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Abstract
Background: At the onset of a pandemic, such as COVID-19,
data with proper labeling/attributes corresponding to the new
disease might be unavailable or sparse. Machine Learning
(ML) models trained with the available data, which is limited
in quantity and poor in diversity, will often be biased and in-
accurate. At the same time, ML algorithms designed to fight
pandemics must have good performance and be developed in a
time-sensitive manner. To tackle the challenges of limited data,
and label scarcity in the available data, we propose generating
conditional synthetic data, to be used alongside real data for
developing robust ML models. Methods: We present a hybrid
model consisting of a conditional generative flow and a clas-
sifier for conditional synthetic data generation. The classifier
decouples the feature representation for the condition, which is
fed to the flow to extract the local noise. We generate synthetic
data by manipulating the local noise with fixed conditional
feature representation. We also propose a semi-supervised ap-
proach to generate synthetic samples in the absence of labels
for a majority of the available data. Results: We performed
conditional synthetic generation for chest computed tomog-
raphy (CT) scans corresponding to normal, COVID-19, and
pneumonia afflicted patients. We show that our method sig-
nificantly outperforms existing models both on qualitative
and quantitative performance, and our semi-supervised ap-
proach can efficiently synthesize conditional samples under
label scarcity. As an example of downstream use of synthetic
data, we show improvement in COVID-19 detection from CT
scans with conditional synthetic data augmentation.

Introduction
The COVID-19 pandemic has created a public health cri-
sis and continues to have a devastating impact on lives and
healthcare systems worldwide. In the fight against this pan-
demic, a number of algorithms involving state-of-the-art ma-
chine learning techniques have been proposed. Data-based ap-
proaches have been used in a number of important tasks such
as detection, mitigation, transmission modeling, decision on
lockdown, reopening and related restrictions etc. For exam-
ple, computer vision-based detection of COVID-19 from
chest computed tomography (CT) images has been proposed
as a supportive screening tool for COVID-19 (Gunraj, Wang,
and Wong 2020), along with the primary diagnostic test of
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transcription polymerase chain reaction (RT-PCR). This is
beneficial since obtaining definitive RT-PCR test results may
take a lot of time in critical situations. Reinforcement learn-
ing based methods were also proposed to optimize mitigation
policies that minimize the economic impact without over-
whelming the hospital capacity (Kompella et al. 2020).

The application of machine learning algorithms in health-
care depends upon ample availability of disease data along
with their attributes/labels. At the beginning of a pandemic,
data corresponding to the disease might be unavailable or
sparse. Sparse data often have limited variation in several
important factors relevant to disease detection such as age,
underlying medical conditions etc. Class imbalance is another
issue faced by machine learning algorithms when pandemic-
disease related data is limited. For example, at the onset of
COVID-19, the amount of CT scan images corresponding
to COVID-19 were much less than those corresponding to
other existing lung diseases (e.g. pneumonia). ML models
fed with such class-imbalanced data could be biased and thus
provide inaccurate results. Furthermore, the amount of data
with proper labels among the available pandemic data might
be minimal. This issue can arise because healthcare profes-
sionals and domain experts who can review and label the
data are busy treating patients inflicted with the new disease,
or also because of privacy concerns associated with medical
data sharing.

Concurrently, after a new disease has been discovered, the
healthcare ML tools must rapidly adapt to the new disease
in order to assist medical professionals diagnose and treat
affected individuals as quickly as possible. Rapid actions are
also expected in design of policy interventions that are based
on insights from pandemic data. Another issue in develop-
ment of machine learning algorithms for emerging pandemics
is privacy. Development of solutions to pandemics at the scale
of COVID-19 require collaborative research which in turn
presses the need for open-sourced healthcare data. But, even
if healthcare organizations wish to release relevant data, they
are often restricted in the amount of data to be released due
to legal, privacy and other concerns.

In this paper, we present a novel conditional synthetic data-
generation method to augment the available pandemic data
of interest. Our proposed method can also help organizations
release synthetic versions of their actual data with similar
behavior in a privacy-preserving manner. At the onset of a
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Figure 1: Synthetic CT scans generated by our proposed model, with Non-COVID (normal and pneumonia cases, images with
green border)/ COVID (images with red border) as the condition.

pandemic, when the availability of disease data is limited,
our proposed model learns the distribution of available lim-
ited data and then generates conditional synthetic data that
can be added to the existing data in order to improve the
performance of machine learning algorithms. To tackle the
challenge of label scarcity, we propose semi-supervised learn-
ing methods to leverage the small amount of labeled data and
still generate qualitative synthetic samples. Our methods can
enable healthcare ML tools to rapidly adapt to a pandemic.

