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Abstract

Multilingual neural machine translation architectures mainly
differ in the number of sharing modules and parameters ap-
plied among languages. In this paper, and from an algorith-
mic perspective, we explore whether the chosen architecture,
when trained with the same data, influences the level of gen-
der bias. Experiments conducted in three language pairs show
that language-specific encoder-decoders exhibit less bias than
the shared architecture. We propose two methods for inter-
preting and studying gender bias in machine translation based
on source embeddings and attention. Our analysis shows that,
in the language-specific case, the embeddings encode more
gender information, and their attention is more diverted. Both
behaviors help in mitigating gender bias.

Introduction
Machine translation has been shown to exhibit gender bias
(Prates, Avelar, and Lamb 2020), and several solutions have
already been proposed to mitigate this bias (Kuczmarski and
Johnson 2018; Font and Costa-jussà 2019; Costa-jussà and
de Jorge 2020). The general gender bias in natural language
processing (NLP) has been mainly attributed to data (Costa-
jussà 2019). Several studies demonstrate the pervasiveness
of stereotypes found in book collections (Madaan et al.
2018b) or Bollywood films (Madaan et al. 2018a), among
many other mediums. As a consequence, our systems trained
on these data exhibit biases. Among other strategies, several
studies have proposed using data augmentation to balance
data (Zmigrod et al. 2019) or force gender-balanced datasets
(Webster et al. 2018; Costa-jussà, Li Lin, and España-Bonet
2020). However, data are not the only sources of such bi-
ases, and recent studies show that our models can be trained
in a robust way to reduce the effects of data correlations
(e.g., stereotypes, among others). In (Webster et al. 2020),
the authors explore available mitigations and find increasing
dropout to improve how their models reasoned about dif-
ferent stereotypes in WinoGender examples (Rudinger et al.
2018).

The purpose of the current paper is to explore whether
the multilingual neural machine translation (MNMT) ar-
chitecture can impact the degree of gender bias. To an-
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swer this question, we compare two prominent and con-
strastive MNMT architectures trained with the same data
and quantify their levels of gender bias to those of the
standard WinoMT evaluation benchmark (Stanovsky, Smith,
and Zettlemoyer 2019). The results show that the language-
specific encoders-decoders (Escolano et al. 2021) exhibit
less bias than the shared encoder-decoder (Johnson et al.
2017).

Then, we propose two new methods to interpret gender
bias in NMT. These methods allow us to understand why the
choice of the MNMT architecture mitigates or amplifies this
bias. First, we study the amount of gender information that
the source embeddings encode, and we find that language-
specific architecture surpasses shared architecture in these
terms, allowing for a better prediction of gender. Second,
taking advantage of the fact that both shared and language-
specific systems are based on the Transformer (Vaswani
et al. 2017), we visualize the attention span (Kobayashi et al.
2020) and it is narrower for the shared system than for the
language-specific system. Therefore, the considered context
is smaller for the shared system, resulting in more gender
bias.

Finally, we perform a manual analysis to investigate
which biases have a linguistic explanation.

Background: Multilingual Architectures and
Gender Bias Evaluation

In this section, we briefly describe the MNMT architec-
tures that we explore. Most NMT architectures are based on
the Transformer (Vaswani et al. 2017) which is an encoder-
decoder architecture. In this context, the source sentence is
encoded into hidden state vectors, whereas the decoder pre-
dicts the target sentence using the last representation of the
encoder. In previous architectures, LSTMs, using the atten-
tion mechanism during decoding (Bahdanau, Cho, and Ben-
gio 2015), the attention is applied to parts of the encoder’s
hidden states combined with the current hidden states of
the decoder to predict the next target word. In this way,
LSTM can memorize dependencies. However, the structure
of LSTM leads to sequential processing problems, making it
difficult to deal with a large context. On the other hand, the
Transformer utilizes multihead attention in different ways:
encoder self-attention, decoder self-attention, and decoder-
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encoder attention. Positional embeddings are applied to both
the encoder and decoder to keep information about the se-
quential order. This substitutes the recurrent operations in
LSTM, and no sequential processing is needed. These two
architectures have been deeply compared in the past (Lakew,
Cettolo, and Federico 2018), but not at the level of gender
bias accuracy. Based on this bilingual Transformer, there are
several alternatives to extend it to a multilingual system.

Bilingual Encoder-Decoder First NMT approach (Bah-
danau, Cho, and Bengio 2015; Vaswani et al. 2017) and the
most common NMT scenario. Bilingual models are trained
on a single translation task between a single source and tar-
get language. During this work, we will refer to this ap-
proach as a reference, as these architectures devote the entire
representation capacity of the model to a single task, captur-
ing specific features and correlations of the language pair.

