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Abstract
Traditional text classification requires thousands of annotated
data or an additional Neural Machine Translation (NMT)
system, which are expensive to obtain in real applications.
This paper presents a Contrast-Enhanced Semi-supervised
Text Classification (CEST) framework under label-limited
settings without incorporating any NMT systems. We propose
a certainty-driven sample selection method and a contrast-
enhanced similarity graph to utilize data more efficiently
in self-training, alleviating the annotation-starving problem.
The graph imposes a smoothness constraint on the unlabeled
data to improve the coherence and the accuracy of pseudo-
labels. Moreover, CEST formulates the training as a “learn-
ing from noisy labels” problem and performs the optimiza-
tion accordingly. A salient feature of this formulation is the
explicit suppression of the severe error propagation problem
in conventional semi-supervised learning. With solely 30 la-
beled data per class for both training and validation dataset,
CEST outperforms the previous state-of-the-art algorithms by
2.11% accuracy and only falls within the 3.04% accuracy
range of fully-supervised pre-training language model fine-
tuning on thousands of labeled data.

Introduction
Text classification is one of the most fundamental tasks in
the Natural Language Processing (NLP) research commu-
nity, with a broad range of applications, such as question
answering, sentiment analysis, topic mining, and spam de-
tection. Previous researches have developed several deep-
learning-based algorithms (Kim 2014; Zhang, Zhao, and Le-
Cun 2015; Tang, Qin, and Liu 2015; Yang et al. 2016) and
have achieved great success when abundant labeled data are
provided (usually over tens of thousands). However, when
there is only a limited number of labeled data, complex
neural networks often suffer from over-fitting (Xie et al.
2020). As a result, increasing attention has been paid to
semi-supervised learning (SSL) to effectively utilize large
amounts of unlabeled data to address the above shortcom-
ings since unlabeled data are much easier and cheaper to
collect (Chawla and Karakoulas 2005).

Recent semi-supervised approaches for text classification
primarily focus on exploiting the consistency in the pre-
dictions for the same samples under different perturbations
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(Miyato et al. 2018, 2017; Xie et al. 2020; Chen, Yang, and
Yang 2020). However, they typically involve a sophisticated
Neural Machine Translation (NMT) system for augmenting
data by back-translation, which translates a sentence into
a different language and then translates it back. Such ap-
proaches may be bothersome in real-world scenarios by re-
quiring an additional NMT system. Moreover, the system
may generate poor-quality sentences if the task-specific data
distribution is different from that of the data on which the
NMT system was pre-trained.

One promising solution to this issue is self-training (Lee
et al. 2013; Grandvalet and Bengio 2004; Meng et al. 2020).
Self-training generates pseudo-labels for unlabeled data,
which were later used as new labeled data for further train-
ing. Traditional self-training does not perform sample selec-
tion, nor does it consider noises in the generated pseudo-
labels during training. This may result in error accumulation
(Zhang et al. 2017; Arazo et al. 2020) throughout training
iterations, which is referred to as confirmation bias in con-
temporary works (Tarvainen and Valpola 2017; Arazo et al.
2020) and is considered a severe problem in conventional
SSL approaches. Though prior works have been devoted to
designing criteria for selecting samples, for example, select-
ing samples with smaller loss or higher confidence scores in
neural network’s predictions, these selection strategies still
suffer from over-fitting on the samples that the model is al-
ready certain about or from learning on wrong labels.

In this paper, we propose Contrast-Enhanced Semi-
supervised Text Classification (CEST) framework to over-
come all the drawbacks mentioned above. The framework
overview is illustrated in Fig. 1. Based on self-training,
CEST leverages Bayesian Neural Network (BNN) (Wang
and Yeung 2016; Gal and Ghahramani 2016) to provide cer-
tainty estimates for unlabeled data and judiciously select ap-
propriate instances to improve the self-training process. We
then build a reliable similarity graph on the selected data in-
stances to enhance the contrast and exploit the smoothness
assumption in SSL among data instances. Inducing the con-
trast between data not only encourages the model to learn
better representations but also results in better generality and
better efficiency in utilizing data. Finally, we re-formulate
the training on pseudo-labels as a new problem and learn in
a noise-robust manner to alleviate the severe confirmation
bias issue.
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Figure 1: Framework overview.