We apply this method to generate conditional CT scan
images corresponding to COVID cases (Fig. 1), and conduct
qualitative and quantitative tests to ensure that our model
generates high-fidelity samples and is able to preserve the fea-
tures corresponding to the condition (COVID/Non-COVID)
in synthetic samples. As a downstream use of conditional
synthetic data, we improve the performance of COVID-19
detectors based on CT scan data via synthetic data augmen-
tation. Our results show that the proposed model is able to
generate synthetic data that mimic the real data, and the gen-
erated samples can indeed be augmented with existing data
in order to improve COVID-19 detection efficiency.

Methodology
We present a hybrid model consisting of a conditional genera-
tive flow and a classifier for conditional synthetic generation.
We also introduce a semi-supervised approach, to generate
conditional synthetic samples when a few samples out of the
whole dataset are labeled.

COVID and Non-COVID Classifier
Our model is characterized by the efficient decoupling of
feature representations corresponding to the condition and
the local noise. Suppose we have N samples X with labels
Y , with 2 possible classes, COVID/Non-COVID. We first
train a classifier C (consisting of a feature extractor network
denoted by g(·), and a final fully-connected and softmax
layer, denoted by h(·), i.e. C(x) = h(g(x))) to classify the
input sample (which in our case are CT Scans) and associated
labels as COVID and Non-COVID. Mathematically, this step
solves the following minimization with backpropagation:

min
C

LC(X, Y ) = −E(x,y)∼(X,Y )

2∑
l=1

[
I[l=y] logC(x))

]
(1)

By virtue of the training process, the classifier learns
to discard local information and preserve the features

necessary for classification (conditional information) towards
the downstream layers. Once the classifier is trained, we
freeze its parameters, and use it to extract the conditional
(COVID/Non-COVID) feature representation z = g(x) (as
a vector without spatial characteristics) at the output of the
feature extractor network for input image x. The dimension
of z is chosen such that dim(z) << dim(x).

Conditional Generative Flow
During the training phase for the flow model, the conditional
feature representation z is fed to the conditional generative
flow. The flow model is trained using maximum-likelihood,
transforming x to its local representation ν, i.e.

fθ(x, z) = ν ∼ N (0, I) (2)

with ν having the same dimension as x by the inherent de-
sign of flow models. We use the method introduced by Ma
et al. (2021) to incorporate the conditional input z in flow
model. Coupling layers in affine flow models have scale (s(·))
and shift (b(·)) networks (Dinh, Sohl-Dickstein, and Bengio
2017; Das, Abbeel, and Spanos 2019), which are fed with in-
puts after splitting, and their outputs are concatenated before
passing on to the next layer. We incorporate the conditional
information z in the scale and shift networks. Mathemati-
cally, (with x as the input, D as input dimension, d as the
split size,and y as output of the layer),

x1:d, xd+1:D = split(x)
y1:d = x1:d

yd+1:D = s(x1:d, z)⊙ xd+1:D + b(x1:d, z)

y = concat(y1:d, yd+1:D)

Since flow models are bijective mappings, the exact x can
be reconstructed by the inverse flow with z and ν as inputs.
During the generation phase, for an input sample x, we com-
pute the conditional feature representation z. Keeping the
conditional feature representation the same, we sample a new
local representation ν̃, and generate a conditional synthetic
sample x̃, i.e.

ν̃ ∈ N (0, I), x̃ = f−1
θ (ν̃, z) (3)

Here, x̃ has the same conditional (COVID/Non-COVID) fea-
tures as x , but has a different local representation. An illus-
tration of the proposed model is provided in Fig. 2 and the
steps for the inference and generation phases are summarized
in Table 1.
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Figure 2: Illustration of the proposed conditional synthetic generation. (Best viewed in color)

Inference Phase Generation Phase
1. (Classifier) Train the COVID and Non-COVID 1. (Classifier) Corresponding to an input sample x, find its

classifier. conditional feature representation z using the trained classifier.
2. (Flow) For each input sample x, 2. (Flow) Sample a local representation ν̃ ∼ N (0, I).

