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Abstract

Structural Equation/Causal Models (SEMs/SCMs) are widely
used in epidemiology and social sciences to identify and an-
alyze the average causal effect (ACE) and conditional ACE
(CACE). Traditional causal effect estimation methods such
as Inverse Probability Weighting (IPW) and more recently
Regression-With-Residuals (RWR) are widely used - as they
avoid the challenging task of identifying the SCM param-
eters - to estimate ACE and CACE. However, much work
remains before traditional estimation methods can be used
for counterfactual inference, and for the benefit of Person-
alized Public Policy Analysis (P3A) in the social sciences.
While doctors rely on personalized medicine to tailor treat-
ments to patients in laboratory settings (relatively closed sys-
tems), P3A draws inspiration from such tailoring but adapts it
for open social systems. In this article, we develop a method
for counterfactual inference that we name causal-Graphical
Normalizing Flow (c-GNF), facilitating P3A. A major ad-
vantage of c-GNF is that it suits the open system in which
P3A is conducted. First, we show how c-GNF captures the
underlying SCM without making any assumption about func-
tional forms. This capturing capability is enabled by the deep
neural networks that model the underlying SCM via observa-
tional data likelihood maximization using gradient descent.
Second, we propose a novel dequantization trick to deal with
discrete variables, which is a limitation of normalizing flows
in general. Third, we demonstrate in experiments that c-GNF
performs on-par with IPW and RWR in terms of bias and vari-
ance for estimating the ACE, when the true functional forms
are known, and better when they are unknown. Fourth and
most importantly, we conduct counterfactual inference with
c-GNFs, demonstrating promising empirical performance.
Because IPW and RWR, like other traditional methods, lack
the capability of counterfactual inference, c-GNFs will likely
play a major role in tailoring personalized treatment, facilitat-
ing P3A, optimizing social interventions - in contrast to the
current ‘one-size-fits-all’ approach of existing methods.

Introduction
Since the realization that correlation does not imply causa-
tion (Wright 1921; Fisher 1936), statisticians, computer sci-
entists, and social scientists have been developing ways to
identify and estimate causal effects from observational data.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

By the 1970s, Structural Equation Models (SEMs), devel-
oped from Wright’s path analysis (Wright 1921) in genetics,
have been widely used in economics (Haavelmo 1943; Gold-
berger 1972) and other social sciences (King 1974; Ploch,
Goldberger, and Duncan 1975; Fienberg and Duncan 1975)
to analyze cause and effect. Pearl’s Structural Causal Model
(SCM) (Pearl 2009b) provides an explicit causal definition
to disambiguate the causes and effects by replacing the sym-
metric ‘=’ operator with asymmetric ‘:=’ assignment opera-
tor, thereby complementing the original SEM definition. En-
ergized by this and similar developments in computer sci-
ence, a causal revolution has occurred with large ramifica-
tions not only in academia but also for how governments,
non-governmental organizations, and international organi-
zations (such as the World Bank, United Nations Children’s
Fund (UNICEF), or International Monetary Fund) articulate
public policies to combat social ills. For example, to combat
poverty, governments use mainly an individual’s income and
similar characteristics to identify vulnerable population and
then assess if they are eligible for social welfare eligibility.
Then a simple rule is often applied: if they are eligible, they
tend to receive a fixed one-size-fits-all public policy; if they
are not eligible, no policy is ascribed. Although such public-
policy making is highly transparent as it applies what is best
on average for a population – that is the average causal ef-
fect (ACE) – it lacks an adaptability necessary to efficiently
combat poverty, ill-health, and other social ills. For effective
combating, government officials and others require methods
that are able to personalize these policies (Kino et al. 2021).
That is, personalized public policy analysis (P3A) requires
methods that can move beyond ACE estimation, and into
counterfactual inference.

However, traditional statistical causal effect estima-
tion methods, such as Inverse Probability Weighting
(IPW) (Rosenbaum and Rubin 1983; Hernán and Robins
2009) or recent ones such as Regression-With-Residuals
(RWR) (Wodtke 2020), focus on ACE estimation only. An
advantage of IPW (stabilized) is that it provides a simple and
effective way to estimate ACE without the need to model
the entire causal system, under the assumption that the func-
tional form of the propensity score is correctly specified.
In contrast to IPW, RWR, which comes under the class
of outcome regression models, estimate ACEs more effec-
tively (less variance), under the assumption that the func-
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(b) 2-wave model. (c) c-GNF architecture for causal and counterfactual inference.