We perform large-scale experiments on five benchmark
datasets with merely 30 labeled data for training and valida-
tion datasets per class. We adopt BERT as our base encoder
and show that our algorithm significantly improves BERT’s
average performance by 7.96%. Moreover, on benchmark
datasets, CEST significantly outperforms all the previous
state-of-the-art algorithms, most of which require supple-
mentary resources such as additional data augmentation
modules or a sophisticated NMT system. In summary, our
proposed framework makes the following contributions: (i)
We propose a semi-supervised text classification framework
CEST under label-limited settings without using any aux-
iliary resources. (ii) We propose reliable similarity graph
to empower self-training to consider smoothness in SSL,
which conventional self-training does not. (iii) We propose
a new problem formulation for self-training to mitigate the
severe confirmation bias in conventional SSL. (iv) We show
substantial performance improvement of CEST over the
state-of-the-art algorithms on benchmark datasets by 2.11%
in accuracy with an overall 91.57% accuracy, only 3.04%
accuracy short to fully-supervised learning that uses at least
830 times more labeled data.

Related Work
Semi-supervised text classification has been extensively
studied in the NLP community. Gururangan et al. (2019),
Chen et al. (2018), and Yang et al. (2017) established varia-
tional auto-encoders-based algorithms that learned to recon-
struct sentences and utilized the latent variables to classify
text or label sequences. Virtual adversarial training (Miyato,
Dai, and Goodfellow 2017) perturbed word embeddings to
encourage consistency between perturbed embeddings. Un-
supervised data augmentation (UDA) (Xie et al. 2020) per-
formed consistency training by making features consistent
between back-translated sentences (Sennrich, Haddow, and
Birch 2016). MixText (Chen, Yang, and Yang 2020) created
virtual training samples by interpolating in BERT’s hidden
states and performed similar consistency training as UDA.
Most of the above methods require additional modules to
facilitate the main module’s training, which is inefficient in

practical applications and may suffer from the mismatch in
data distribution between the additional modules and the tar-
get tasks. Uncertainty-aware Self-Training (UST) (Mukher-
jee and Awadallah 2020) utilized BNN to select samples and
performed self-training on the selected data. However, it was
still afflicted by the confirmation bias issue and did not con-
sider smoothness among data in the feature space.

Preliminaries
We first define the notations used in this paper. Assume that
we are given a labeled dataset DL = {xi, yi}NL

i=1 and an
unlabeled dataset DU = {xi}NU

i=1, where xi ∈ X is a text se-
quence, and yi ∈ Y is the corresponding label. NL and NU

are the number of labeled and unlabeled data, respectively
(NL ≪ NU ). The goal of semi-supervised text classifica-
tion is to learn a mapping function fW : X → Y, where W
is the model parameters, by minimizing the empirical loss:

argmin
W

∑
xi∈DL∪DU

ℓ(xi, y
′) + λR(fW ) (1)

where y′ is the target label. If xi is from DU , y′ is defined
as the predicted label (pseudo-label). ℓ(·, ·) : Y× Y → R is
the loss function measuring the classification loss between
the predictions and the labels, typically the cross-entropy
loss. R is the regularization term that prevents the model
from overly aggressively learning from data. λ is the hyper-
parameter controlling the impact of R.

Smoothness Assumption in SSL
Semi-supervised learning typically assumes that the learn-
ing algorithm should follow the “smoothness assumption.”
The smoothness assumption states that if two points x1, x2

are close in a high-density region, then so should be the cor-
responding labels y1, y2. If they are in a low-density region,
their labels should be different, as illustrated in Fig. 1.

