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Abstract
Effectively integrating knowledge into end-to-end task-
oriented dialog systems remains a challenge. It typically re-
quires incorporation of an external knowledge base (KB) and
capture of the intrinsic semantics of the dialog history. Re-
cent research shows promising results by using Sequence-to-
Sequence models, Memory Networks, and even Graph Con-
volutional Networks. However, current state-of-the-art mod-
els are less effective at integrating dialog history and KB
into task-oriented dialog systems in the following ways: 1.
The KB representation is not fully context-aware. The dy-
namic interaction between the dialog history and KB is sel-
dom explored. 2. Both the sequential and structural informa-
tion in the dialog history can contribute to capturing the di-
alog semantics, but they are not studied concurrently. In this
paper, we propose a novel Graph Memory Network (GMN)
based Seq2Seq model, GraphMemDialog, to effectively learn
the inherent structural information hidden in dialog history,
and to model the dynamic interaction between dialog history
and KBs. We adopt a modified graph attention network to
learn the rich structural representation of the dialog history,
whereas the context-aware representation of KB entities are
learnt by our novel GMN. To fully exploit this dynamic in-
teraction, we design a learnable memory controller coupled
with external KB entity memories to recurrently incorporate
dialog history context into KB entities through a multi-hop
reasoning mechanism. Experiments on three public datasets
show that our GraphMemDialog model achieves state-of-the-
art performance and outperforms strong baselines by a large
margin, especially on datatests with more complicated KB
information.

Introduction
Task-oriented dialogue systems (TDSs), in contrast with
chichat systems, help users complete a specific task with nat-
ural language, for example, inquiring about weather, reserv-
ing restaurants, or booking flights. In one specific domain,
TDS takes dialog utterances and a knowledge base (KB) as
input and produces responses by understanding dialog his-
tory, retrieving the most related KB entities, and generat-
ing readable sentences. Traditionally, these dialog systems
have been built as a pipeline, with modules including spo-
ken language understanding (SLU), dialog state tracking, ac-
tion selection and language generation (Young et al. 2013).
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However, pipelined dialog systems usually suffer from the
credit assignment problem (Yang, Zhang, and Erfani 2020)
and easily lead to error propagation. Furthermore, they are
not flexible enough to be adapted to new domains.

Recently, in order to address these issues, end-to-end
TDSs (Serban et al. 2016; Wen et al. 2017) with sequence-
to-sequence models (Seq2Seq) have attracted attention due
to their great flexibility and good quality. The core idea of
a Seq2Seq model is to leverage an encoder to directly map
the dialog history and KB to a vector representation, which
is then fed into a decoder to generate a response word by
word. Later, memory networks (MemNN) are used to effec-
tively incorporate KB information into the Seq2seq model
(Madotto, Wu, and Fung 2018; Zhong, Xiong, and Socher
2018). Despite achieving promising results, these models
are inherently weak at representing temporal dependencies
between memories, so they ignore the association between
KB entities. Subsequently, Banerjee and Khapra (2019) first
proposed to use Graph Convolutional Networks (GCNs) to
capture the rich structural information hidden in the dialog
history and the KB, and achieved big improvement com-
pared with Seq2Seq models with attention. Yang, Zhang,
and Erfani (2020) employed a new recurrent cell architecture
to allow representation learning on graphs. However, these
models still suffer from two major issues: 1) Learning of
context-aware KB representation. Although GCNs show
promising results at capturing graph structural information
inherent in the KB, current state-of-the-art models still fail
to fuse meaningful dialog context semantics into the KB rep-
resentation. Our study shows that making it fully context-
aware can significantly reduce the response errors especially
on datasets with more complicated KB information. 2) Mod-
eling sequential and structural dialog context concur-
rently. Both type of information can be jointly beneficial to
response generation by capturing distinct aspects of seman-
tic information. Unfortunately, they have never been com-
bined to promote performance in parallel for TDSs.

In this paper, we propose a novel Graph Memory
Network (GMN) based end-to-end task-oriented dialog
model, GraphMemDialog. The proposed model learns fully
context-aware KB representations integrated with both KB
graph structural information and dialog history semantics.
Multi-hop reasoning further enables a deeper level of se-
mantic modeling of KB entities. A multi-head graph atten-
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tion network (GAT) is used to learn the intrinsic structural
information in the dialog history, together with traditional
RNNs, to jointly guide the response decoder to reduce re-
sponse generation errors.

Our contributions are summarized as follows:

• We propose a novel GMN based end-to-end model to
effectively incorporate external knowledge bases into
TDSs by enabling fully context-aware KB entity rep-
resentations. We design a learnable memory controller
coupled with external KB entity memories to recurrently
incorporate the dialog history context into KB entities
through a multi-hop reasoning mechanism.

• We introduce a multi-head GAT to learn the intrinsic
structural information in the dialog history to jointly
guide the response decoder with the cooperation of tradi-
tional RNNs.