2.1 Feed x to the classifier and extract the conditional 3. (Flow) Get a synthetic sample x̃ = f−1
θ (ν̃, z).

feature representation z from its penultimate layer.
2.2 Get the local representation as ν = fθ(x, z)
2.3 Train the flow model with maximum-likelihood.

Table 1: Summary of steps for conditional inference and generation

Semi-supervised Learning for Conditional Synthetic
Generation under Label Scarcity
In reality, often a small amount of the already limited pan-
demic data available are labeled. Consider this case when a
few of the datapoints are labeled, denoted by {Xl, Y l}. The
rest of the data (unlabeled) is denoted by Xu. To generate
conditional synthetic samples under such label scarce situa-
tions, we propose a semi-supervised method to modify the
classifier design process, in order to effectively decouple the
feature representations corresponding to the conditions.

We first design a label learning algorithm to assign pre-
sumptive labels Ỹ l to the unlabeled samples Xu. Assuming
ki labeled samples are available for class i, we train the clas-
sifier network using the labeled samples only and compute
in the embedded (z) space (1) the centroid vector ci for each
class and (2) a similarity metric between each unlabeled tar-
get sample xu ∈ Xu and the specific centroid. Depending
on the dimension of the transformed feature space, this sim-
ilarity metric can simply be a Gaussian kernel to capture
local similarity (Van der Maaten and Hinton 2008), or the
inverse of Wasserstein distance (Shen et al. 2018) for better
generalization with complex networks.

Ideally, the semi-supervised scheme should be able to (1)
identify the correct labels of unlabeled target samples, and

(2) update the classifier with the additional information. We
establish an alternating approach that recursively performs
(1) fixing the feature mapping g and propagating presumptive
labels using a greedy assignment, i.e., an unlabeled sample is
presumed to have the same label to its closest centroid, and
(2) updating the feature mapping (the classifier) as supervised
learning by treating the presumptive labels as true labels.

The proposed greedy propagation, intuitively simple and
practically easy to implement, in fact has theoretical guaran-
tees since the entropy objective is approximately submodular
when the feature mapping is fixed. Please refer to (Zhou and
Spanos 2016) for a detailed theoretical analysis. The above
is conducted alternately until the convergence of the feature
mapping and presumptive label assignment. In practice, the
convergence is usually achieved in a few iterations. Once
the classifier has been trained with this semi-supervised ap-
proach, the conditional generative flow training is performed
as specified before in conditional generation section.
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Figure 3: Classification metrics for classifiers trained on synthetic data generated by various models. The error bars indicate the
variation in classifier performance when the synthetic datasets used to train them were generated multiple times with different
seeds. Real data classifier does not involve multiple synthetic data generation, so its error bars are not included.
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Figure 4: Illustration of quantitative testing procedure for
conditional synthetic generation.

Experiments
Data Collection: We conduct experiments on chest CT scan
data based on the COVIDx CT-1 dataset (Gunraj, Wang,
and Wong 2020).The dataset consists of 45,758 images for
healthy individuals, 36,856 images for individuals afflicted
with common pneumonia, and 21,395 images for individuals
with COVID-19.

Pre-processing: We combine the images in the Normal
and Pneumonia classes into a single Non-COVID class. We
use the train, validation, and test splits defined by the official
annotation files. In addition to class labels, the annotations
include bounding boxes for the lungs region in the whole CT
scans image. We crop the images as per the bounding box
and resize them to 64× 64.

Testing Procedure: We performed both quantitative and
qualitative testing for conditional synthetic data generation
by our model. A test set is held out from the real dataset to be
used for quantitative testing. We then compare the classifica-
tion performance (COVID/Non-COVID) on this test set for

Model FID
Ma et al. (2021) 0.2504
ACGAN 0.0986
CAGlow 0.0483
Ours 0.0077

Table 2: Qualitative (Fréchet Information Distance) scores
for synthetic data generated by various models (the lower the
better).

a classifier trained on real data vs a classifier trained on the
generated synthetic data. This testing procedure is illustrated
in Fig. 4. Since the datasets are imbalanced, we report the
precision, recall and macro-F1 score (together referred to as
classification metrics) along with the accuracy. For more in-
formation on the metrics, please refer to Hossin and Sulaiman
(2015). Closeness of the classification metrics of classifiers
trained on synthetic and real data indicates an efficient de-
sign of the conditional synthetic generator. To evaluate the
quality of generated samples, we report the Fréchet Inception
Distance (FID) (Heusel et al. 2018) for the synthetic samples.
For FID calculation, we use the embeddings from our classi-
fier trained using real data, in place of the official inception
network (Szegedy et al. 2014), since the latter is not trained
on medical imaging data.