Self-training
Self-training first trains a base teacher model on the labeled
set DL. The teacher model is then used to pseudo-annotate
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on the deliberately selected SU ⊆ DU to form the aug-
mented data, which will be used to train the student model.
The selection process of SU should be carefully designed for
better performance, for example, selecting data with higher
confidence scores, which implies that the data are mostly
correctly labeled. Then, the teacher model is updated by the
student model. The teacher-student training process is re-
peated until convergence. With self-training mechanism, we
modify the empirical loss as

argmin
W

∑
xi∈SU ,SU⊆DU

ℓ(xi, ỹi) + λR(W ) (2)

where W is the model parameters for the student model, and
the hard pseudo-labels ỹi are given by the teacher model W ∗

from the last iteration (W ∗ will be fixed in current iteration):

ỹi = argmax
c

p(y = c|fW∗(x)) (3)

Similar design of using hard pseudo-labels instead of soft
pseudo-labels has also been reported in contemporary works
(Kumar, Ma, and Liang 2020; Chen, Yang, and Yang 2020),
which refer it to as label sharpening.

Bayesian Neural Network (BNN)
Instead of having deterministic weights, BNN assumes
a prior distribution over its model parameters. Consider-
ing the mapping function fW for BNN, where W is the
model parameters, the parameter optimization is achieved
by finding the posterior distribution over model parameters
p(W |Dtrain) on a training dataset Dtrain. During inference,
for data instance x, the probability for class c is p(y =
c|x) =

∫
W

p(y = c|fW (x))p(W |Dtrain)dW . However, it
is computationally intractable to calculate over all possible
W and we have to find a surrogate distribution qθ(W ) in a
tractable family of distributions to replace the true model
posterior p(W |Dtrain). Gal and Ghahramani (2016) and
Gal, Islam, and Ghahramani (2017) developed Monte-Carlo
Dropout (MC Dropout) using BNN and showed that the
probability for class c, p(y = c|x), can be approximated
by considering qθ(W ) to be the dropout distribution (Srivas-
tava et al. 2014), which is tractable, with T masked model
weights {W̃t}Tt=1 ∼ qθ(W ):

p(y = c|x,Dtrain) ≈
1

T

T∑
t=1

p(y = c|fW̃t(x)) (4)

Methodology
The overall framework is illustrated in Fig. 1. In this sec-
tion, we will answer the following questions: (1) How to
select appropriate unlabeled samples for self-training? (2)
How to induce contrast among data samples by designing
the regularization term R(·)? (3) How to robustly learn with
pseudo-labeled samples by the classification loss ℓ(·, ·)?

Sample Selection
Certainty estimates. We will select the unlabeled data in-
stances for self-training by first estimating their certain-
ties, as we want to judiciously select samples to prevent

the model from being contaminated by wrong pseudo-labels
during self-training. To this end, we leverage information
gain of model parameters as the certainty measure to esti-
mate how certain the model is to the given sample with re-
spect to the sample’s true label, even though the real label is
unknown. Similar techniques are also used in (Houlsby et al.
2011; Gal, Islam, and Ghahramani 2017), where they select
data with higher information gain for active learning.

Using entropy H(·) to measure the level of information we
have, we define the information gain B to be the difference
between the final entropy H(y|x,DU ) after seeing the whole
unlabeled dataset DU and the current entropy H(y|x,W )
given the model parameters W in the current iteration. For-
mally, for data sample x ∈ DU , the information gain B with
respect to its expected label is
B(y,W |x,DU ) = H(y|x,DU )− Ep(W |DU )[H(y|x,W )]

(5)
where p(W |DU ) is the posterior distribution of the model
parameter in current iteration. As Eq. (5) is computationally
intractable, it can be approximated by MC Dropout (Gal,
Islam, and Ghahramani 2017):

B̂(y,W |x,DU ) =−
∑
c

(
1

T

∑
t

p̂tc) log (
1

T

∑
t

p̂tc)

+
1

T

∑
t

∑
c

p̂tc log (p̂
t
c) (6)

where p̂tc = p(y = c|fW̃t(x)) is the estimated probability of
class c given by the model parameters W̃t ∼ qθ(W ) in the
t-th trial in the MC Dropout. B̂ is a tractable estimation to
B when T is sufficiently large. Learning from B decreases
the expected posterior entropy in the output space Y and en-
courages the model to produce low-entropy outputs. A lower
B̂ value means that the model is more certain about the sam-
ple as there is little to be gained even after seeing the whole
unlabeled dataset DU .