• Experiments on three benchmark datasets (i.e., CamRest,
In-Car Assistant, MultiWOZ 2.1) demonstrate that our
GraphMemDialog outperforms the state-of-the-art mod-
els especially on In-Car Assistant and MultiWOZ 2.1
datasets with more complicated KB information.

Related Work
Initially task-oriented dialog systems were implemented by
using pipelined approaches designing each essential mod-
ule individually, including natural language understanding
(Chen et al. 2016), dialog state tracking (Zhong, Xiong,
and Socher 2018; Wu et al. 2019), policy learning (Peng
et al. 2018), and natural language generation (Chen et al.
2019; Huang et al. 2020). Later, in order to reduce hu-
man effort and scale up to new domains, fully data-driven
end-to-end models were found to be promising to build
domain-agnostic dialog systems based on recurrent neural
networks (Zhao et al. 2017; Lei et al. 2018). Furthermore,
MemNNs (Sukhbaatar et al. 2015) were employed to ef-
fectively incorporate dialog history context and knowledge
bases (Madotto, Wu, and Fung 2018; Wu, Socher, and Xiong
2019). Multi-hop mechanisms further enabled MemNN to
perform knowledge reasoning to select the most relevant en-
tities for generating a dialog response. Eric and Manning
(2017a) proposed the use of key-value memory networks to
integrate a knowledge base by using a key memory to rep-
resent the subject and relation and a value memory to learn
the object. Chen, Xu, and Xu (2019) introduced a working
memory model to interact with two separate memories for
dialog history and KB tuples. Gangi Reddy et al. (2019)
proposed a multilevel memory architecture to capture the
hierarchical properties of KBs. Although memory network
based models show promising results, MemNNs suffer in-
herently from being weak at representing temporal depen-
dencies between memories due to ignoring the utterance or-
der. On the other hand, pointer memories with copy mech-
anism proposed by Madotto, Wu, and Fung (2018) can ef-
fectively integrate KBs into dialog responses. Wu, Socher,
and Xiong (2019) incorporated a global pointer mechanism
and achieved improved performance. Unfortunately, the rich
structural information inherently in dialog history and the

KB as defined by entity-entity relations is not considered by
previous work.

Subsequently, Graph Convolutional Networks (GCNs)
have emerged as state-of-the-art methods for modeling
knowledge graphs where entities are treated as nodes and
their relations are edges. Specifically, Banerjee and Khapra
(2019) proposed to use GCNs to model the word depen-
dencies associated with utterances, and entity relations in
a knowledge base. Yang, Zhang, and Erfani (2020) pro-
posed a new recurrent cell architecture to learn the depen-
dency graph of the dialog history. Although those meth-
ods have modeled the structural information of the dia-
log history and KBs, they have ignored the strong correla-
tion between them. Using dialog history as context should
have a large impact on KB entity representations. He et al.
(2020) modeled the association between the dialog history
and KBs by using a Flow operation (Huang, Choi, and tau
Yih 2019) and Relational Graph Convolutional Networks
(RGCN) (Schlichtkrull et al. 2017) to learn the KB en-
tity representation. However, our work differs from previous
work significantly by proposing a novel GMN framework to
learn context-aware KB entity representations.

Graph Memory Networks (GMNs) extend an end-to-end
MemNN to have a structured dynamic memory organized as
a graph of memory cells. Pham, Tran, and Venkatesh (2018)
proposed this new structure to perform molecular activity
prediction. Lu et al. (2020) employed a GMN framework to
accomplish one-shot and zero-shot video object segmenta-
tion tasks. Khasahmadi et al. (2020) introduced a new mem-
ory layer for graph neural networks which learned hierarchi-
cal graph representations.

However, none of these GMN approaches models the
knowledge base in a task-oriented dialog system. In this pa-
per, inspired by Pham, Tran, and Venkatesh (2018) and Lu
et al. (2020), we propose a novel GMN framework to effec-
tively learn context-aware KB representations. To the best
of our knowledge, our work is the first one that uses GMNs
to incorporate context-aware knowledge graph structure into
an end-to-end model for task-oriented dialog systems.

Proposed Model
Given a dialog between a user (U) and a sys-
tem (S), t-turn dialog utterances are represented as
(U1, S1), (U2, S2), ..., (Ut, St). Dialogs are associated with
knowledge triples in the format of (subject, relation,
object) denoted as (h, r, t). The structural information
of KB triples (h, r, t) is modeled as a knowledge graph
Gk = (V, E) with h, t ∈ V and r ∈ E , where V and E
denote the set of all entities and relations in Gk, respectively.
At the ith dialog turn, our system input is dialog history
(U1, S1, ..., Ui−1, Si−1, Ui) and the associated knowledge
graph Gk. The system output is the generation of the next
system response Si word by word.