Figure 1: Fig. 1a shows temporal interactions between the treatments Ak and the observed covariates/confounders Ck at time-
wave k=1, . . . ,K and the outcome of interest Y . The solid edges indicate the cause and effect at the same time-wave and the
dashed edges indicate the one time-wave delayed effect with respect to the respective causes. Fig. 1b represents the 2-wave
model of Fig. 1a. For any given observed endogenous variable X in Fig. 1b, UX and ZX respectively denote the unobserved
exogenous noises of the true SCM F :U→X and the encapsulated-SCM F̃=(FH)=T−1:Z→X in Fig. 1c, where H:Z→U

denotes an auxiliary transformation. Since F̃ (green) encapsulates F (red) and H (blue) SCMs, i.e., F̃=(FH)=T−1, we refer
to F̃ as the encapsulated-SCM. Our c-GNF models T :X→Z and readily provides the encapsulated-SCM F̃ :Z→X, as T is
invertible by construction, facilitating counterfactual inference using ‘The First Law of Causal Inference’ (Pearl 2009a,b).

tional form of the outcome models are correctly specified.
However due to the use of a single outcome model similar
to S(Single)-Learner, RWR provides biased estimates when
there is effect modification in data (also know as effect het-
erogeneity) (VanderWeele 2009b).

To directly address effect modification, computer scien-
tists have developed a class of outcome regression based
machine-learning models called meta-learners (Künzel et al.
2019) (e.g., T(Two)-Learner, X-Learner) where each treat-
ment group is modeled using a separate outcome regression
models conditioned on proper adjustment sets to account for
any confounding. Since meta-learners model separate condi-
tional outcome regression models for each treatment groups,
we alternatively refer them as Grouped Conditional Out-
come Model (GCOM). The conditioning set or adjustment
set or the predictors of outcome regression model are iden-
tified from the non-parametric expression of the interven-
tional distribution obtained from do-calculus (Pearl 2009b,
2012) or G-computation formula (Robins 1986; Hernán and
Robins 2009) to accurately model and estimate the causal
effects of interest by adjusting for the confounding. While
IPW requires the right propensity score model, RWR and
GCOM methods require the correct outcome model. In con-
trast, Doubly Robust (DR) (Bang and Robins 2005) methods
are a class of causal inference methods that incorporate the
best of IPW and GCOM by jointly modeling the propensity
score and the outcome. The key advantage of DR is that it
requires only either one of the propensity or the outcome
model to be correctly specified to produce unbiased ACE
estimates. Notwithstanding the advantages of IPW, RWR,
GCOM, and DR, none of them successfully supply a method
to conduct counterfactual inference for P3A.

In this work, we aim to further P3A and causal inference
in the social science by demonstrating a method for coun-
terfactual inference that does not require a priori knowl-
edge of the correct functional form in neither the propen-
sity score or the outcome model. Our causal method consists
of a flow-based deep learning approach known as Graphi-

cal Normalizing Flows (GNFs). As we re-purpose GNFs for
causal inference by using causal-Directed Acyclic Graphs
(causal-DAGs), we refer them as causal-GNFs (c-GNFs).
Even though we focus on the social effect of neighborhood
on children’s education outcomes (Wodtke 2020) as an ex-
ample of P3A in this article, our contributions are applicable
to other settings in epidemiology, economics, sociology, and
political science, where counterfactual policy-making is crit-
ical to promote social, material, and health outcomes. Our
work supplies at least the following five contributions.

1. We show that c-GNF models the underlying SCM of
interest in the form of an encapsulated-SCM using only the
observational data and without making assumptions on the
unobserved exogenous noises or the functional mechanisms
of the true SCM.

2. Unlike IPW and RWR that require correct functional
forms to provide unbiased ACEs, we show that c-GNF needs
no functional form assumptions to achieve unbiasedness be-
cause the encapsulated-SCM, parameterized by a deep neu-
ral networks, has the ability to model any functional form
from the observational data via likelihood maximization by
gradient descent.

3. We demonstrate experimentally that c-GNF is on-par
with IPW and RWR in terms of the bias and variance of the
ACE estimates when the right functional forms are assumed
and above-par when they are unknown under both small and
large sample sizes.

4. Normalizing flows (NFs) are generally built for contin-
uous variables. As this challenges the use of discrete vari-
ables, we propose a novel yet simple Gaussian dequantiza-
tion trick to adapt discrete variables for NFs.

