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Abstract
We study the problem of online learning with human feed-
back in the human-in-the-loop machine translation, in which
the human translators revise the machine-generated transla-
tions and then the corrected translations are used to improve
the neural machine translation (NMT) system. However, pre-
vious methods require online model updating or additional
translation memory networks to achieve high-quality perfor-
mance, making them inflexible and inefficient in practice. In
this paper, we propose a novel non-parametric online learn-
ing method without changing the model structure. This ap-
proach introduces two k-nearest-neighbor (KNN) modules:
one module memorizes the human feedback, which is the cor-
rect sentences provided by human translators, while the other
balances the usage of the history human feedback and original
NMT models adaptively. Experiments conducted on EMEA
and JRC-Acquis benchmarks demonstrate that our proposed
method obtains substantial improvements on translation ac-
curacy and achieves better adaptation performance with less
repeating human correction operations.

Introduction
The quality of the neural machine translation (NMT) system
has been significantly improved recently (Sennrich, Had-
dow, and Birch 2016a; Vaswani et al. 2017; Zhang et al.
2018b; Hassan et al. 2018). However, recent research has
shown that machine translation still lags behind human
parity on translation quality (Läubli, Sennrich, and Volk
2018; Freitag et al. 2021). In some scenarios where high-
quality translation should be guaranteed, human-in-the-loop
machine translation, i.e., machine translation with human
post-editing, is still indispensable. As human corrections on
machine-translated text are constantly produced, adapting
the NMT model to these corrections could improve transla-
tion quality and effectively reduce human efforts, as shown
in Figure 1. However, the training of NMT models requires
a certain amount of data and consumes dozens or hundreds
of GPU hours, which is unavailable in this scenario. There-
fore, online learning from human feedback at a low training
cost has become a promising research topic in recent years.

A series of studies (Turchi et al. 2017; Kothur, Knowles,
and Koehn 2018) propose to on-the-fly update the NMT
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Figure 1: The workflow of online learning from human feed-
back in the human-in-the-loop machine translation. Given
the source sentence SRC, the NMT System generates the
translation MT. The user corrects it and produces PE. Then
the corrected sample is used to adapt the NMT system.

model right after humans correct the translation. Although
these methods improve translation performance, they re-
quire extra costs for frequent gradient computations at the
inference time. Tuning parameters only on the new-coming
sentences also brings the risk of catastrophic forgetting
problems. Another research line (Gu et al. 2018; Zhang et al.
2018a) augments the NMT model with the translation mem-
ory to cache the human-corrected sentences. For each sen-
tence to translate, cached sentences with similar context are
retrieved to help the decoding process of the NMT model.
Memory-augmented NMT avoids updating parameters on-
the-fly, but it requires careful network architecture design to
model the retrieved translation memories. Also, extra train-
ing overhead is inevitable to optimize the memory network.

Recently, Khandelwal et al. (2020) proposed KNN-MT,
a non-parametric and model-agnostic method for domain
adaptation. It equips the pre-trained NMT model with a k-
nearest-neighbor classifier over a datastore of cached con-
text representations and corresponding target tokens. The fi-
nal translation probability is the interpolation between the
probability calculated by the NMT model and the KNN
module. KNN-MT provides a simple but effective way to
exploit human feedback by adding human-corrected transla-
tions into the datastore. However, the success of KNN-MT is
owed to enough in-domain samples pre-cached in the data-
store. In the human-in-the-loop translation, to learn the cor-
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rected translation, human translators have to make repetitive
corrections on the same mistake to provide enough samples
for KNN-MT. Biasing the interpolation to the KNN module
could accelerate this learning process, but it takes the risk of
being interfered by the noise in retrieved neighbors when re-
trieved items are not relevant enough. Therefore, it is crucial
to balance the usage of the probability from the NMT model
and the KNN module when applying KNN-MT.