Model Overview
We propose a novel GMN framework to combine the merits
of MemNNs and GCNs to effectively learn context-aware
KB representations. Our proposed model is composed of
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Figure 1: The Framework of our proposed model

three major components: a context graph encoder, a knowl-
edge encoder based on a GMN with multi-hopping reason-
ing, and a response decoder, as illustrated in Figure 1. The
Context Graph Encoder learns a fixed-length vector to repre-
sent the dialog history both sequentially and structurally. We
propose a graph encoder to encode the dialog history struc-
tural information, which is the dependency parsing graph
of the sentences in the dialog history Gd. Next the Knowl-
edge Encoder encodes context-aware KB entity information
by incorporating graph structure information and the dialog
context semantics through our GMN and its multi-hop rea-
soning mechanism. Finally the Response Decoder generates
the system response token-by-token, either by querying the
knowledge graph, or by generating tokens from vocabular-
ies under the constraint of the dialog and KB context. In the
following sections we detail each component thoroughly.

Context Graph Encoder
Given that the dialog history has L utterances with each one
containing Ti words, our context graph encoder encodes di-
alog context both sequentially and structurally via a hierar-
chical attention network (Yang et al. 2016) and a modified
GAT (Veličković et al. 2018). This approach is different than
previous work in which dialog history is encoded either se-
quentially or structurally. We observe that the combination
of those two inputs is beneficial to effectively capture the
semantic context, especially for multi-turn dialog systems.

Hierarchical Attention Encoder We employ a hierarchi-
cal attention network to sequentially encode the dialog his-
tory. A bidirectional RNN is applied to learn representa-
tions of each word wit with t ∈ [1, Ti] in the ith utter-
ance by reading the input utterance forward and backward
to produce context sensitive hidden states.We use a BiGRU
(Chung et al. 2014) to encode the dialog context into hidden
states:

Hi = hi1, ...hiTi
= BiGRU(φemb(wit), hi(t−1)) (1)

where φemb(wit) is the embedding of the word wit.
Then, we use self-attention mechanism to capture the con-

textual information for each token in order to get an inter-

pretable utterance semantic representation as below:

uit = tanh(Wwhit + bw) (2)

ait =
exp(u>ituw)∑
t exp(u>ituw)

(3)

ŝi =
∑
t

aithit (4)

where Ww, bw, uw are trainable parameters of the model.
Finally, we use a GRU to encode the utterance vector ŝi:

hCi = GRU(ŝi), i ∈ [1, L] (5)

Graph Encoder In order to enable learning various rela-
tionships of words such as dependency relations, we first use
the off-the-shelf parsing tool called Spacy1 to extract depen-
dency relation graph Gd among words in dialog history. To
model word nodes and relations jointly, we employ a mod-
ified variant of graph attention network (GAT) (Veličković
et al. 2018), which is enhanced to model multi-relational
edges. In this way, modified GAT learns attention not only
from the neighboring nodes, but also from edge features.
This is important because dialog data contains rich edge in-
formation.

We first apply another BiGRU to process all the concate-
nated words in dialog history to get their contextual repre-
sentation, which are then fed in our modified GAT:

hGt = BiGRU(φemb(wt), h
G
t−1) (6)

In the l-th layer of the modified GAT, the attention score
between two neighboring words is obtained as follows:

αij =
exp

(
σ
(
W [Wah

G
i
(l)‖Wah

G
j
(l)‖Weh

E
i→j

(l)
]
))

∑
k∈Ni

exp
(
σ
(
W [WahGi

(l)‖WahGk
(l)‖WehEi→k

(l)
]
))
(7)

where hEi→j
(l) denotes the representation of the edge con-

necting word node i to its neighboring word node j. Wa and

1https://spacy.io/
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We are trainable word node and edge weights, whereas W
is a single-layer feed-forward network parameter that com-
putes the attention score. σ is the LeakyReLU activation
function. Word hidden states are obtained by multi-head at-
tention mechanism via averaging:

h̃Gt = σ

 1

N

N∑
n=1

∑
j∈Ni

αnijWnh
G
j

 (8)

where N is the number of heads, and Wn is the correspond-
ing input linear transformation’s weight matrix.

Finally we apply the same procedure on h̃Gt as shown in
eqs. (2) to (4) to obtain our final integrated graph context
information:

r = self-attention
(
h̃Gt

)
(9)

Contrary to BiGRU only capturing sequential associa-
tions between words, dependency relationship is supposed
to learn the mutual interaction between head words and de-
pendent words. Those two types of relationship should com-
plement each other.

Knowledge Encoder
The knowledge encoder obtains a context-aware represen-
tation of each entity in the knowledge graph. We propose
a novel graph memory network framework by extending a
graph with multi-hop reasoning to model knowledge enti-
ties, through which entity dependencies can be well modeled
and fused with dialog history context.