5. The most important, unique and key contribution of our
c-GNF is that it has the capacity to perform counterfactual
inference since c-GNF models the encapsulation of the true
SCM. This enables scholars and policymakers to move be-
yond merely identifying the optimal treatment (public pol-
icy) at the population level and start tailoring individual-
level optimal treatment (public policy). This capacity will
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advance P3A in social science and other domains (such as
personalized medicine) (Kino et al. 2021).

In the next section, we introduce the notations, define
a typical social problem, and discuss the assumptions re-
quired to solve it. Then, we introduce c-GNFs, how they can
be used to model SCMs, and how they estimate ACEs and
counterfactual inference. Next, we present the simulated ex-
perimental setup, results and analysis. Lastly, we conclude
our work with implications in social science and beyond.

Notation, Problem Definition and Assumptions
In this section, we discuss the formulation of the causal
problem particularly in social science, notations, and crit-
ical assumptions for causal inference. Fig. 1a denotes the
temporal model involving time-varying confounders used
by Wodtke, Harding, and Elwert (2011) in their real-world
study involving 16 waves or time-points, i.e., k=1, . . . , 16,
where Ak and Ck denote the neighborhood context treat-
ment and the observed neighborhood covariate at time k, and
Y denotes the high-school graduation as outcome of causal
interest on the Panel Study of Income Dynamics (PSID) sen-
sitive dataset (GeoLytics 2003). However, in this work, we
consider the 2-wave model in Fig. 1b used by Wodtke (2020)
in his simulated experiments (non-sensitive data) such that
the true causal effects are known for benchmarking of dif-
ferent causal effect estimation methods.

Specifically, our aim is same as that of Wodtke (2020),
i.e., to estimate the ACEs of the binary treatment variables
A1 andA2 from the observational data. These ACEs (λa1,a2 )
are formally defined as

λ1,0 = E[Y1,0]−E[Y0,0] (1a)
λ0,1 = E[Y0,1]−E[Y0,0] (1b)
λ1,1 = E[Y1,1]−E[Y1,0] (1c)

where Ya1,a2 denotes the potential outcome of Y under the
interventions A1:=a1 and A2:=a2. Note that the previous
expectations are with respect to the interventional distribu-
tion of Ya1,a2 under the interventions A1:=a1 and A2:=a2

P (Y{ak}2k=1
) . (2a)

Under the assumptions we discuss next, the interventional
distribution in Eq. (2a) can be expressed in terms of the
components from the observational joint distribution via do-
calculus (Pearl 2012) or G-computation formula (Robins
1986; Hernán and Robins 2009; Pearl 2009b) as

P (Y{ak}2k=1
)=

∑
{Ck}2k=1

P (Y |{Ck, ak}2k=1)

P (C2|C1, a1)(
Π2
j=11(Aj=aj)

)
P (C1) , (2b)

where 1(Aj=aj) is the indicator function denoting the inter-
vention Aj :=aj . For the curious readers, the interventional
distribution for the generalK-wave model of Wodtke, Hard-
ing, and Elwert (2011) can be expressed analogously as

P (Y{ak}Kk=1
)=

∑
{Ck}Kk=1

P (Y |{Ck, ak}Kk=1)

(
ΠK
j=2P (Cj |Cj−1, aj−1)

)(
ΠK
j=11(Aj=aj)

)
P (C1) . (2c)

Critical Assumptions in Causal Inference
Although generally ‘correlation does not imply causation’,
causal inference is about defining under what assumptions
and conditions correlation coincides with causation (Pearl
2009b; Neal 2020). For our counterfactual-inference argu-
ment, we require six assumptions and conditions that are
briefly stated below. The technical appendix shows detailing
of the mathematical definitions and how causal quantities
can be estimated from purely statistical quantities.

1. Unconfoundedness or no unobserved confounders:
As shown in Fig. 1a, we assume that there is no unobserved
confounding between Ak and Y . Otherwise, it is impossi-
ble to know if the observed correlation is due to causality or
confounding. This assumption is strong and untestable (Ru-
bin 1990).

2. Positivity or overlap or common support or ex-
trapolation: We assume that every individual has non-
zero probability of receiving any of the treatments, i.e.,
P (Ak|Ak−1, Ck) is always positive. Otherwise, it is impos-
sible to accurately estimate the causal effect as the model is
inaccurate in the non-overlap region due to no data.

3. Conditional ignorability or exchangability: In eco-
nomics and epidemiology, the assumptions of unconfound-
edness and positivity are referred together as conditional ig-
norability or exchangability (Rosenbaum and Rubin 1983).
Unconditional ignorability or exchangability can only be
achieved in Randomized Controlled Trials (RCTs).