Results: Conditional Synthetic Data Generation
The classification results for a classifier trained on the real
data vs a classifier trained on purely conditional synthetic
data, and tested on a hold-out set of real data, is given in
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Figure 5: Original and generated synthetic CT scan samples. The top row consists of original samples, and corresponding image
in the bottom row is the synthetic sample obtained by preserving the original conditional feature representation, and varying the
local noise. Image pairs with a red border: COVID samples, and a green border: Non-COVID samples.

Fig. 3. Across the existing methods for conditional synthetic
generation, the classifier trained with synthetic data from our
proposed model has the closest accuracy, F1 score, precision
and recall to that of the classifier trained on real data. This
shows the capability of our method to generate synthetic
samples with a distribution that closely matches the real
conditional data distribution. The qualitative results (FID
scores) for synthetic data generated by various models are
tabulated in Table 2. The FID scores for our model is the
lowest among all models, demonstrating that the quality of
the generated samples closely matches the real ones.

It is worth noting that the accuracy/F1 score of the classi-
fier trained with synthetic data generated by Ma et al. (2020)
is much smaller as compared to those by other models, not
to mention the classifier trained on real data. This can be
justified from the fact that Ma et al. (2020) relies on an unsu-
pervised method of decoupling global and local information.
But for conditional synthetic generation applications, such as
the one presented in this paper, the model needs information
on what the model designer/ domain experts consider as the
conditional information (COVID/Non-COVID in our case).
ACGAN and CAGlow have different generators, but both
include an auxiliary supervision signal to conditionally guide
the generation process. Hence, performance of classifiers
trained on synthetic data generated by them are close. We
encode the conditions using feature extractors to feed to the
generator, leading to state-of-the-art results.

The original samples along with the synthetic samples
generated by preserving original conditional feature repre-
sentation and a different local noise for CT scans are shown
in Fig. 5. The characteristic features for COVID CT scan
samples, i.e., ground-glass opacity are well preserved in the
synthetic samples. The non-conditional local features, e.g. ax-
ial plane position for CT scans are considered as local noise.
Since original samples for normal and pneumonia cases are
merged together to form a single Non-COVID class, some-
times the corresponding synthetic image for a normal sample
is a sample with pneumonia characteristics and vice-versa.
This occurs since the conditional model learns to treat them
as local information. The ability to decouple the feature rep-

resentations for given conditions from other information in
the data, as exhibited by our model, should be considered the
strength of an effective conditional generative model.

Results: Conditional Synthetic Generation
under Label Scarcity

Previously, we proposed a semi-supervised learning approach
to efficiently generate conditional synthetic samples when
the number of samples labeled out of the available pandemic
data is less. To test our approach, we retained the assigned
label (COVID/Non-COVID) for a few samples, and discarded
the label for rest of the samples. The amount of labeled
samples was varied from 20 samples to 50 samples to 0.5%,
1%, and 5% of the total training data. The ratio between
COVID and Non-COVID samples was maintained among
the labeled samples. We conducted the presumptive-labeling
and classifier training in an iterative manner, and followed
by this, trained the conditional generative flow using the
conditional feature embeddings obtained using the feature
extractors. We then generated conditional synthetic data using
the above trained generative model. To show the robustness
of our method, we perform bootstrapping on the test set and
repeat our experiments using different sets of labeled samples
from the training data. For each model, we also evaluated on
multiple synthetic sets generated using random seeds. The
results of classification models trained on the synthetic data
under different bootstraps and seeds is given in Table 3.

As is apparent from the table, using even a few labeled
samples, our method is able to achieve results on par with the
case when all the labels are available. This further reinforces
the strength of our approach in generating conditional syn-
thetic data to rapidly adapt ML models to a new pandemic at
its onset, when there is scarcity of such labels. As expected,
at lower levels of labeled data, the uncertainity associated
with synthetic data generation is high, as is apparent from
Table 3a, which dies down as we increase the labeled data
amount. The uncertainity associated with classification mod-
els trained on synthetic set generated by our model using
different seeds is low. Both the above observations establish
the robustness of proposed method.
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Amount of labeled data Accuracy (%) F1 Score (%) Precision (%) Recall (%)
20 samples 84.84± 2.91 76.32± 5.24 77.15± 4.87 76.35± 5.87
50 samples 90.87± 1.31 85.86± 1.73 86.48± 2.68 85.43± 1.32