Certainty-driven sample selection With the information
gain measure, we can use them to design the sample se-
lection approach. For data with lower information gain, the
model is certain about them. However, due to having low in-
formation gain, the model learns little from the data. Directly
training on the data with low information gain will make the
model rapidly over-fit on them. On the other hand, data with
higher information gain can contribute more to the learning
of the model, but they are also more prone to have wrong
pseudo-labels. To balance these two scenarios, we sample
data instances with different sampling weights, with lower B̂
instances being sampled more and higher B̂ instances being
sampled less. We define the sampling weight to be propor-
tional to its certainty value that is measured by 1− B̂ (higher
certainty corresponds to lower information gain). Formally,
for data xi ∈ DU , the sampling weight si for xi is

si =
1− B̂(yi,W |xi, DU )∑

xj∈DU
[1− B̂(yj ,W |xj , DU )]

(7)

where
∑

xj∈DU
[1− B̂(yj ,W |xj , DU )] is a normalizing

factor. It is worth noting that 1− B̂(yi,W |xi, DU ) is always
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positive provided that the base in log is equal to the num-
ber of classes C. To select unlabeled samples for augmented
dataset SU , we sample P instances from DU , where each
data sample will not be sampled twice to avoid over-fitting.

Graph-based Contrast Induction

To consider the smoothness assumption in SSL, We pro-
posed a dynamic similarity graph to induce the contrast
among data samples. Traditionally, only perturbation-based
SSL approaches consider the smoothness assumption, while
self-training-based approaches do not. The proposed dy-
namic similarity graph empowers self-training to exploit
the smoothness and to leverage more underlying informa-
tion among data, instead of solely considering their pseudo-
labels as in traditional self-training, which greatly increases
the efficiency of data utilization.

Specifically, we build a similarity graph based on the
pseudo-labels and create a reliable sub-graph by pruning the
“unreliable” edges. Then, we optimize the model under the
guidance of the reliable similarity sub-graph. The optimiza-
tion explicitly enhances the contrast between data samples
and encourages the smoothness in the feature space.
Similarity-graph Construction. After the unlabeled data
samples are selected to form SU , we build an similarity
graph on top of SU . Due to the discrete nature of text, it is
hard to measure the similarity between two text sequences.
We address this problem in the label space Y and regard
data instances from the same class to be similar. Formally,
we build an undirected, weighted similarity graph G(V,E),
where the node set V and the edge set E is defined as

V = {i | xi ∈ SU}
E = {(i, j) | xi, xj ∈ SU} (8)

and edge (i, j) has edge weight satisfying the following:

eij =

{
1, if ỹi = ỹj
0, if ỹi ̸= ỹj

(9)

where ỹi, ỹj are the hard pseudo-labels of xi obtained by the
teacher model W ∗ from the last iteration.
Graph-based Contrast Enhancement. After the similarity
graph is constructed, we show how to enhance the contrast
by the graph during training. We first decompose the map-
ping function f into two components, a feature extractor h
and a classifier g with f = g ◦ h, where h projects x ∈ X
into its high-level representation h(x) in the feature space Z,
and g annotates the representation h(x) with a label y ∈ Y.