4. Consistency: This assumption states that the observed
outcome is same as the potential outcome under the ob-
served treatment (Robins 1986; Cole and Frangakis 2009;
VanderWeele 2009a).

5. No interference or Stable Unit-Treatment Value As-
sumption (SUTVA): No interference means that a particular
individual’s outcome is only a function of that particular in-
dividual’s treatment and is not affected by the treatment of
any other individual (Cox 1958).

6. Modularity or independent mechanisms or auton-
omy or invariance: Any joint distribution can be factorized
as the product of conditional distributions corresponding to
independent causal mechanisms using the Markov assump-
tion. Under the interventions, the modularity assumption
states that all the mechanisms of the non-intervened vari-
ables remains the same while the mechanism of the inter-
vened variables is set to the intervened value. The modular-
ity assumption can be seen in Eqs. (2b) and (2c), where the
probability terms corresponding to the mechanism of the in-
tervened variable Aj :=aj , i.e., P (Aj |Cj , Aj−1) term in the
observational joint distribution is replaced by the indicator
function 1(Aj=aj) denoting the intervention Aj :=aj . This
modularity assumption is crucial for causal and counterfac-
tual inference (Pearl 2009a,b; Pearl and Mackenzie 2018).

SCM, Encapsulated-SCM and c-GNF
In this section, we present our c-GNFs and describe their
connection to SCMs. An SCM consists of a set of assign-
ment equations describing the causal relations between the
random variables of a causal system, such as

Xi := fi(PAi, Ui) with i=1, . . . , d (3)
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where {Xi}di=1 represents the set of observed endogenous
random variables, PAi represents the set of variables that
are connoting parents of Xi, {Ui}di=1 denotes the set of ex-
ogenous noise random variables, and {fi}di=1 denotes the
set of functions (independent mechanisms) that generate the
endogenous variable Xi from its observed causes PAi and
noise Ui. SCM is also referred as Functional Causal Model
(FCM) due to the functional mechanisms {fi}di=1.

Let X=[X1, . . . , Xd]
T∈Rd denote the d-dimensional

vector of SCM endogenous variables. Similarly, let
U=[U1, . . . , Ud]

T∈Rd denote the d-dimensional vector of
SCM exogenous variables and F :U→X denote the trans-
formation representing the true SCM such that X=FU. Let
G represent a causal-DAG with {X1, . . . , Xd} as the set of
nodes and adjacency matrixAG∈{0, 1}d×d. Let PX(X) rep-
resent the joint distribution over the endogenous variables
X, which factorizes according to the causal-DAG G as

PX(X) = Πd
i=1P (Xi|PAi) , (4a)

where PAi={Xj :AG i,j=1} denotes the set of parents of the
vertex/nodeXi in the causal-DAG G. As we show in the next
section, the factorized joint distribution in Eq. (4a) can be
modeled using an autoregressive model parameterized by a
deep-neural-network θ, which we denote by PX(X; θ). Such
a model is what we call c-GNF.

Causal-Graphical Normalizing Flows (c-GNFs)
Normalizing Flows (NFs) (Tabak and Vanden-Eijnden 2010;
Tabak and Turner 2013; Rezende and Mohamed 2015;
Kobyzev, Prince, and Brubaker 2020; Papamakarios et al.
2021) are a family of generative models with tractable
distributions where both sampling and density evaluation
can be efficient and exact. A NF is a flow-based model
with transformation T :X→Z, such that Z=TX, where
Z=[Z1, . . . , Zd]

T∈Rd represents the base random variable
of the flow-model with the base distribution PZ(Z) that
is usually a d-dimensional standard normal distribution for
computational convenience and ease of density estimation.
Hence the name normalizing flow. The defining properties
of T are, (i) T must be invertible with T−1 as the inverse
generative flow such that T−1:Z→X, and (ii) T and T−1
must be differentiable, i.e., T must be a d-dimensional dif-
feomorphism (Milnor and Weaver 1997). Under these prop-
erties, from the change of variables formula, we can express
the endogenous joint distribution PX(X) in terms of the as-
sumed base distribution PZ(Z) as

PX(X)=PZ(TX)|detJT (X)| . (4b)