Context Alignment In order to make our knowledge en-
tity context-aware, we first align the embedding of entity
ej , j ∈ [1, E] with that of word wit in the ith utterance as
shown in He et al. (2020), where E is the number of entities
in the KB:

f ialign(ej) =
∑
t

αjitφ
emb(wit) (10)

αjit =
exp

(
u>jitue

)∑
t exp

(
u>jitue

) (11)

ujit = tanh
(
We[φ

emb(ej)‖φemb(wit)] + be
)

(12)
where We, be, and ue are trainable parameters of the model
and ‖ denotes the concatenation. Then we pass the entity
sequence to a GRU as follows for entity ej :

fji = GRU
(
[φemb(ej)‖f ialign(ej)]

)
, i ∈ [1, L] (13)

After the above processing, each entity hasL representations
corresponding to L utterances, so F = {fji} ∈ RL×E×de ,
where de is the entity embedding dimension.

Furthermore, to have a deeper integration of the dialog
history, we perform another level of knowledge entity align-
ment with our sequential encoder BiGRU hidden state hit
as shown in Equation (1), because it captures the temporal
dependency between words.

hAji = GRU ([fji‖falign(fji, hit)]) , j ∈ [1, E] (14)

We take the entity representations under the Lth utterance
from the output of the second alignment process as our ini-
tial context-aligned entity representations, namely:

EA = {hA1L, ...HA
EL} ∈ RE×de (15)

Graph Memory Network Our GMN is composed of an
external graph memory and learnable controllers for mem-
ory reading and writing. The memory graph structure with
multi-hop mechanism enables strong reasoning ability on
knowledge entities. The controllers interact with memories
using read and write operations to carry long-term context
information and to encode new knowledge via slow updates
of the weights. Through iterations, our GMN learns a gen-
eral strategy to represent knowledge entities under a specific
dialog context, making them quite context-aware.

We incorporate the semantics contained in the historical
context into the KB entity memory slots. The memory is or-
ganized as a fully connected graph Gk = (V, E), where node
mi ∈ V denotes ith memory cell, which learns to represent
entity ei, and edge ēij = (mi,mj) ∈ E indicates the rela-
tion between entity ei and ej . The graph memory cells are
initialized by the knowledge entity embedding {e1, ..., eE}.
Subsequently these memory cells are augmented to capture
the dialog history via controller writing.

Graph Memory Reading In order to effectively integrate
context history into knowledge entities, we take context
alignment output EA as our initial state hM0 to our GMN. A
learnable read controller at each iteration step k ∈ 1, ...,K
interacts with graph memory by reading the content. mk is
a sum of all memory cells, weighted by the probability wki .
Formally (Lu et al. 2020):

bki =
hMk−1 ·m

k−1
i

‖hMk−1‖‖m
k−1
i ‖

(16)

wki =
exp(bki )∑
j exp(bkj )

(17)

mk =
∑
i

wkim
k−1
i (18)

Once reading memory content, the read controller updates
its state as follows:

h̃Mk = Wh
r h

M
k−1 + Uhrm

k

akr = σ(W a
r h

M
k−1 + Uarm

k)

hMk = akr h̃
M
k + (1− akr )hMk−1

(19)

where Wh
r , Uhr , W a

r , Uar are trainable parameters of the
model. The udpate gate akr controls how much previous hid-
den state hMk−1 to be kept. In this way, the hidden state of the
controller encodes both the KB entity memory and dialog
history representations, hence context-aware.

Graph Memory Updating After we obtain a new query
hMk , we need to update the graph memory with the new
query input. At each step k, each memory cell is augmented
by a learnable write controller, which is a function of pre-
vious memory state mk−1

i , current query state hMk , and the
states from all of its neighboring cells, namely:

mk
i = f

(
mk−1
i , hMk ,

(
mk−1
j

)
j∈N (i)

)
(20)
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whereNi is the neighbors of the node mi. Following Pham,
Tran, and Venkatesh (2018), we calculate the summarized
information cki from neighboring entities as follows:

cki =
∑

j∈N (i)

pki,j
[
mk−1
j ‖ēki,j

]
(21)

where ēki,j is the relation feature vector between entities and
pki,j is the weight of mj , which indicates how important the
node mj towards mi. pki,j can be learned, similarly to mem-
ory cell probabilities in the attentive reading as in Equa-
tions (16) and (17).

After aggregating the information from neighbors, the
memory write controller updates the state of mi as:

m̃k
i = Wm

u h
M
k + Umu m

k−1
i + V mu cki

aku = σ(W a
uh

M
k + Uaum

k−1
i + V au c

k
i )

mk
i = akum̃

k
i + (1− aku)mk−1

(22)

The graph memory updating allows each memory cell to em-
bed both the neighbor information and the dialog context
information into its representation, making it fully context-
aware. Moreover, by iteratively reasoning over the graph
structure, each memory cell encodes the new query infor-
mation and yields progressively improved representations.
Those salient properties make our GMN overcome the short-
ness of traditional memory networks and also dwarf popular
GCNs because of GMN’s multi-hop reasoning.

Final GMN Outputs After K steps of iteration, we con-
catenate the output of context aligned KB entities and the
final memory state mK as our final knowledge entity repre-
sentations:

EK =
[
EA‖mK

]
(23)

Also the first hidden state of hMK , that is o = hMK [0], is con-
sidered as our knowledge encoder hidden state to carry over
KB context to the response decoder.