An ideal feature extractor h separates and disentangles
h(x) from different classes in Z, and a simple classifier g
suffices (Luo et al. 2018). To achieve this goal, we propose
to force similar data to have consistent features and make
dissimilar data farther away from each other in Z. Mathe-
matically, given a similarity graph G and a pre-defined mar-
gin m between dissimilar features, we enhance the contrast
through the regularization term R in the training objective:

R(fW , G) =
∑

(i,j)∈E,eij=1

||h(xi)− h(xj)||22

+
∑

(i,j)∈E,eij=0

max(0,m− ||h(xi)− h(xj)||2)2 (10)

The loss R is vital to the data efficiency as it mines the un-
derlying information from data, in lieu of using the text data
separately without considering their relationships within a
class and between classes. Furthermore, from the perspec-
tive of SSL, it explicitly forces the model to follow the
smoothness assumption (Sec. ), making features of the same
class be in a high-density region and features of different
classes be separated by low-density regions. A smoother de-
cision boundary can thus be obtained.
Reliable Sub-graph Construction. It will be problematic
to consider all the edges in the similarity graph and optimize
directly since many edges may have wrong weights due to
wrong pseudo-labels. Moreover, if we directly optimize the
model using the full similarity graph, the regularization term
R will in turn confuse the model since it tells the model to
put points that should have been in different classes closer.

To this end, we add an attribute, reliability, to each node
and each edge in the similarity graph G to assess its qual-
ity, and the edges with lower reliability values are pruned
to avoid adverse effects caused by those low-quality edges.
For node vi, which corresponds to the data instance xi, we
define its reliability γ(vi) to be the predictive variance of its
pseudo-label over T MC Dropout iterations. Specifically,

γ(vi) = 1−Var(y = ỹi|xi) ≈ 1− 1

T

T∑
t=1

p2t +(
1

T

T∑
t=1

pt)
2

(11)
where pt = p(y = ỹi|fW̃t(xi) is the probability of ỹi pre-
dicted by fW̃t , where W̃t is the model weight sampled in
the t-th iteration in MC Dropout. It is noteworthy that the
variance Var(y|xi) falls in the interval [0, 1

4 ], so the value
of reliability γ(vi) = 1 − Var(y|xi) is always positive and
falls in [ 34 , 1] . Then, the reliability of edge (i, j) is

γ(eij) =
γ(vi) + γ(vj)

2
(12)

An edge with a higher reliability value indicates that the ad-
jacent nodes are more likely to have correct pseudo-labels,
and hence the edge weight is correctly assigned.

To construct the reliable sub-graph G′(V ′, E′), we add all
the nodes in G into G′, i.e. V ′ = V . As for the edge set E′,
for each node vi, we select the top k edges with the highest
reliability γ from the positive set and from the negative set
to form the reliable edge set E′ (2k edges in total for each
node), where k is a hyper-parameter, and the positive set and
the negative set are defined as
1. positive set: {(i, j) | eij = 1, j = 1, 2, ..., |SU |}
2. negative set: {(i, j) | eij = 0, j = 1, 2, ..., |SU |}

In this way, we have a reliable graph with much fewer
wrong edges, and we can still perform the same optimization
on the resulting sub-graph G′ as before:
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R(fW , G′) =
∑

(i,j)∈E′,eij=1

||h(xi)− h(xj)||22

+
∑

(i,j)∈E′,eij=0

max(0,m− ||h(xi)− h(xj)||2)2 (13)

For each node, the time complexity of calculating the
loss incurred by adjacent edges is significantly reduced from
O(n) to O(k), where k ≪ n. In section , we show that
the reliable similarity sub-graph greatly improves the per-
formance, while adding little computational cost.

Robust Learning with Pseudo-labels
Erroneous pseudo-labels are inevitable in self-training,
though we have designed several techniques to avoid them.
For example, it is still possible that the pseudo-labels of low
B̂ data are wrong. The inclusion of higher B̂ instances in-
troduces even more wrongly-annotated data, further wors-
ening the situation. These wrongly-annotated data mislead
the learning of the model, and errors accumulate throughout
training, degrading the performance.

Utilizing traditional cross-entropy loss to train pseudo-
annotated data is prone to error accumulation. Consider
l(fW (x), y) = φ(pW (x, y)) to be the loss function, where
pW (x, y) is the probability of the target class y predicted by
the model W , and φ(u) is the classification loss. For cross-
entropy loss, l(fW (x), y) = − ln(pW (x, y)). Then, the gra-
dient induced by the cross-entropy loss is

∂l(fW (x), y)

∂W
= −∂ ln pW (x, y)

∂W
= − 1

pW (x, y)

∂pW (x, y)

∂W
(14)

As shown in Eq. (14), the cross-entropy loss implicitly
weighs more on difficult samples whose predictions are less
congruent with the target labels during optimization for
faster convergence (Zhang and Sabuncu 2018). However,
when labels are noisy, the data with wrong labels tend to
be more difficult than those having clean labels. The model
will aggressively memorize the wrong information through
optimization, finally leading to the confirmation bias issue.