In this paper, we propose KNN-over-KNN (KoK), a plug-
and-play non-parametric approach for online learning from
human feedback. KoK equips the NMT model with two
KNN modules, Token-KNN and Policy-KNN. Token-KNN
is used to model the translation probability as in KNN-
MT. Human-corrected sentences are incrementally added
to the datastore of Token-KNN to improve the translation
quality of proceeding sentences. Policy-KNN is introduced
to model the balance mechanism between the Token-KNN
module and the NMT model. It interpolates between the two
modules with a Bernoulli distribution. The distribution is es-
timated by a k-nearest-neighbor classifier over a datastore.
For building the datastore, we extract features from the re-
trieval results of Token-KNN as the key, and heuristically
induce a binary flag for each result as the value (1 means
using this result and vice versa).

We conduct experiments on translating domain-specific
documents with various lengths. Oracle references are used
to mimic human feedback. KoK obtains significant improve-
ments (up to 12.9 BLEU improvement and 9.7 TER re-
duction) compared to the Pre-Trained NMT model. KoK
also achieves consistent improvements over existing online
learning methods on documents at all lengths. We further
show that KoK can adapt to human feedback with less re-
peated corrections, which reduces human effort. Our code is
open-sourced at https://github.com/wangqi1996/KoK.

Background
Neural Machine Translation
Neural machine translation systems formulate the transla-
tion task as a conditional probability model p(y|x), which
defines the translation process from source sentence x =
{x1, x2, ..., xm} into target sentence y = {y1, y2, ..., yn}.
The representative works decompose it in an auto-regressive
manner from left to right :

pNMT(y) =
n∏
i=1

pNMT(yt|y<t,x),

where y<t = {y1, y2, ..., yt−1} denotes the prefix tokens.
Then the probability of each target token is defined as:

pNMT(yt|y<t,x) = softmax(Wht + b)

ht = Transformer(x,y<t),
(1)

where ht is the representation for context (x,y<t), andW ,
b are the trainable parameters to mapping the dimension of
ht to the vocab size.

Online Learning from Human Feedback
In the human-in-the-loop translation, a complete translation
step is: the NMT model generates machine-translated text,

and then the human translator makes revisions on it (human
feedback). Online Learning from human feedback follows
such a paradigm: after the human completes the revision
of the current sentence, the machine translation system is
adapted incrementally by taking this sample into account.
Concretely, given a documentD = {x1,x2, ..,x|D|}, where
xi represents ith sentence, the translation for xi is generated
as

ŷi = f i−1(xi)

where f i−1 is the NMT model adapted by x<i sentences
and f0 is the pre-trained model. The human translator cor-
rects ŷi, and then produces the reference yi. The model f i
is acquired by adapting f i−1 over the new sample (xi,yi):

f i ← Adaptation(f i−1,xi,yi).
The adaptation process could be tuning the model parame-
ters, or updating the external translation memory. In the rest
of the paper, we omit the superscript i for simplicity.

KNN-MT
Recently, Khandelwal et al. (2020) proposed KNN-MT, a
non-parametric method. It augments the NMT model with a
token-level k-nearest-neighbor retrieval mechanism, allow-
ing it to directly access the cached examples stored in the
datastore during inference. It consists of two steps: datastore
construction and inference.

Datastore Construction The datastore consists of a set
of key-value pairs. More specifically, given the parallel sen-
tence in the dataset (x,y) ∈ (X ,Y), the pre-trained NMT
model generates the context representation ht as Equation 1
at every timestep t, then the datastore takes the ht as the key
and the corresponding target tokens yt as the value:

(K,V) = {(ht, yt), ∀yt ∈ y|(x,y) ∈ (X ,Y)}.
Inference The inference process performs in a token-by-
token manner. Given the source sentence x and the gener-
ated target prefix ŷ<t, the pre-trained NMT model gener-
ates the representation ĥt and then predicts a probability
pNMT(ŷt|x, ŷ<t) for the target token ŷt.