Response Decoder
The response decoder is conditioned on dialog sequen-
tial and structural context representation, and context-aware
entity representation. Inspired by Wu, Socher, and Xiong
(2019), we use a sketch GRU to generate a sketch response
that excludes slot values but includes sketch tags, which
are all possible slot types starting with a special token, for
instance, @distance. The sketch GRU learns to generate a
dynamic dialogue action template. For example, instead of
generating “Stanford shopping center is 2 miles away at 773
alger dr”, it produces “@poi is @distance away at @ad-
dress”. At each decoding timestep, if a sketch tag is gen-
erated, we select an appropriate entity as the output word by
querying entity representation. Otherwise, the output word
is the word generated by the sketch GRU. For example, if
“@poi” tag is generated, the words “Stanford shopping cen-
ter” is selected from our KB entities to replace this tag as
part of our final response.

The initial hidden state of the decoder hD0 consists of con-
text graph encoder hidden and knowledge encoder hidden

output, which further constrains the decoding process under
the current dialog context.

hD0 = σ
(
Wd

[
hCL‖o‖r

])
(24)

where Wd is the trainable parameter. At each decoding time
step t, the GRU takes the previously generated st−1 and the
previous hidden state hDt−1 as the input and generates a new
hidden state hDt as follows:

hDt = GRU
(
φemb(st−1), hDt−1

)
(25)

In order to handle long-term dependency, we again use an
attention mechanism to dynamically determine the impor-
tance of each word in the dialog history and each entity in
the KB. At each time step t, the decoder generates an atten-
tive entity vector based on context-aware entity representa-
tion EK as follows:

αti =
exp

(
hDt
>Wke

K
i

)
∑
j exp

(
hDt
>WkeKj

)
cKt =

E∑
i=1

αtie
K
i

(26)

Similarly, we generate an attentive word vector cHt based on
HL specified in Equation (1). Finally, the decoder generates
two distributions, that is, a vocabulary distribution P vocabt ,
and a knowledge entity distribution P kbt to either select a
vocabulary word or an entity word from the KB:

P vocabt = Softmax
(
Wv

[
hDt ‖cKt ‖cHt

])
(27)

P kbt = Softmax
(
EK
>
Wkb

[
hDt ‖cKt ‖cHt

])
(28)

where Wv and Wkb are trainable parameters.

Joint Training
Following Wu, Socher, and Xiong (2019), we replace the
slot values in the response S with sketch tags based on
the provided entity table to create a sketch response Ss =
(ss1, ..., s

s
m). We use the standard negative log-likelihood

loss to train the sketch GRU as:

L1 =
m∑
t=1

−log(P vocabt (sst )) (29)

Similarly, we have another loss for our KB entities which
eventually replace all the sketch tags to form a final re-
sponse:

L2 =
m∑
t=1

−log(P kbt (set )) (30)

where {set} represents the entity sequence. For the case
when st is not an entity token, we train P kbt to produce a
special token.

Finally the joint objective is formulated as the weighted-
sum of these two loss functions using hyper-parameters α
and β:

Lθ = αL1 + βL2 (31)
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Experimental Setup
Datasets
To evaluate our proposed model, we conduct experiments
on three widely used benchmark datasets: CamRest (Wen
et al. 2016), In-Car Assistant (Eric and Manning 2017b), and
Multi-WOZ 2.1 (Qin et al. 2020).

CamRest This dataset contains dialogs in the restaurant
reservation domain, involving 676 multi-turn dialogs and
having 5 turns on average per dialog (Wen et al. 2016).
It also has an average of 22.5 KB triples for every dia-
log. We divide this dataset into training/validaton/test sets
with 406/135/135 dialogs, respectively, as Raghu, Gupta,
and Mausam (2019) did.

In-Car Assistant This dataset consists of 3,031 multi-turn
dialogs in three distinct domains: weather (Wea.), naviga-
tion (Nav.), and schedule (Sch.) This dataset has an average
of 2.6 turns. However the KB information is more compali-
cated than CamRest with an average of 62.3 triples for every
dialog. Following Madotto, Wu, and Fung (2018), we divide
the In-Car Assistant dataset into training/validaton/test sets
with 2425/302/304 dialogs, respectively.

Multi-WOZ 2.1 This dataset contains three distinct do-
mains: attraction (Att.), hotel (Hot.) and restaurant (Res.),
with an average of 5.6 turns and 54.4 KB triples per dialog.
Following how Qin et al. (2020) processed data, we have
1,839/117/141 dialogs for training/validation/test.

Training Details
We implement our model in Pytorch, which is trained on an
NVIDIA GeForce RTX 2080 Ti. In our experiments, we set
all the embedding dimension and hidden units to 200 and
batch size to 8. The model is trained end-to-end using the
Adam optimizer (Kingma and Ba 2014) and learning rate
annealing starts from 1e−3 to 5 × 1e−5. Embeddings are
randomly initialized and updated during training. For all the
datesets, the dropout ratio is set to 0.5, the number of our
GAT’s attention heads is set to 6, and the number of hops
for our GMN is set to be 2.