Since calculating the joint density of PX(X) requires the
calculation of the determinant of the Jacobian of T with
respect to X, i.e., detJT (X), it is advantageous for com-
putational reasons to choose T to have an autoregressive
structure such that JT (X) is a lower-triangular matrix and
detJT (X) is just the product of the diagonal elements. Au-
toregressive Flows (AFs) (Kingma et al. 2016; Papamakar-
ios, Murray, and Pavlakou 2017; Huang et al. 2018) are NFs
that model autoregressive structure. AFs are composed of
two components, the transformer and the conditioner (Pa-
pamakarios et al. 2021). Under the assumption of a strictly

monotonic transformer, AFs are universal density estima-
tors (Huang et al. 2018). Of all the current AFs, Graphical
Normalizing Flows (GNFs) (Wehenkel and Louppe 2021)
facilitate the use a desired DAG representation as opposed
to an arbitrary autoregressive structure. For causal inference,
it is crucial that the DAG has a causal interpretation. In
this work, we assume the true causal-DAG G for the GNFs,
hence the term causal-GNFs (c-GNFs). In c-GNFs, we use
Unconstrained Monotonic Neural Network (UMNN) (We-
henkel and Louppe 2019), a strictly monotonic integration
based transformer with G for the graphical conditioner.

Since Markov equivalent DAGs induce equivalent factor-
izations of the observational joint distributions, GNFs that
use Markov equivalent DAGs represent the same observa-
tional joint distribution. This is problematic for causal and
counterfactual inference, as different GNFs may represent
different interventional joint distributions. In other words,
to perform causal inference as we do in this work, the GNF
needs to use causal-DAG G. Hence the name causal-GNF (c-
GNF). To appreciate this, consider the Causal Autoregres-
sive Flow (CAREFL) by Khemakhem et al. (2021). While
CAREFL uses AF, it is flawed as it considers all the prede-
cessors in the topological ordering, i.e., a Markov equivalent
DAG, when it should strictly be just the connoting parents/-
causes of the given node, i.e., the causal-DAG G. We present
an example of CAREFL’s flaw in our technical appendix,
which shows the conditions under which CAREFL fails in
counterfactual inference. Note that only a GNF with the true
causal-DAG G encapsulates the true SCM, thus satisfying
the modularity assumption, which is necessary for correct
causal and counterfactual inference. This is formalized as

X=FU=F (H(Z))=(FH)Z=F̃Z=T−1Z , (5)

where H:Z→U is an auxiliary transformation such that
Ui=hi(Zi) for i=1, . . . , d and H=[h1, . . . , hd]

T. It follows
from Eq. (5) that our c-GNF T−1=F̃=(FH) encapsulates
the true SCM F as T and T−1 both encode causal-DAG
G in the graphical conditioner, thus providing a way to in-
directly model F without making assumptions on U or the
functional causal mechanisms F or the auxiliary transforma-
tion H . This sets apart our c-GNFs from most other models
for causal inference. Fig. 1c shows the c-GNF architecture
for causal and counterfactual inference using T and T−1.

Training a c-GNF amounts to training the deep neural net-
works that parameterize the transformers and conditioners.
This is typically done by maximizing the log-likelihood of
the training dataset {X`}Ns

`=1, which is expressed as shown
below, by using Eq. (4b) for the summation term PX(X`; θ)

L(θ)=

Ns∑
`=1

logPX(X`; θ) (6)

where θ denotes the parameters of the deep neural networks
of the UMNN transformer and graphical conditioner, opti-
mized using stochastic gradient descent.

Gaussian Dequantization Trick NFs naturally model
continuous variables, yet in practice, social scientists and
others have to model both continuous and discrete vari-
ables, as treatments may be discrete categorical variables.
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Algorithm 1: Gaussian Dequantization and Quantization

1: procedure GAUSSIAN DEQUANTIZATION({D`}b`=1)
2: Generate D̃` ∼ N (µ = D`, σ2 = 1/36)

3: return Dequantized / continuous variables {D̃`}b`=1
4: end procedure
5: procedure QUANTIZATION({D̃`}b`=1)
6: D` = clamp(round(D̃`),min=0,max=N−1)
7: return Quantized / discrete variables {D`}b`=1
8: end procedure

Recently, discrete NFs have been an active field of research
including techniques ranging from simple uniform dequanti-
zation, Gumbel-max dequantization to complex variational
bound dequantization (Uria, Murray, and Larochelle 2013;
Hoogeboom et al. 2019; Tran et al. 2019; Ho et al. 2019;
Ziegler and Rush 2019; Ma et al. 2019; Nielsen and Winther
2020; Pawlowski, de Castro, and Glocker 2020). Motivated
by the Dirac-delta function from control theory, we pro-
pose and validate our novel Gaussian dequantization trick
(see Algorithm 1 for a discrete variable D with N classes/-
categories) to model discrete variables into NFs using the
fact that NFs are strongest in modeling Gaussian distribu-
tions seamlessly. We provide the exact motivation for the
Gaussian dequantization and other details in the technical
appendix.

