proposed
benchmark can guide the search for new transformer archi-
tectures that are adept at understanding long text, and that
can learn from small training sets. The proposed framework
allows for probing and understanding new architectures that
address these challenges.
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