Then, the k-nearest-neighbor model retrieves the similar
K neighbours R = {(ki, vi), i ∈ {1, 2, ...,K}} in the data-
store according to Euclidean distance to ĥt. The retrieved
result is converted into a distribution over the vocabulary by

p(ki|ĥt) = softmax(
−d(ki, ĥt)

T
)

pKNN(ŷt|x, ŷ<t) =
∑

(ki,vi)∈R

Ivi=ŷtp(ki|ĥt)),
(2)

where d(ki, ĥt) represents the Euclidean distance between
ki and ĥt, p(ki|ĥt) is the probability of ith retrieval neigh-
bor (ki, vi). T is a hyper-parameter to control the sharpness
of the softmax function.

The final output distribution is an interpolation between
distributions from the NMT model and the KNN retrieved
neighbors with a tuned parameter λ ∈ [0, 1]

p(ŷt|x, ŷ<t) = λ ∗ pKNN(ŷt|x, ŷ<t)
+ (1− λ) ∗ pNMT(ŷt|x, ŷ<t).

(3)
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Figure 2: An illustration of proposed KoK.

Proposed Method
In this section, we describe the proposed method, KNN-
over-KNN (KoK). Based on KNN-MT, we model a bal-
ance mechanism between the usage of the pre-trained NMT
model and the KNN module cached history human correc-
tions, i.e., we replace the fixed λ in Equation 3 into a dy-
namic λt varies at each predicting ŷt:

p(ŷt|x, ŷ<t) = λt ∗ pKNN(ŷt|x, ŷ<t)
+ (1− λt) ∗ pNMT(ŷt|x, ŷ<t).

(4)

KoK learns to predict pKNN and λt from history human feed-
back in a non-parametric way, and can be applied to NMT
models with various architectures.

Architecture
Figure 2 shows the overall architecture of KoK. It parame-
terizes the final translation probability (Equation 4) with two
KNN modules besides the pre-trained NMT model, in which
the Token-KNN module predicts the probability pKNN over
target words and the Policy-KNN module predicts an inter-
polation coefficient λt.

During the translation process of one sentence, for each
decoding step t, Token-KNN takes the hidden representation
ĥt as query and retrieves from its datastore to generate the
translation probability pKNN. Then features extracted from
the retrieval result of Token-KNN are used as the query of
Policy-KNN to calculate the λt value. The final translation
probability (Equation 4) is computed as an interpolation be-
tween pKNN and pNMT with λt.

Token-KNN
Token-KNN module predicts the translation probability
pKNN with k-nearest-neighbor classifier over the datastore.
It is similar to the KNN module in the KNN-MT, but the
datastore is built incrementally. During the translation pro-
cess, with the ĥt as the query, the Token-KNN queries from
the token datastore. The translation probability is computed
as Equation 2. During the adaptation process, given source

sentence x and its human-corrected translation y, we build
the key-values pairs and then store them into the datastore.

Policy-KNN
Policy-KNN module calculates the λt, which expresses the
balance mechanism between the usage of the pre-trained
NMT model and the Token-KNN module. We introduce a
random variable λ which obeys the Bernoulli distribution.
λ = 1 represents to use the translation probability of Token-
KNN and vice versa for the NMT model. Thus, predicting
coefficient λt in Equation 4 is demonstrated as estimating
the conditional probability p(λ = 1|x,y<t)

λt = p(λ = 1|x,y<t).

Policy-KNN estimates this probability with k-nearest-
neighbor classifier over the datastore as well. In the fol-
lowing, we will describe in detail the datastore construc-
tion and inference process of Policy-KNN. At the tth decod-
ing step, we denote the retrieval results from Token-KNN as
Rtok
t = {(ktok

i , vtok
i ), i ∈ {1, 2, ...,K}}.

Key Refer to Zheng et al. (2021a), we construct the key
vector st using two kinds of features extracted from the re-
trieval results of Token-KNN. One feature is the distance,
we denote the Euclidean distance between the context rep-
resentation ht and ith retrieval result ktok

i as di.

di =
∥∥ht − ktok

i

∥∥
2

.