To this end, we frame our training on the selected unla-
beled data as a learning from noisy labels problem to allevi-
ate this issue. We leverage the recent advanced noise-robust
loss, partially huberised Loss, (Menon et al. 2020) field, for
training. Specifically, by only clipping the gradient of the
classification loss φ in the general loss l(fW (x), y), the re-
sulting partially huberised loss l̃(fW (x), y) is robust to label
noises. Mathematically, l̃(fW (x), y) is

l̃ =

{
−τpW (x, y)− φ∗(−τ), if φ′(pW (x, y)) ≤ −τ

− log pW (x, y), otherwise
(15)

Integrating it with cross-entropy loss , the partially huberised
cross-entropy loss (PHCE loss) is obtained:

l̃ =

{
−τpW (x, y) + log τ + 1, if pW (x, y) ≤ 1

τ

− log pW (x, y), otherwise
(16)

Dataset Class Train Test Unlabeled
DBpedia 14 560K 50K -
AG News 4 120K 7600 -
IMDB 2 25K 25K 50K
Elec 2 25K 25K -
SST-2 2 68.2K 1821 -

Table 1: Dataset statistics.

where τ is a hyper-parameter related to the degree of noise.
τ is set larger if the data are essentially noise-free. We will
use the PHCE loss as our classification loss ℓ in Eq. (1).
Menon et al. (2020) theoretically showed that, using the par-
tially harburised loss, the performance degradation under la-
bel corruption can be bounded, thus ensuring robustness.
The intuition behind this is not to overly trust any single
data instance and linearize the loss if the samples are too
difficult. On the other hand, in the learning from noisy la-
bels problem, the model typically suffers from having class-
imbalanced data, as the learning will be biased. Hence, we
separate the unlabeled data into different classes according
to their pseudo-labels, select an equal number of data from
each class, and train the model in a class-balanced fashion.

Experiment
Dataset and Evaluation Setting
We evaluate CEST on five public datasets (Table 1), includ-
ing IMDB (Maas et al. 2011), SST-2 (Socher et al. 2013),
Elec (McAuley and Leskovec 2013) for sentiment analysis
and DBpedia (Mendes, Jakob, and Bizer 2012), AG News
(Zhang, Zhao, and LeCun 2015) for topic classification. We
randomly select 30 labeled data per class with different ran-
dom seeds for training and validation set and use the test set
in original dataset. The rest data are added to the unlabeled
set. We perform each experiment three times with different
seeds and data splits to show the significance (Dror et al.
2018) and report the mean accuracy on the test set.

Baselines
For fairness, we only compare our results with the semi-
supervised learning methods that uses BERT as the base
model. The first baseline is BERT (Devlin et al. 2019) di-
rectly fine-tuned on the small labeled training set without
using unlabeled data. The next baseline is UDA (Xie et al.
2020), which performs consistency training as regulariza-
tion through back-translation by an additional NMT system.
Our third baseline is the standard self-training without con-
sidering sample selection, feature relationships, and confir-
mation bias. Finally, the fourth baseline is UST (Mukher-
jee and Awadallah 2020), which selects samples by infor-
mation gain and utilizes cross-entropy loss to perform self-
training. For model implementation, we use huggingface’s
BERT (bert-base-uncased) with a two-layered MLP
on top of it. We set the maximum token length in sen-
tences to 256 and clip tokens exceeding the limit. The learn-
ing rate is fixed to 1e − 5, and hyper-parameters are set to
k = 2, τ = 10, λ = 0.75, |SU | = 2000, dim(Z) = 128.
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Dataset Full training 30 labeled training data per class
BERT BERT UDA Standard ST UST CEST (Ours)