Shared Encoder-Decoder Johnson et al. (2017) trained a
single encoder and decoder with multiple input and output
languages. Given a language set, a shared architecture has a
universal encoder and decoder fed with all initial language
pairs at once. The model shares vocabulary and parameters
among languages to ensure that no additional ambiguity is
introduced in the representation. By sharing a single model
across all languages, the system can represent all languages
in a single space. This allows translation between language
pairs never seen during the training process, which is known
as zero-shot translation.

Language-Specific Encoders-Decoders Architectures of
this category may vary from sharing some layers (Firat et al.
2017; Lu et al. 2018) to no sharing at all (Escolano et al.
2021). This paper uses the latter approach since it is the most
contrastive to the shared encoder-decoder. The language-
specific (with no sharing) approach involves training inde-
pendent encoders and decoders for each language. In con-
trast to standard pairwise training, in this case, there is only
one encoder and one decoder for each language. Since pa-
rameters are not shared, this joint training enables new lan-
guages without the need to retrain the existing modules,
which is a clear advantage relative to the previously shared
encoder-decoder.

WinoMT: Gender Bias Evaluation WinoMT
(Stanovsky, Smith, and Zettlemoyer 2019) was the
first challenge test set used to evaluate gender bias in MT
systems. The test set consists of 3888 sentences. On the
one hand, the test set is distributed with 1826 male sen-
tences, 1822 female sentences and 240 neutral sentences.
On the other hand, the test set is distributed with 1584
antistereotype sentences, 1584 prostereotype sentences,
and 720 neutral sentences. Each sentence contains two
personal entities where one is a coreferent to a pronoun and
a golden gender is specified for this entity. An example of
the antistereotype sentences is as follows:

”The developer argued with the designer because she
did not like the design.”

She refers to the developer. Developer is considered the
golden entity with female set as the gender. The same sen-

tence would be a prostereotype sentence if she were replaced
with he, referring to the developer as a masculine word. The
evaluation depends on comparing the translated entity with
the specified gender of the golden entity to the correctly gen-
dered translation. Three metrics are used for assessment: ac-
curacy (Acc.), ∆G and ∆S. Accuracy is measured as the
correctly inflected entities compared to their original golden
gender. ∆G is the difference between the correctly inflected
masculine and feminine entities. ∆S is the difference be-
tween the inflected genders of the prostereotype and an-
tistereotype entities. Saunders and Byrne (2020) also pro-
pose M:F, which is the ratio of hypotheses with masculine
predictions to those with feminine predictions. ∆S can be
skewed in low-accuracy systems, thus M:F would be eas-
ier to interpret. Ideally the absolute values of ∆S and ∆G
should be closer to 0, and M:F should be closer to 1.

Proposed Interpretability Methods
While gender bias evaluation (Stanovsky, Smith, and Zettle-
moyer 2019) allows us to quantify the amount of bias, we
want to further understand the presence of bias in our archi-
tectures. For this, we propose the following methodologies.

Gender Information in Source Embeddings Studying
how source contextual embeddings codify gender informa-
tion can promote understanding about how gender is pre-
dicted in translations. Previous works (Basta, Costa-jussà,
and Casas 2019) have used a classification approach to ver-
ify that embeddings contain gender information in English
neutral occupations. While Basta, Costa-jussà and Casas
(Basta, Costa-jussà, and Casas 2019) find that embeddings
are biased, in our case, encoding information of gender in
embeddings is used to appropriately predict gender. For this
analysis, we use the measure of classification, which uses
embeddings to train an SVM and classify occupations into
three groups, male, female and neutral. Analysis is per-
formed on occupations as words associated with gender
stereotypes and over the preceding determiner (The) to the
occupation as a measure of gender information in embed-
dings.

Attention Vector-Norm Distributions We can observe
how much focus is given to each source token when pre-
dicting a gendered word. This can help interpret the re-
sults for gender accuracy by knowing the source words
that influence the translation. For each decoding step t,
the encoder-decoder attention mechanism computes a vec-
tor representation attnt based on the encoder output vectors
h = {h1, · · · , h|x|} and the previous decoder layer repre-
sentation attn∗t . These inputs are linearly transformed by
learnable matrices WK ,WV and WQ to obtain K (keys),
V (values) and qt (query) respectively (Figure 1). A score
function, usually the dot product, measures the similarity
between keys and queries generating a distribution of (atten-
tion) weights αt over the probability simplex. These com-
putations are performed through multiple heads in a parallel
fashion, where each matrix learns different projections. For
each head, a weighted sum of the values is computed zt be-
fore concatenating across every head and projecting through
WO. Typically, attention weights have been considered to
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give the relative importance of each input token (source to-
ken in our case) to the model prediction. Although its use as
an interpretability method has been criticized (Jain and Wal-
lace 2019; Serrano and Smith 2019; Pruthi et al. 2020), us-
ing also the Euclidean norms of the vectors computed across
each attention head (Kobayashi et al. 2020), the attention
vector-norms method from now on, has been proven to be
more effective. In this work, we analyze the distributions of
the attention vector-norms in the alignment layer to measure
the relative contribution of each word of the source sentence
to the model output.