The other feature is the counts of distinct values for all re-
trieval results, marked as ci. Specially, ci is computed as:

ci = |UNIQUE(vtok
1 , vtok

2 , ..., vtok
i )|

where UNIQUE represents the unique elements in the list.
st is constructed by concatenating all the features:

st = [d1, d2, ..., dK ; c1, c2, ..., cK ]. (5)

Intuitively speaking, the distance features di stand for
similarity, which directly evaluates the importance of each
retrieval result. The count features ci represents the consis-
tency of retrieval results, as more distinct retrieved values
mean less credible KNN retrieval. Both of these two features
are crucial for predicting an optimal value of λ.

We further re-weight the key vector according to the
significance of each element. We adopt exponential re-
weighting on distance features and count features, respec-
tively:

st = st � [
1

4
,
1

8
, ...,

1

2K
,
1

2K
;
1

2K
,
1

2K
, ...,

1

8
,
1

4
]. (6)

Value The retrieval result of Token-KNN does not explic-
itly come with a golden value of λ indicating whether to use
this result or not. Instead, we implicitly induce the value of
λ through a simple heuristic:

λ =

{
1 pKNN(yt|x,y<t) > pNMT(yt|x,y<t)
0 pKNN(yt|x,y<t) ≤ pNMT(yt|x,y<t)

(7)

where x and y is the source sentence and its human-
corrected translation, respectively.
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This heuristic is actually mathematically meaningful. To
find the value of λt to maximize the probability of KNN-
MT (Equation 4), we need to solve the optimization problem
below:

λt = argmax p(yt)

= argmaxλt λt · pKNN(yt) + (1− λt) · pNMT(yt)

= argmaxλt pNMT(yt) + (pKNN(yt)− pNMT(yt)) · λt.

Inference During the translation process, at the tth decod-
ing step, given the retrieval result Rtok

t of Token-KNN, we
build the query feature ŝt as in Equation 6, then Policy-
KNN retrieves K neighborhoods, Rλt = {(kλi , vλi ), i ∈
{1, 2, ...,K}}, from its datastore. The retrieval result λt is
calculated by:

p(kλi |ŝt) = softmax(
−d(kλi , ŝt)

T
)

λt = p(λ = 1|x, ŷ<t)

=
∑

(kλi ,v
λ
i )∈Rλ

Ivλi =1 ∗ p(kλi |ŝt).
(8)

The final translation probability is calculated as Equation 4.

Implementation

Overall, KoK is performed as an online learning paradigm.
It takes three steps when translating a source sentence x:

a. Translation: KoK generates the translation ŷ by maxi-
mize Equation 4. At each decoding step, KoK computes
pNMT from the NMT model, pKNN from the Token-KNN,
and λt from the Policy-KNN, respectively.

b. Correction: The human translator corrects the transla-
tion result ŷ and produces the corrected version y.

c. Adaptation: x and y are encoded by the NMT model
with teacher-force decoding. All the tokens in y are
used to retrieve from Token-KNN as well. Then we up-
date Policy-KNN and Token-KNN by building key-value
pairs, successively.

When the translation of a document is completed, one can
choose to clear the datastores of two KNN modules for
translating new documents, or keep them for proceeding
translation on similar documents, which is dependent on
user’s demand. We clear the datastores for translating new
documents in this paper. The details of the creating/updat-
ing process of datastore are shown in Appendix.

Experiments
Experimental Setup

We evaluate the proposed method by equipping the general-
domain pre-trained NMT model with KoK and use it to
translated in-domain documents with various document
sizes. We use the oracle reference as the human-corrected
translations to simulate the real human-in-the-loop scenario.