AG News 92.98 79.84 85.92 84.07 86.90 87.05
DBpedia 99.13 98.01 96.88 97.25 98.30 98.61
IMDB 91.26 80.90 89.30 83.81 84.06 90.20
Elec 96.48 85.07 89.64 89.50 89.97 92.26
SST-2 93.19 74.23 83.58 84.81 88.09 89.71

Average 94.61
83.61

(+0.00%)
89.06

(+5.45%)
87.89

(+4.28%)
89.46

(+5.85%)
91.57

(+7.96%)

Table 2: Performance (test accuracy(%)) comparison with baselines. The results are averaged for three runs, with each run
taking 3-8 hours on an NVIDIA RTX3090. BERT on the second column means directly fine-tuning without using unlabeled
data. Standard ST denotes standard self-training. We reproduced all baselines with PyTorch except that UDA’s results are cited.

Results
Table 2 shows the overall performance on the benchmark
datasets. With only 30 labels per class in the training set, our
model consistently achieves the best performance over all
the other baselines with an aggregated accuracy of 91.57%.
BERT without using unlabeled data performs the worst as
expected since the number of labeled data is extremely in-
sufficient to train BERT’s substantial amount of parameters.
UDA has greatly improved BERT by 5.45% accuracy, ow-
ing to the use of an additional NMT system to perform con-
sistency training. While standard self-training has shown
a 4.28% accuracy improvement, it fails to tackle the se-
vere confirmation bias issue, hence resulting in lower per-
formance. UST is a stronger baseline that performs on par
with UDA. Still, as UST does not suppress confirmation bias
and does not consider the smoothness constraint in SSL, its
performance can be considered sub-optimal in contrast with
ours. Overall, CEST shows high performance over state-of-
the-art approaches, UST, by 2.11% accuracy while perform-
ing only 3.04% accuracy short to fully-supervised learning.

Effectiveness of Reliable Similarity Graph
In Fig. 2, we use t-SNE (Maaten and Hinton 2008) to vi-
sualize the learned features in the feature space Z on the
AG News test set. The model trained with reliable similarity
graph (Fig. 2c) learned tighter features within each class and
separated features between classes. We can see that there
is a clearer boundary between every two classes compared
to that trained without similarity graph (Fig. 2a), hence re-
straining over-fitting and yielding better generalization ca-
pability. On the other hand, when we use the whole simi-
larity graph without considering the reliability, referring to
Fig. 2b, the boundaries are still entangled together because
the reliability of edges is not considered in this case, and the
wrong features are falsely put closer, and vice versa.

Effectiveness of Noise-robust Loss
In Fig. 3, we demonstrate the importance of using the noise-
robust loss function. The performance of training with the
PHuberCE loss (the solid lines) consistently has better ac-
curacy against that of training without the noise-robust loss
(the dotted lines). Both cases have similar accuracy in the

(a) (b) (c)

Figure 2: t-SNE visualization. (a) without similarity graph
(b) similarity graph without considering reliability (c) with
reliable similarity graph.

Figure 3: Test accuracy (%) over self-training iterations. The
solid and the dotted lines shows the results of training with
and without using the noise-robust loss (PHCE loss).

early stages but gradually diverge as the training goes on,
suggesting the degradation by the accumulated errors dur-
ing training iterations and demonstrating the importance of
using the noise-robust loss.

Ablation Analysis
In Table 3, we compare the impact of different components
in our framework. We remove a component each time to
assess its effectiveness. We observe that the performance
is the worst after removing the sample selection part since
noisy labels will corrupt the training. For the same reason,
when we remove the noisy-robust loss, the accuracy drops
0.53%, corroborating our conclusions in section that avoid-
ing noisy labels is imperative to self-training. Moreover, the
use of reliable sub-graph and smoothness regularization both

11399



AG News IMDB DBpedia Elec SST-2 Average
BERT (direct fine-tuning) 79.84 80.90 98.01 85.07 74.23 83.61
CEST 87.05 90.20 98.61 92.26 89.71 91.57
− noise-robust loss 86.80 89.68 97.91 92.08 88.75 91.04
− reliable sub-graph 86.56 88.37 97.44 91.96 87.95 90.46
− smoothness regularization 86.10 86.76 98.18 90.47 88.33 89.97
− without sampling 84.07 83.81 97.25 89.51 84.81 87.89

Table 3: Ablation Study of performance (test accuracy (%)) over different design configurations.