Baselines
We compare our proposed GraphMemDialog model with
several representative works: (1) Seq2Seq+Attn (Luong,
Pham, and Manning 2015); (2) Mem2Seq (Madotto, Wu,
and Fung 2018); (3) GLMP (Wu, Socher, and Xiong 2019);
(4) DDMN (Wang et al. 2020); (5) FG2Seq (He et al. 2020);
(6) MCL (Qin et al. 2021). When doing the comparison, we
adopt reported results from those papers directly.

Automatic Evaluation Metrics
In order to have fair comparison with others’ work, we adopt
the two most popular evaluation metrics in dialogue studies
(Zhong, Xiong, and Socher 2018; Madotto, Wu, and Fung
2018; Qin et al. 2021), that is, Bilingual Evaluation Under-
study (BLEU) (Papineni et al. 2002), and F1 Score (Entity
F1).

Experimental Results
Automatic Evaluation Results
Table 1 shows the experiment results of the proposed model
on CamRest, In-Car Assistant, and Multi-WOZ 2.1 datasets.
From the table, we can see that our model substantially
outperforms all the baselines by a noticeable margin on
both BLEU score and entity F1, demonstrating that our
context-aware graph memory network can benefit dialog re-
sponse generation effectively. On the single domain Cam-
Rest dataset, compared with the best prior work Fg2Seq
He et al. (2020), we achieve performance improvement by
10% on BLEU, and almost 4% on entity F1, respectively.
The performance jump on BLEU score signifies that our de-
coder’s generation error has been greatly reduced, whereas
the gain on entity F1 indicates that our model can retrieve
entities from the external knowledge data more accurately
than those baselines. This demonstrates that our GraphMem-
Dialog model can not only improve the dialog history con-
text modeling by capturing the graph structure in dialogs via
graph attention networks, but also effectively model the in-
teraction between the dialog history and KB entities, making
them fully context-aware.

On both In-Car assistant and Multi-WOZ 2.1 datasets, our
GraphMemDialog also outperforms all the other baselines
by a large margin both in BLEU score and entity F1, which
indicates that our model has a better generalization capabil-
ity than baseline models. Our model outperforms Fg2Seq by
12% on BLEU score and 5.6% on entity F1 on In-Car Assis-
tant, and by 10% on BLEU score and 12% on entity F1 on
Multi-WOZ 2.1. The gain on entity F1 further demonstrates
our GMN’s great reasoning capability under different dia-
log history contexts, especially considering In-Car assistant
and Multi-WOZ 2.1 have much more complicated KB infor-
mation. Even though Fg2seq and MCL have already made a
great advancement in performance, our GraphMemDialog
still outperforms them by a large margin.

Table 2 reports some responses generated by GraphMem-
Dialog and some baseline models. Compared with GLMP
and FG2Seq, GraphMemDialog is more effective at carry-
ing over dialog context to next turns and generating context-
aware responses. For example, in the second turn, since the
query is very short, GLMP and Fg2Seq tends to generate
unrelated responses. GraphMemDialog shows strong capa-
bility to extract key entities, whereas GLMP fails to fill slot
tag @weather attribute it has produced. We attribute those
merits mainly to our GMN’s contributions.

Ablation Study
In this section, we explore how each component contributes
to our full model. We conduct some ablation tests by re-
moving GMN (w/o GMN), and modified GAT (w/o GAT).
Table 3 shows the performance changes. Firstly, if we only
remove GMN, which means no KB structural information
and no iterative interaction between dialog hisotry and KB
involved, the performance degrades dramatically, especially
on entity F1. This further demonstrates that our GMN makes
a major contribution to our performance improvement. This
is due to the fact that GMN not only learns graph structure
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Model CamRest In-Car Assistant Multi-WOZ 2.1
BLEU Ent.F1 BLEU Ent.F1 Sch.F1 Wea.F1 Nav.F1 BLEU Ent.F1 Res.F1 Att.F1 Hot.F1

Seq2Seq+Attn 7.7 21.4 9.3 19.9 23.4 25.6 10.8 4.5 11.6 11.9 10.8 11.1
Mem2Seq 13.5 33.6 12.6 33.4 49.3 32.8 20.0 6.6 21.6 22.4 22.0 21.0
GLMP 16.7 50.6 14.8 60.0 69.6 62.6 53.0 6.9 32.4 38.4 24.4 28.1
DDMN 19.3 58.9 17.7 55.6 65.0 58.7 47.2 12.4 31.4 30.6 32.9 30.6
MCL 20.1 59.2 17.2 60.9 70.6 62.6 59.0 13.6 32.6 34.4 30.2 29.8
Fg2Seq 20.2 62.1 16.8 61.1 73.3 57.4 56.1 13.5 36.0 40.4 41.7 30.9
GraphMemDialog 22.3 64.4 18.8 64.5 75.9 62.3 56.3 14.9 40.2 42.8 48.8 36.4

Table 1: Performance evaluation results on CamRest, In-Car Assistant, and Multi-WOZ 2.1 datasets.