Bucket 0-50 50-100 100-200 200-500 500-1000

EMEA

Documents 22 14 7 4 5
Ave sentences 38.4 73.0 157.9 392.8 759.2
Ave tokens 1174.7 1938.9 3466.1 9334.5 22725.6

JRC-Acquis

Documents 22 14 7 4 5
Ave sentences 38.1 73.1 158.5 373.8 734.8
Ave tokens 1347.1 2466.7 5345.4 12518.2 26409.2

Table 1: Data statistics for the EMEA and JRC-Acquis
dataset. Documents represents the number of documents in
the bucket. Ave sentences/tokens stand for the average sen-
tences/tokens of the documents in the bucket.

Dataset. We conduct the experiments on two specific do-
main datasets from OPUS (Tiedemann 2012), which are
widely employed by previous works (Zheng et al. 2021a;
Cai et al. 2021): (1) European Medicines Agency (EMEA)
dataset1 (Tiedemann 2009), which consists of sentence-
aligned documents focusing on medical products. (2) JRC-
Acquis corpus (Steinberger et al. 2006), which contains the
European Union laws applicable to the EU member states.
Following common practices, we use the Moses toolkit2
to tokenize the documents, remove the same sentences in
a document and then segment the words into subword
units (Sennrich, Haddow, and Birch 2016b) with the bpe-
codes provided by the pre-trained model.

We validate our method on documents with various
lengths. Specifically, we divide the documents into five
buckets based on their length (0-50, 50-100, 100-200, 200-
500 and 500-1000). We randomly select some documents so
that the total document length of each bucket is upper than
1000. Detailed for EMEA/JRC dataset statistics are shown
in Table 1.

Implementation Details. We apply the FAIRSEQ3 (Ott
et al. 2019) toolkit for NMT implementation, and
Faiss4(Johnson, Douze, and Jégou 2017) with Exact Search
for L2 setting for efficient KNN retrieval. Following the pre-
vious experiences (Zheng et al. 2021a; Khandelwal et al.
2020), we employ the WMT19 German-English news trans-
lation task winner model (Ng et al. 2019) as the pre-trained
model. The K for Token-KNN and Policy-KNN is 8.

Baselines. We compare our method with several represen-
tative researches, including:

• Pre-Trained: We only use the pre-trained NMT model
during translation, which measures the domain diversity
without any adaptation.

• Online Tuning: Online updating the pre-trained NMT
model with human-corrected sentences. Following

1http://opus.lingfil.uu.se/EMEA.php
2https://github.com/moses-smt/mosesdecoder
3https://github.com/pytorch/fairseq
4https://github.com/facebookresearch/faiss
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Bucket 0-50 50-100 100-200 200-500 500-1000 Average
BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

Pre-Trained 43.8 52.1 43.1 52.8 38.3 54.0 41.9 53.8 40.8 53.4 41.6 53.2
Online Tuning 44.0 52.2 43.5 52.3 39.6 51.4 43.8 51.8 44.7 49.3 43.1 51.4
KNN-MT 43.8 52.6 43.6 52.5 40.0 53.1 43.8 52.3 44.2 50.8 43.1 52.3
Adaptive KNN-MT 29.7 70.2 28.9 70.3 35.9 58.4 37.2 61.2 48.2 50.3 36.0 62.1

KoK 44.4 52.1 43.9 52.4 44.1 50.0 45.7 51.1 53.7 43.7 46.4 49.9

Table 2: BLEU (↑) and TER (↓) on the EMEA dataset.

Bucket 0-50 50-100 100-200 200-500 500-1000 Average
BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

Pre-Trained 54.0 37.2 49.9 41.2 41.9 47.1 39.9 48.8 43.4 45.3 45.8 43.9
Online Tuning 54.4 37.0 50.9 40.5 43.8 45.4 42.8 46.3 47.5 42.2 47.9 42.3
KNN-MT 55.5 38.0 52.2 40.9 45.7 44.7 43.6 46.4 47.7 42.4 48.9 42.5
Adaptive KNN-MT 42.5 53.0 41.7 52.8 40.2 52.3 39.2 52.4 45.4 46.3 41.8 51.3

KoK 56.3 35.1 52.4 39.3 47.7 43.1 44.7 45.6 50.1 40.1 50.2 40.6

Table 3: BLEU (↑) and TER (↓) on the JRC-Acquis dataset.