0.5% of training samples 93.90± 0.46 90.49± 0.61 91.30± 1.28 89.8± 0.68
1% of training samples 95.06± 0.49 92.14± 0.69 93.94± 1.30 90.62± 0.48
5% of training samples 95.80± 0.20 93.24± 0.28 95.09± 0.84 91.23± 0.50

100% of training samples 96.30± 0.11 93.98± 0.17 97.05± 0.38 91.56± 0.20

(a) With different sets of labeled samples and test set bootstrapping

Amount of labeled data Accuracy (%) F1 Score (%) Precision (%) Recall (%)
20 samples 85.70± 0.32 78.65± 0.65 77.96± 0.49 79.48± 1.18
50 samples 90.74± 0.77 85.27± 0.88 86.93± 2.03 83.98± 0.68

0.5% of training samples 94.66± 0.86 91.41± 1.27 93.93± 2.02 89.39± 0.80
1% of training samples 95.04± 0.32 92.00± 0.47 94.53± 0.88 89.96± 0.42
5% of training samples 95.62± 0.21 92.95± 0.28 95.33± 0.77 90.99± 0.18

100% of training samples 96.30± 0.11 93.98± 0.17 97.05± 0.38 91.56± 0.20

(b) With multiple synthetic sets generated using random seeds

Table 3: Results for classifiers trained on synthetic data generated by models that are developed using a few labeled data.

An important point to note here is that the closeness of
results obtained by utilizing 5% of labels as compared to
using 100% of labels do not denounce the importance of the
rest 95% of labels. In healthcare, improvement of even 1%
of accuracy/F1 score corresponds to a significant number of
samples classified accurately, important especially during
a pandemic. Thus, our proposed semi-supervised approach
should be considered as a remedy for cases when labels are
scarce, not as an alternative to fully-supervised approach.

Example Use of Synthetic Data: Robust
Detection of COVID-19 via Data Augmentation
Generated synthetic data can be utilized in a number of down-
stream tasks. We conduct experiments on one of the tasks:
robust detection of COVID-19 via synthetic data augmenta-
tion. The training data is inherently highly class-imbalanced,
with limited samples of COVID and abundant samples for
pneumonia and normal cases. To design a robust COVID-19
detection mechanism under such class imbalance scenario,
we augment the training data with synthetic COVID samples
generated using the proposed model to increase the % of
COVID samples and balance the dataset. The augmentation
process and the testing procedure is illustrated in Fig. 6. The
classification metrics for classifiers trained on the augmented
training data are given in Fig 7.

Examining the classification results, the classifier trained
on augmented training data have better performance as com-
pared to classifiers trained only on limited real training data
for all augmentation levels. Note that even slight improve-
ment in the recall score translates to numerous samples classi-
fied correctly (e.g. 1% improvement in recall for CT scan cor-
responds to 200 more correctly classified samples), leading
to better diagnosis leading to accurate and timely treatment.

COVID/Non-COVID 
Classifier (trained on 
augmented data)

Test on 
hold out 
test set

Conditional 
Synthetic 

Data Generator

Figure 6: Illustration of synthetic data augmentation and
testing process. Improvement in performance of classifiers
trained on augmented data as compared to that trained on
original training data is a step towards robust COVID-19
detection.
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Figure 7: Classification results for models trained using
real data (with class imbalance) vs augmented data (class-
balanced). The real data (having ∼ 20% of COVID samples)
was augmented with synthetically generated COVID samples
using the proposed model for class balancing.
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Related Work
In the field of healthcare, synthetic data generation has been
proposed to expand the diversity and amount of the existing
training data, often to improve the robustness of machine
learning models. Ghorbani et al. (2019) propose a genera-
tive adversarial network (GAN)-based synthetic data gener-
ator to improve the diversity and the amount of skin lesion
images. Kohlberger et al. (2019) synthesize pathology im-
ages for cancer with realistic out-of-focus characteristics to
evaluate general pathology images for focus quality issues.
Han et al. (2019) propose synthetic generation to produce
high-resolution artificial radiographs. In the space of combat-
ing COVID-19, Bannur et al. (2020) propose a method of
strengthening the COVID-19 forecasts from compartmental
models by using short term predictions from a curve fitting
approach as synthetic data. Similarly, Waheed et al. (2020)
and Jiang et al. (2020) propose a conditional GAN-based
generator for synthetic chest X-ray/CT scan data generation
and augmentation for robust COVID-19 detection. Above
works do not focus on the case where data with proper labels
might be unavailable or sparsely available, whereas we tackle
this challenge using a semi-supervised approach. We also
show the robustness achieved using our model via experi-
ments with several bootstrapping methods.