Knowledge Base

today is monday
downtown chicago monday hail
downtown chicago monday low 50f
downtown chicago monday high 70f

Role Turn Utterance
User 1 give me weather forecast for today.

System (Gold) 1 what city do you want the weather
forecast for?

GLMP 1 what city do you want the weather
for?

Fg2Seq 1 what city would you like to hear the
forecast for?

GraphMemDialog 1 what city are you interested in?
User 2 downtown chicago, please.

System (Gold) 2 today in downtown chicago there
should be hail with a high of 70f.

GLMP 2 it will be downtown chicago in
today monday.

Fg2Seq 2 what would you like to know about
today?

GraphMemDialog 2 today in downtown chicago it will
be hail today, and hail with a low of
50f and a high of 70f.

Table 2: Responses generated by GraphMemDialog and
some baseline models on In-Car Assistant dataset. The gold
entities in each response are highlighted in bold.

inherent in KB, but also models the interaction between the
dialog history and KB effectively as fully context-aware, en-
hancing the possibility to retrieve the most relevant entities
from the KB. Next, if we only remove modified GAT, it is
noticeable that the performance is degraded, but not signif-
icantly. Also we can observe that GAT is more helpful im-
proving BLEU score than lifting entity F1. We attribute this
to the fact that GAT is mainly for capturing structural in-
formation in the dialog history which helps reduce decoder
generation errors. Finally, if we remove both modules, it is
not surprising that the performance drops dramatically. This
verifies that our GraphMemDialog model makes a signifi-
cant contribution to modeling context-aware external knowl-
edge base, and capturing the structural information in dialog
history.

Comparison with Conventional GCNs
Our proposed GMN shows improvement on modeling
context-aware KB. Due to its multi-hop reasoning, we ex-
pect it to be superior to conventional GCNs. In order to ver-

Model CamRest In-Car Assistant Multi-WOZ
BLEU Ent.F1 BLEU Ent.F1 BLEU Ent.F1

Full Model 22.3 64.4 18.8 64.5 14.9 40.2
w/o GMN 20.8 56.2 16.7 52.0 14.1 31.2
w/o GAT 21.2 62.4 18.8 63.6 14.2 39.0
w/o Both 20.2 54.8 16.4 50.6 12.9 30.8

Table 3: Ablation results of GraphMemDialog on CamRest,
In-Car Assistant, and Multi-WOZ 2.1 datasets.

ify this, we design some experiments to replace our GMN
with two widely-used GCNs: Relational Graph Convolu-
tional Network (RGCN) (Schlichtkrull et al. 2017), and
Composition-based Multi-relational Graph Convolutional
Network (COMPGCN) (Vashishth et al. 2020). To be fair,
we carefully choose GCNs which can encode relations as
well, since our GMN does that. From Table 4, it is noticeable
that our GMN outperforms COMPGCN and RGCN on both
BLEU score and entity F1 on all three datasets in almost all
cases. We attribute this to our GMN’s multi-hop reasoning
capability that effectively fuses dialog history context into
KB entity representation, making it fully context-aware.

Model CamRest In-Car Assistant Multi-WOZ
BLEU Ent.F1 BLEU Ent.F1 BLEU Ent.F1

Our Model 22.3 64.4 18.8 64.5 14.9 40.2
COMPGCN 21.1 60.7 18.0 61.8 13.7 40.3
RGCN 21.3 60.3 18.1 63.4 14.1 36.3

Table 4: Performance comparison of GraphMemDialog
with representative GCNs.

Conclusion
In this paper, we present a Graph Memory Network based
end-to-end model for task-oriented dialog systems. Graph-
MemDialog models context-aware KB entities, and learns
graph structure information hidden in dialog history and
KBs. To fully fuse dialog context information into the KB,
we design a learnable memory controller coupled with an
external KB entity memory to recurrently incorporate the
dialog history context into KB entities via a multi-hop rea-
soning mechanism. A modified GAT is employed to effec-
tively capture graph structure information inherent in dialog
history. Experiments on three public datasets show the effec-
tiveness of our proposed model and achieve state-of-the-art
results.