Experiments, Results and Discussion
For our experiments and benchmarking, we simulate a vir-
tual social system using the 2-wave model shown in Fig. 1b.
We generated continuous covariates (C1, C2), binary treat-
ments (A1, A2) and a continuous outcome Y . To provide a
realistic sense to the virtual social system under our study,
(C1, C2) can denote the neighborhood contexts, e.g., the
parental income of the individual in the given neighbor-
hood, and (A1, A2) can represents neighborhood exposures,
e.g., rich/poor neighborhood, and Y can represent the to-
tal score obtained in high-school graduation examination.
Our aim is to analyse the neighborhood effects on the high-
school graduation. We use the following governing equa-
tions from Wodtke (2020) to simulate the dataset.

C1 ∼ N (µ=0, σ2=1) , (7a)
A1 ∼ Bern(p=Φ(0.4C1 + 2γ12C

2
1 )) , (7b)

C2 ∼ N (µ=0.4C1 + 0.2A1, σ
2=1) , (7c)

A2 ∼ Bern(p=Φ(0.2A1 + 0.4C2 + γ12A
2
1

+2γ12C2 + γ12C1A1/2)) , (7d)
Y ∼ N (µ=0.4(C1−µC1) +A1(0.2 + θ11C1)

+(C2−µC2
)(0.4 + γ21C1)

+A2(0.2 + θ21C1 + 0.1A1), σ2=1) , (7e)

where Φ is the standard normal cumulative distribution func-
tion, {θ11, θ21} are the parameters used to modify the mag-
nitude of the causal effect modification/heterogeneity, and
{γ12, γ21} are the parameter used to control the misspecifi-
cation of the treatment and outcome models.

In the work by Wodtke (2020), every experimental setting
is run for 10000 randomly seeded simulations with [500,
1000, 2000] training samples (typical for social science ex-
periments) in each simulation to report the mean (µλa1,a2

)
and standard-deviation (σλa1,a2

). However, in most practi-
cal cases, it is atypical to run deep neural networks for 10000
simulations and is limited between one to 10 in most prac-
tical deep learning applications. Hence, we run our experi-
ments with different samples sizes for five randomly seeded
simulations, using all the methods (IPW, RWR, GCOM and
c-GNF) and report the results pictorially in Fig. 2. Since
we run multiple simulations with multiple setting with c-
GNFs, we do not concentrate on hyperparameter selection
that is best for each simulation and simply use three fully-
connected layers with [20, 15, 10] hidden units for the
graphical conditioner and three fully-connected layers with
[15, 10, 5] hidden units for the monotonic UMNN trans-
former. We implement c-GNFs in Pytorch (Paszke et al.
2017) using GNF baseline code1 and AdamW (Loshchilov
and Hutter 2019) optimizer with learning-rate=1e−3 and a
batch-size of 128 (2GB of GPU memory) for all our experi-
ments. It is also our aim to evaluate the robustness of c-GNFs
in estimating the ACEs without any fine hyperparameters
selection using only the most basic/default settings. Since,
deep neural networks are prone to overfit, we split our data
into three train, validation and test sets in ratio 8:1:1. We
strictly use only the training set with [500, 2000, 4000000]
samples for training and use the held-out validation set for
early stopping to get the model with best validation loss.
We further validate the generalization of the best validation
loss model on the held-out test set. We simulate 2000 sam-
ples from every interventional distributions using c-GNFs to
evaluate E[Ya1,a2 ] to obtain Monte-Carlo estimates of ACEs
using Eqs. (1a)-(1c). Theoretically, a higher number of sam-
ples from the interventional distributions would provide bet-
ter Monte-Carlo estimates at an added computational cost.

Fig. 2 indicates the results for the following three exper-
imental settings: (i) Fig. 2a shows the results with both the
treatment and outcome models correctly specified without
heterogeneity in data. (ii) Fig. 2b shows the results with only
the treatment model correctly specified with heterogeneity in
data. (iii) Fig. 2c shows the results with both treatment and
outcome models misspecified with heterogeneity in data.
Under all three experimental settings, the true ACEs of inter-
est for the above 2-wave time-varying model λa1,a2 for the
binary treatments {A1:=a1, A2:=a2} are calculated from
Eqs. (1b)-(1c) as λ1,0=0.2−0=0.2, λ0,1=0.2−0=0.2, and
λ1,1=0.5−0.2=0.3 and denoted by green horizontal dotted
lines in Fig. 2. The red horizontal dotted line in Fig. 2 repre-
sents zero-ACE which can be considered as the critical point
due to the fact that zero-ACE indicates both the treatments to
have the same causal effect/outcome. Sometimes, it is more
important to accurately identify the sign of the ACE with
some acceptable tolerance in the magnitude of the ACE es-
timate as the sign is what determines the effectiveness of
the treatment, e.g., λ1,0>0 in Eq. (1a) indicates treatment
{A1:=1, A2:=0} is better than treatment {A1:=0, A2:=0}