In the area of conditional generation, a hybrid flow and a
GAN-based model have been proposed in CAGlow (Liu et al.
2019a). In general, GAN-based methods are known to be hard
to train (Salimans et al. 2016) and do not provide a latent
embedding suitable for feature manipulations (Kingma and
Dhariwal 2018). In contrast, we proposed a conditional gen-
eration method with efficient decoupling of the conditional
information and local noise over an embedding space, along
with a flow based generator, which recently have proved
efficient in synthetic data generation (Ho et al. 2019; Das
et al. 2021). We compared results for our proposed method
over CAGlow and ACGAN for synthetic COVID CT scan
generation, and showed improved results.

Decoupling of global and local representation for synthetic
generation has been proposed in Ma et al. (2021), where the
global information is decoupled using a Variational AutoEn-
coder (VAE) (Kingma and Welling 2014). For conditional
synthetic generation, it is necessary that the feature represen-
tations salient to the given conditions (COVID/Non-COVID)
are decoupled from local noise, which is not guaranteed while
extracting the same using a VAE. By employing a classifier
network for the same, we ensure the relevant conditional
information is not lost into the local noise.

Semi-supervised learning based approaches to enhance
classification models has been prominent in domain adapta-
tion tasks, where except for a few samples, knowledge about
the labels are generally unavailable in the target domain. A
number of domain adaptation models, such as FADA (Moti-
ian et al. 2017), Teshima, Sato, and Sugiyama (2020), Zou
et al. (2019c), Zhao et al. (2021) etc. employ few-shot learn-
ing approach, leveraging the few labeled data available to
make the model efficient. In the space of healthcare, semi-
supervised learning approaches have been used for skin dis-
ease identification from limited labeled samples in Mahajan,
Sharma, and Vig (2020), to enhance X-ray classification in

Rajan et al. (2021) and in COVID-19 detection from scarce
chest x-ray image data in Jadon (2021). We proposed the
use of semi-supervised learning in the space of synthetic data
generation, to adapt our proposed generative model to label
scarce scenarios, common at the onset of a pandemic.

Discussions
We presented a novel conditional synthetic generative model
aimed at multiplying the samples of interest at the onset of a
pandemic. We conducted extensive experiments on chest CT
scan dataset to show the efficacy of the proposed model, and
improvements in COVID-19 detection performance achieved
via synthetic data augmentation. We also proposed and exper-
imented on a semi-supervised learning approach to efficiently
generate conditional synthetic data under label scarce con-
ditions. One of the limitations of our proposed method is
that it does not exert selective control over the choice local
noise, which can sometimes contain information for impor-
tant interactions in the data, e.g., in our experiments, we ex-
tract conditional information salient to COVID/Non-COVID,
whereas the information corresponding to everything else,
such as CT scan axial positions, variations of pneumonia etc.
are all considered to be the noise for the model. In general,
this can be attributed to the way conditional generative mod-
els e.g. ACGAN, CAGlow function. There can be numerous
variations of synthetic samples that can be created using our
model, keeping the conditional information same, hence a
potential negative societal impact of our work can be misuse
of synthetic medical information to spread misinformation.

Future Work
With appropriate changes in the network and the training
mechanism, our method can be generalized for synthetic
generation of other kinds of data, e.g. X-rays, natural lan-
guage and time-series. One of the future works includes the
performance study of healthcare ML models, e.g. out-of-
distribution models for new disease detection with synthetic
data augmentation. Another interesting line of research is
synthetically realizing data corresponding to medical cases
that would otherwise be ethically/practically hard to obtain.
Research can also be done to incorporate domain knowledge
into the deep network used to generate synthetic data. It can
also be used alongside real-world applications (Zou et al.
2019b,a; Konstantakopoulos et al. 2019; Chen et al. 2021;
Periyakoil et al. 2021; Das et al. 2019, 2020; Liu 2018; Liu
et al. 2019b; Donti and Kolter 2021; Jin et al. 2018) where
challenges such as class-imbalance and privacy is important
and thus generating conditional synthetic data is helpful.
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