11510



References
Banerjee, S.; and Khapra, M. M. 2019. Graph convolutional
network with sequential attention for goal-oriented dialogue
systems. Transactions of the Association for Computational
Linguistics, 7: 485–500.
Chen, W.; Chen, J.; Qin, P.; Yan, X.; and Wang, W. Y. 2019.
Semantically Conditioned Dialog Response Generation via
Hierarchical Disentangled Self-Attention. In Proceedings of
the 57th Annual Meeting of the Association for Computa-
tional Linguistics, 3696–3709. Florence, Italy: Association
for Computational Linguistics.
Chen, X.; Xu, J.; and Xu, B. 2019. A working memory
model for task-oriented dialog response generation. In Pro-
ceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2687–2693.
Chen, Y.-N. V.; Hakkani-Tür, D.; Tur, G.; Gao, J.; and Deng,
L. 2016. End-to-End Memory Networks with Knowledge
Carryover for Multi-Turn Spoken Language Understanding.
In Proceedings of The 17th Annual Meeting of the Interna-
tional Speech Communication Association (INTERSPEECH
2016). ISCA.
Chung, J.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2014. Em-
pirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling. arXiv:1412.3555.
Eric, M.; and Manning, C. D. 2017a. Key-Value Retrieval
Networks for Task-Oriented Dialogue. arXiv:1705.05414.
Eric, M.; and Manning, C. D. 2017b. Key-value re-
trieval networks for task-oriented dialogue. arXiv preprint
arXiv:1705.05414.
Gangi Reddy, R.; Contractor, D.; Raghu, D.; and Joshi, S.
2019. Multi-Level Memory for Task Oriented Dialogs. In
Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short
Papers), 3744–3754. Minneapolis, Minnesota: Association
for Computational Linguistics.
He, Z.; He, Y.; Wu, Q.; and Chen, J. 2020. Fg2seq: Effec-
tively Encoding Knowledge for End-To-End Task-Oriented
Dialog. In ICASSP 2020 - 2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
8029–8033.
Huang, H.-Y.; Choi, E.; and tau Yih, W. 2019. FlowQA:
Grasping Flow in History for Conversational Machine Com-
prehension. arXiv:1810.06683.
Huang, X.; Qi, J.; Sun, Y.; and Zhang, R. 2020. MALA:
Cross-Domain Dialogue Generation with Action Learning.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 34(05): 7977–7984.
Khasahmadi, A. H.; Hassani, K.; Moradi, P.; Lee, L.;
and Morris, Q. 2020. Memory-Based Graph Networks.
arXiv:2002.09518.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Lei, W.; Jin, X.; Kan, M.-Y.; Ren, Z.; He, X.; and Yin, D.
2018. Sequicity: Simplifying Task-oriented Dialogue Sys-
tems with Single Sequence-to-Sequence Architectures. In

Proceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers),
1437–1447. Melbourne, Australia: Association for Compu-
tational Linguistics.
Lu, X.; Wang, W.; Danelljan, M.; Zhou, T.; Shen, J.; and
Van Gool, L. 2020. Video object segmentation with episodic
graph memory networks. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part III 16, 661–679. Springer.
Luong, M.-T.; Pham, H.; and Manning, C. D. 2015. Effec-
tive Approaches to Attention-based Neural Machine Trans-
lation. arXiv:1508.04025.
Madotto, A.; Wu, C.-S.; and Fung, P. 2018. Mem2Seq: Ef-
fectively Incorporating Knowledge Bases into End-to-End
Task-Oriented Dialog Systems. arXiv:1804.08217.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
Bleu: a method for automatic evaluation of machine trans-
lation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, 311–318.
Peng, B.; Li, X.; Gao, J.; Liu, J.; and Wong, K.-F. 2018.
Deep Dyna-Q: Integrating Planning for Task-Completion
Dialogue Policy Learning. In Proceedings of the 56th An-
nual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), 2182–2192. Melbourne, Aus-
tralia: Association for Computational Linguistics.
Pham, T.; Tran, T.; and Venkatesh, S. 2018. Graph memory
networks for molecular activity prediction. In 2018 24th
International Conference on Pattern Recognition (ICPR),
639–644. IEEE.
Qin, B.; Yang, M.; Bing, L.; Jiang, Q.; Li, C.; and Xu,
R. 2021. Exploring Auxiliary Reasoning Tasks for Task-
oriented Dialog Systems with Meta Cooperative Learning.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 35(15): 13701–13708.
Qin, L.; Xu, X.; Che, W.; Zhang, Y.; and Liu, T. 2020.
Dynamic fusion network for multi-domain end-to-end task-
oriented dialog. arXiv preprint arXiv:2004.11019.
Raghu, D.; Gupta, N.; and Mausam. 2019. Disentan-
gling Language and Knowledge in Task-Oriented Dialogs.
arXiv:1805.01216.
Schlichtkrull, M.; Kipf, T. N.; Bloem, P.; van den Berg, R.;
Titov, I.; and Welling, M. 2017. Modeling Relational Data
with Graph Convolutional Networks. arXiv:1703.06103.
Serban, I. V.; Sordoni, A.; Bengio, Y.; Courville, A.; and
Pineau, J. 2016. Building End-To-End Dialogue Systems
Using Generative Hierarchical Neural Network Models.
arXiv:1507.04808.
Sukhbaatar, S.; Szlam, A.; Weston, J.; and Fergus, R. 2015.
End-To-End Memory Networks. arXiv:1503.08895.
Vashishth, S.; Sanyal, S.; Nitin, V.; and Talukdar, P. 2020.
Composition-based Multi-Relational Graph Convolutional
Networks. arXiv:1911.03082.
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