Kothur, Knowles, and Koehn (2018), we train the model
5 steps on every single sentence with the adam op-
timizer. The hyper-parameters setting follows the pre-
trained models, except the learning rate is set to 1.0 ×
10−7 and fixed during the inference process.

• KNN-MT: After every sentence is translated, we add the
human-corrected sentences to the datastore of KNN-MT.
Similar to our method, the K is 8. The λ value for the
EMEA dataset and the JRC-Acquis dataset are 0.2 and
0.3, respectively.

• Adaptive KNN-MT (Zheng et al. 2021a): A variant of
KNN-MT, which introduces a network to dynamically
determine the number ofK for each target token. We use
the model pre-trained on the IT domain (provided by the
paper) and incrementally update the datastore as in the
KNN-MT.

Evaluation. We use SacreBLEU5 (Post 2018) to mea-
sure the result with case-sensitive detokenized BLEU (Pa-
pineni et al. 2002). We concatenate the translations of all
the documents in each bucket and calculate the corpus-level
BLEU. For the completeness of the results, we also report
the TER (Snover et al. 2006) metric to compute the edit dis-
tance between the reference and system translation.

Main Results
We can see that consistent improvements (up to 12.9 BLEU
improvement and 9.7 TER reduction) are achieved by KoK
on different document lengths. As a comparison, Online
Tuning achieves relatively minor improvement on long doc-
uments, probably because that several thousand samples are
still not enough for a gradient-based approach. KNN-MT
fails to attain similar improvements as KoK on long doc-
uments because of the small but fixed λ value. This indi-
cates the benefit of adjusting λ adaptively. Instead, the per-

5https://github.com/mjpost/sacrebleu

formance of adaptive KNN-MT deteriorates when the length
of a document is relatively small. As the training of the adap-
tive KNN-MT is based on a static datastore built from all in-
domain training data, it is not compatible with the human-in-
the-loop machine translation scenario that the human feed-
back comes in a streaming way. Overall, the results demon-
strate the effectiveness and generalization of our method on
different document conditions.

We also conduct experiments on the JRC-Acquis dataset,
which contains documents related to the law domain. All the
results are listed in Table 3. KoK consistently outperforms
all the baselines, which demonstrates that our approach can
be generalized to other domains. We show the performance
on the full test sets in Appendix.

Comparing With Translation Memory

We also compare our method with the NMT model aug-
mented by the translation memory (TM-NMT) (Kuang et al.
2021; Bapna and Firat 2019). Due to the training data of the
WMT19 NMT model is unavailable, we implement the TM-
NMT model and the NMT model of KoK on the WMT14
DE-EN dataset for a fair comparison, and evaluate them on
the EMEA dataset. For the NMT model, we use the trans-
former big architecture, and the training detail follows the
introduction of fairseq6. For the TM-NMT, we follow the
source similarity method in Cai et al. (2021), and the archi-
tecture is the same as the transformer big model.

The result is illustrated in Table 4. As seen, KoK still
achieves improvements on all the document sizes. However,
TM-NMT fails to exceed the pretrained NMT model except
on the 200-500 bucket, which may be resulted from the in-
ability to handle the low quality of retrieval memories (Cai
et al. 2021).

6https://github.com/pytorch/fairseq/issues/202
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Bucket 0-50 50-100 100-200 200-500 500-1000 Average
BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

Pre-Trained 38.8 55.7 36.6 57.1 33.2 59.2 33.9 60.1 32.2 62.0 29.1 58.8
TM-NMT 38.1 55.6 35.6 57.7 32.7 59.0 35.9 59.8 32.0 61.8 29.1 58.8

KoK 39.0 55.6 37.3 56.7 36.6 56.6 38.6 57.6 44.1 52.5 32.6 55.8

Table 4: Performance comparison between KoK and NMT model augmented by the translation memory (TM-NMT).