1https://github.com/AWehenkel/Graphical-Normalizing-Flows
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Figure 2: (a) {θ11=θ21=0, γ21=γ12=0}. (b) {θ11=θ21=0.2, γ21=0.4, γ12=0}. (c) {θ11=θ21=0.2, γ21=γ12=0.4}.

in expectation, and vice-versa if λ1,0<0. It is of primary im-
portance to identify which treatment is better and of sec-
ondary importance to identify by what amount the treatment
is better, in expectation. In Fig. 2, the box-plots indicate
µ, µ±σ, µ±3σ values for all λa1,a2 to provide an idea of
the variance of the estimates. Observe that in all the plots,
c-GNF does not include the zero-ACE in µ±σ range indi-
cating that c-GNF does not introduce ambiguity in the selec-
tion of best treatment, in expectation, unlike IPW, RWR and
GCOM. This non-ambiguity is a desired quality from any
causal effect estimation methods used in decision-making.

In Fig. 2a, we see that all the models perform equally
well under no model misspecification and effect modifica-
tion/heterogeneity in data. However increasing the complex-
ity by adding outcome model misspecification and data het-
erogeneity in Fig. 2b, we see that the regression based out-
come methods not assuming the right functional forms, i.e.,
GCOM and RWR, result in biased estimates in both small
and large samples. GCOM THETA in Fig. 2 refers correct-
ing GCOM by specifying the true functional form manu-
ally or parameterizing the model by a deep neural network
as in the case of meta-learners to result in unbiased esti-
mates. Hence, we see that GCOM THETA performs better
than GCOM due to the correction. Similarly, since the treat-
ment model is rightly specified, IPW estimates are unbiased.
In contrast to Figs. 2a and 2b, Fig. 2c indicates the treatment
model is misspecified as well. With the treatment model mis-
specified, IPW no longer results in unbiased estimates. From
Fig. 2, we show that in small-sample size regime, c-GNF re-
sults in unbiased estimates with comparable variance. We
can still do better in terms of variance by appropriate se-
lection of the deep neural networks as a part of the hyper-
parameter tuning, which is not our aim. A real-world ap-
plication of c-GNF on a large-scale non-randomized obser-
vational study to analyse the impact of IMF (International
Monetary Fund) program on the child poverty is conducted
in Balgi, Peña, and Daoud (2022) that observes an effec-

tive reduction of child poverty by 1.2±0.24 degrees in the
Global-South, thus indicating the beneficial nature of IMF
program on child poverty reduction.

Counterfactual Inference
Apart from the benefits of ACE estimates with small bias
and variance compared to standard statistical methods, c-
GNF provides the unique benefit of counterfactual inference
using ‘The First Law of Causal Inference’ (Pearl 2009a,b;
Pearl and Mackenzie 2018), which is virtually non-existent
in IPW/RWR/GCOM. ‘The First Law of Causal Inference’
essentially provides a framework to identify the unit level
potential outcomes using SCM, thereby addressing the fun-
damental missing value problem of counterfactual inference.
This law to identify the missing/unseen potential outcome
Ya1,a2 for a unit Z` is represented mathematically as

Ya1,a2(Z`)=YF̃a1,a2
(Z`) , (8)

where Ya1,a2(Z`) denotes the potential outcome Y under the
treatments {Aj :=aj}2j=1 for a given unit individual Z` that
is fundamentally missing and is of interest for counterfactual
inference, and YF̃a1,a2

(Z`) represents the actual outcome Y

observed from the mutilated-SCM F̃a1,a2 that is obtained by
the mutilation {Aj :=aj}2j=1 on the encapsulated-SCM F̃ .
Essentially, this law involves three steps that help identify
the missing potential outcomes, thereby addressing the fun-
damental missing value problem of causal inference.

1. Abduction: For a given observed unit-individual evi-
dence X`, the respective exogenous SCM noise Z` corre-
sponding to X` is recovered from the encapsulated-SCM
F̃ . In case of c-GNF, we have Z`=TX`=F̃−1X` where
the encapsulated-SCM noise Z` indicates the unique hid-
den essence/identifier/DNA of the `th unit-individual with
observed evidence X`.