Figure 4: Test accuracy (%) under different number (K) of
labeled training data per class.

Dataset BERT UST CEST(Ours)
AG News 81.66 84.63 86.22
DBpedia 95.40 97.21 97.16
IMDB 75.40 78.83 90.65
Elec 76.69 91.76 92.21
SST-2 79.44 84.00 89.56

Average
81.72

(+0.00%)
87.29

(+5.57%)
91.16

(+9.44%)

Table 4: Test accuracy (%) with only ten labels per class.

contributes to the performance, as the regularization explic-
itly enforces the smoothness assumption in SSL and bet-
ters the quality of features. As indicated in the table, con-
structing the reliable sub-graph increases around 0.58% ac-
curacy (91.04% - 90.46%) because it mitigates the confusion
caused by regularizing on the wrong edges.

Data Efficiency of CEST
To explore the limit of our framework, we examine our
framework with only ten labeled training data per class,
i.e., 10, 30 labeled data per class for training and validation
dataset, respectively. Under such label-limited settings, the
results in Table 4 show that CEST still outperforms UST by
a large margin, even larger than the case with 30 labels per
class for training. The higher performance can be attributed
to the use of reliable similarity graph. The graph enables
CEST to exploit the underlying relationships among the few
data, instead of using data separately, and to comply with
smoothness assumption for better generalization capability.

In Fig. 4, we run our framework under different numbers
(K) of labels per class, K = {10, 30, 200, 1000}. We ob-
serve that the accuracy gradually improves as K increases,
as expected. It is noteworthy that the performance differ-

Datasets Model # of labels Acc.
IMDB CEST (ours) 30 90.2

Variational Pre-training 200 82.2
RL + Adv. Training 100 82.1
SeqSSL + Self-training 100 79.7
Layer Part. + Temp. Ens. 100 75.8
SeqSSL + Adv. Training 100 75.7
Layer Part. + Π model 100 69.3

AG News CEST (ours) 30 87.1
Variational Pre-training 200 83.9
SeqSSL + Self-training 100 78.5
SeqSSL + Adv. Training 100 73.0

DBpedia CEST (ours) 30 98.6
RL + Adv. Training 100 98.5
SeqSSL + Self-training 100 98.1
SeqSSL + Adv. Training 100 96.1

Table 5: Performance comparison with non-BERT-based
semi-supervised approaches. (Li and Ye 2018; Gururangan
et al. 2019; Dai and Le 2015; Li and Sethy 2020) (RL: Re-
inforcement Learning, Adv.: Adversarial, Temp. Ens.: Tem-
poral Ensemble, Layer Part.: Layer Partitioning)

ence between using ten labeled training data per class and
using more labeled training data is small, indicating that our
framework has higher data efficiency indeed. Finally, in Ta-
ble 5, we compare CEST with more non-BERT-based SSL
approaches that use different labels. Our framework demon-
strates large performance gain, especially on IMDB dataset
with at least 8%, while using 3 ∼ 6 times fewer labeled data.

Conclusion
In this work, we introduce Contrast-Enhanced Semi-
supervised Text classification, CEST, under label-limited
settings. CEST judiciously selects unlabeled data for self-
training and leverages reliable similarity graph to consider
the smoothness in the feature space. It mitigates confirma-
tion bias by proposing a new formulation and by using the
noise-robust loss. Through experiments on five benchmark
datasets, CEST shows strong performance over state-of-the-
art semi-supervised learning approaches. Some interesting
future works include extending this method to more severe
low-resource settings or integrating it into real-world appli-
cations, such as healthcare applications.
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