Model Latency Speedup

Pre-Trained 269.5 ms ×1.00
Online Tuning 289.9 ms ×0.93
KNN-MT 324.7 ms ×0.83
Adaptive KNN-MT 409.8 ms ×0.66

KoK 384.6 ms ×0.70

Table 5: Decoding latency of different models on the EMEA
dataset. We also list the speedup w.r.t the pre-trained NMT
model.

Latency
In the human-in-the-loop translation scenario, human trans-
lators are sensitive to decoding latency. Therefore, we also
evaluate the latency of the proposed KoK. We simulate the
Computer Aided Translation(CAT) task setting and measure
the decoding latency sentence-by-sentence7. The latency is
calculated on the EMEA dataset, and we report the average
latency in milliseconds. The speed-up ratio is also computed
by comparing it with the Pre-Train Model following the pre-
vious practice (Zheng et al. 2021a). The result is summa-
rized in Table 5. Our method slightly slows down the in-
ference time, but significantly improves translation quality,
which is tolerable for users.

Analysis
In this section, we perform several analyses and ablation
studies for the proposed KoK.

Can KoK Learn Optimal λ
KoK equips KNN-MT with a Policy-KNN to adaptively de-
cide between adopting knowledge from human feedback or
keeping decoding results from the pre-trained NMT model
on every token. In this section, we demonstrate that KoK
indeed learns an optimal policy to make the decision.

We first compare KoK with KNN-MT which chooses dif-
ferent λ values. The results are shown in Figure 3. We try
λ ∈ [0.0, 1.0) with 0.1 as the step size, and report aver-
age BLEU scores on the various document length buckets
on the EMEA dataset. KNN-MT is sensitive to the choice
of λ value (BLEU varies from 18 to 43), which indicates the
importance of selecting a proper λ value. KNN-MT achieves
the best performance when λ is around 0.2, but still lags be-
hind KoK. This experiment shows that it is crucial to decide
the λ value token-by-token adaptively.

7The latency is measured on a single GeForce GTX 1080-Ti
GPU.

We further evaluate whether KoK could learn an optimal
λ. Given oracle target y, for each yt ∈ y, we compute the
Token-KNN probability of yt as pknn(yt), and the corre-
sponding λt predicted by Policy-KNN. To show the relation-
ship between λt and pknn(yt), we divide all the Token-KNN
probability values into five buckets and compute the average
λ values in every bucket. The result is shown in Figure 4.
As seen, the λ value becomes high when the Token-KNN
probability gets bigger, and vice versa. This is in line with
the motivation that KoK should bias to the usage of Token-
KNN probability when retrieved human feedbacks indeed
help the translation. We also evaluate the effectiveness of K
in the Appendix.

Zero-Shot and Few-Shot Ability of KoK
In machine translation with the human-in-the-loop scenario,
users not only care about the quality of the translation model,
but also care about how fast the model can learn from their
feedback to avoid repeatedly making the same mistakes they
already corrected before. Therefore, in this section, we eval-
uate the adaptation speed of KoK to user feedback.

We follow the R-indicator used in Simianer, Wuebker,
and DeNero (2019), which measures the translation recall
of words with different occurrence times in users’ feedback.
We denote Ri as the recall of tokens that have appeared i
times in the previous corrected sentences:

Ri =

∑|D|
j=1 |Hj ∩Ri,j |∑|D|

j=1 |Ri,j |
(9)

where Hj represents unique words in the jth machine-
generated translation and Ri,j represents unique words in
the jth reference that are their (i + 1)th occurrence in the
whole document. Specifically, R0 evaluates the tokens that
first appear in the translating document and R1 considers
those that have appeared once.