2. Action: The action or intervention (in our case a pub-
lic policy) corresponding to the desired treatment is con-
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(a)

(b) (c)

Figure 3: (a) The red and green surface-plots respectively
represent the potential outcome maps of true SCM F and
our encapsulated-SCM F̃ generated from the SCM noise
ranges ZC1

∈[−3, 3], ZC2
∈[−3, 3], ZY =0. (b, c) Confusion

matrices between the true and predicted optimal person-
alised policy on unseen validation and test sets respectively
(with model under no misspecification setting from Fig. 2a).

ducted in the form of mutilating the corresponding structural
equation of the treatment {Aj :=aj}2j=1 in F̃ (modularity as-
sumption) resulting in the mutilated-SCM F̃a1,a2 .

3. Prediction: The recovered noises Z` from abduc-
tion are re-propagated through F̃a1,a2 and the outcomes
YF̃a1,a2

(Z`) observed are nothing but the potential outcomes
Ya1,a2(Z`) we were interested to begin with.

The potential outcome maps in Fig. 3a are gen-
erated using the three steps of counterfactual infer-
ence with c-GNF, i.e., encapsulated-SCM and the noises
ZC1
∈[−3, 3], ZC2

∈[−3, 3], ZY =0 to observe the effect of
C1 and C2 on Y . Due to the linear nature of the structural
equation in Eq. (7e) under no model misspecification setting,
the true potential outcome maps are represented by the flat
hyperplanes in Fig. 3a (red). Observe that around the corners
of the green 3D surface-plots which represents the low likeli-

hood region of observing samples, the extrapolation assump-
tion is slightly violated as the observational data correspond-
ing to these regions are likely missing in the training set due
to low likelihood. Extrapolation is an inevitable assumption
made in almost all statistical models which is almost always
violated under practical finite data setting. True extrapola-
tion can be attained only with infinite data, which is imprac-
tical and unrealistic. In the technical appendix, we further
present the same set of plots as in Fig. 3 under the complex
experimental setting when both the models are misspecified
and also the data exhibits effect modification/heterogeneity.

The confusion matrices from unseen validation and test
sets in Figs. 3b and 3c indicate the true and predicted opti-
mal individual-level treatment/policy ā`1, ā

`
2 for the `th indi-

vidual X`, which is predicted as below from Eq. (8)

ā`1, ā
`
2= argmax

a1,a2

Ya1,a2(TX`) . (9)

Using c-GNF, we observe that the optimal treatments are
indeed predicted with a very high accuracy of 99.6% on un-
seen validation and test sets under no-misspecification and
no effect modification/heterogeneity in data. Similarly, un-
der both model misspecifications we obtain 91% accuracy
even with our sub-optimal hyperparameters. Thus, c-GNF
enables precise P3A targeting and articulation of the tailored
treatments/policies in the social sciences, instead of relying
on ‘one-size-fits-all’ sub-optimal treatments/policies.

Finally, our c-GNF not only model the encapsulation of
the true SCM, but also offer exact density estimation which
provides necessary tools for causal inference practitioners
to identify other causal quantities such as the probabilities
of causation (Pearl 1999, 2009b), i.e., Probability of Neces-
sity (PN), Probability of Sufficiency (PS), Probability of Ne-
cessity and Sufficiency (PNS), Probability of Disablement
(PD), Probability of Enablement (PE), that are of utmost im-
portance to policy-makers planning various social programs.

Conclusion
This article developed causal-Graphical Normalizing Flow
(c-GNF) for personalized public policy analysis (P3A). We
demonstrated that our c-GNF learnt using only observational
data without any assumptions on the exogenous noises or the
functional mechanisms of the underlying SCM.We further
identified c-GNF is on/above-par well-established standard
causal effect estimation methods such as IPW and RWR.
Most importantly, in contrast to IPW and RWR, using sim-
ulation experiments, we demonstrated the unique benefit of
counterfactual inference using ‘The First Law of Causal In-
ference’ with c-GNF. Although our simulation study might
be perceived as a limitation, the strong benchmarking of
c-GNF on the simulated dataset demonstrated the usabil-
ity of our framework with real-world data. The counterfac-
tual inference demonstrated with c-GNFs showed potential
to identify the optimal treatments at an individual-level, en-
abling precise P3A. When successful, P3A will likely accel-
erate the use of individualized policies beyond the closed
settings of medical applications and into the open settings of
the social science.
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