We conduct experiments on documents with [200, 500]
bucket from EMEA. R0, R1, R2∼5, R5∼9 and R9+ are
computed for KoK and other baselines as Equation 9
respectively (Rm∼n is defined as the micro average of
Rm, Rm+1, ..., Rn). The results are shown in Figure 5. KoK
achieves the comparable R0, but the Ri values improve
quickly and outperform all the other methods. It indicates
KoK’s ability to reduce interference from unrelated retrieval
results of Token-KNN, and to adapt to helpful human feed-
back faster. Adaptive KNN-MT achieves a lower R0, which
may due to the same reason about worse performance in
main experiments.
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KNN probability. We compute the Token-KNN probabil-
ity and its corresponding λ value by Policy-KNN for each
words in the reference.

Related Work
Online Learning from Human Feedback. Online updat-
ing (Álvaro Peris and Casacuberta 2019; Turchi et al. 2017;
Weng et al. 2019) the NMT model has been proved to be
an effective and efficient method to adapt the model to the
target domain. Kothur, Knowles, and Koehn (2018) pro-
posed the single-sentence adaptation, which performed on-
line adaptation one sentence at a time. Simultaneously, they
introduced the dictionary adaptation to address the problem
of translating novel words. Karimova, Simianer, and Riezler
(2018); Domingo et al. (2019b, 2020) presented a user study
to prove the advantages of online adaptation. Domingo et al.
(2019a) applied online adaptation technology in a produc-
tion environment. Mueller and Lal (2019) proposed to fine-
tune the model over a subset of similar sentences extracted
from the training set.

However, these methods require updating the model fre-
quently, which brings a non-negligible computation cost in
the human-in-the-loop translation scenario, and is prone to
catastrophic forgetting problems.

Translation Memory. The NMT model augmented with
the translation memory (Kuang et al. 2021; Bapna and Firat
2019) followed the generate-then-retrieve manner. Tu et al.
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Figure 5: Results on documents with [200, 500] bucket from
EMEA dataset for the proposed R-indicator.

(2018) proposed to retrieve samples similar to the source
sentence and then encoded retrieved source-target pairs us-
ing key-value memory networks. Cai et al. (2021) proposed
to store the target-language sentence in the memory and used
a cross-lingual retrieval model. Cao and Xiong (2018); Cao,
Kuang, and Xiong (2019) designed gating mechanisms to
balance the impact of the translation memory. Zhang et al.
(2018a) up-weighted the NMT output with the retrieved
n-gram. Bulte and Tezcan (2019); Xu, Crego, and Senel-
lart (2020) augmented NMT training data with fuzzy TM
matches. Xia et al. (2019) packed the TM into a graph and
using the attention mechanisms to integrating the TM rep-
resentation into the NMT model. However, these methods
need to modify the architecture carefully to leverage the re-
trieved similar sentences, for example, adding extra compo-
nents into the decoder of the NMT model to encoding and
incorporate the retrieved sentences.

A series of research incorporated the knowledge into
NMT systems through a non-parametric method. Khandel-
wal et al. (2019) proposed KNN-LM, augmented language
model with the retrieved similar sentences using a KNN
model. Khandelwal et al. (2020) generated the translation
with the nearest neighbor classifier over a large datastore
of cached examples. Zheng et al. (2021a) proposed to dy-
namically determine the number of K for each target token.
Zheng et al. (2021b) further extended the capability of KNN-
MT on unsupervised domain adaptation setting.

Conclusion
In this paper, we propose KNN-over-KNN (KoK), a plug-
and-play non-parametric method for online learning from
human feedback. KoK introduces two KNN modules, one
to memorize the corrected sentences by the human and the
other to balance the importance of the in-domain corrected
sentences and the general-domain pretrain NMT model. In
the experiments, our method significantly improves the per-
formance and achieves better performance than state-of-the-
art baselines on one-shot or few-shot learning for domain-
specific lexical items. As KoK achieves competitive perfor-
mance compared with existing online learning methods, ap-
plying our approach to other generation tasks is a promising
direction for future work.
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