Figure 1: Encoder-decoder attention module of a single
head.

The operations performed in the attention module can be
described as:

attnt =

 |x|∑
i=1

αt,i(hiW
V )

WO

Renaming (hiW
V )WO as f(hi) we get:

attnt =

|x|∑
i=1

αt,if(hi)

Essentially, attnt can be understood as a weighted sum of
the transformed vectors f(hi). Then, ||αt,if(hi)|| is used
as a measure of the contribution to attnt and hence as the
amount of attention given to the i-th token. By determin-
ing how much attention is given to each of the input se-
quence tokens we can draw conclusions about the decoder’s
decision-making process. Attention weights, together with
vector norms analysis, have been demonstrated to be suc-
cessful in measuring the contribution of each input token

when predicting a target word while taking the input word
with the maximum contribution in the word alignment task,
performing similarly to specialized word aligners such as
fast align (Dyer, Chahuneau, and Smith 2013) and GIZA++
(Och and Ney 2003).

Experimental Framework
In this section, we report the details of the experiments in-
cluding the data and training architecture and parameters. In
addition, we report the results in terms of translation quality
and gender accuracy.

Data and Parameters Experiments are performed on Eu-
roParl data (Koehn 2005) for English, German, Spanish and
French with parallel sentences among all combinations of
these four languages and with approximately 2 million sen-
tences per language pair. Systems are trained with English,
German, Spanish, and French with parallel sentences among
all four languages. We also build pairwise bilingual sys-
tems (based on the Transformer) on the corresponding lan-
guage pair data. This bilingual model is trained for a partic-
ular pair of languages in one single direction. For example,
the English-to-Spanish bilingual model is trained with En-
glish as the source and Spanish as the target language with-
out any additional data. As validation and test sets, we use
newstest2012 and newstest2013 from WMT1. All data were
preprocessed using standard Moses scripts (Koehn et al.
2007). We report gender bias evaluation using WinoMT. Ex-
periments are performed using the approach provided by
Fairseq2. We use 6 layers, each with 8 attention heads, an
embedding size of 512 dimensions, and a vocabulary size
of 32k subword tokens with byte pair encoding (Sennrich,
Haddow, and Birch 2016) (per pair). Dropout is set as 0.3
and trained with an effective batch size of 32k tokens for ap-
proximately 200k updates using the validation loss for early
stopping. We use Adam (Kingma and Ba 2014) as the opti-
mizer, with a learning rate of 0.001 and 4000 warmup steps.

Results Table 1 reports the results in terms of BLEU and
gender accuracy for the architectures described in the back-
ground section about multilingual architectures. When com-
paring bilingual vs. multilingual architecture, and consis-
tently with previous studies (Johnson et al. 2017), multilin-
gual systems improve bilingual systems in terms of transla-
tion quality. However, we cannot conclude the same in terms
of gender accuracy. The multilingual architecture improves
the bilingual architecture for two of the three language pairs,
in terms of gender accuracy and ∆S. Regarding the rest of
gender measures, the bilingual system tends to be better, es-
pecially for M:F.

When comparing the multilingual architectures, we ob-
serve that the language-specific architecture shows consis-
tent gains in terms of BLEU of approximately 0.4-3.6%.
Such superiority of the language-specific system is main-
tained in terms of gender accuracy. When comparing ∆G
and M:F values, the conclusions are similar, with the
language-specific system showing gains of up to 6% and

1http://www.statmt.org
2Release v0.6.0 available at https://github.com/pytorch/fairseq
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Language Set en,de,es,fr
Lang System BLEU↑ Acc↑ ∆G↓ ∆S↓ M:F ↓
ende bil 21.61 64.10 5.7 8.30 1.84

shared 21.39 53.86 23.59 8.33 3.87
lang-spec 22.01 56.28 17.45 7.83 2.92

enes bil 25.82 46.00 22.90 2.40 3.13
shared 28.08 51.67 24.77 5.49 4.09
lang-spec 29.53 54.19 20.73 7.64 3.66

enfr bil 26.73 42.18 21.59 14.16 2.67
shared 28.43 45.55 24.99 0.06 3.88
lang-spec 29.74 45.81 28.45 5.64 4.63

Table 1: Results in terms of BLEU and Gender Accuracy: Bilingual (bil), Shared (shared) and Language-Specific (lang-spec).
In bold, best global results. Underlined, best results between multilingual systems.

clearly superior in 2 out of 3 language pairs. Note that
since WinoMT is divided into 46,97% male, 46,86% fe-
male and 6.17% neutral cohorts, 46% accuracy can be eas-
ily achieved by predicting the same gender most of the time.
For the shared architecture, we observe that the high ∆G
is explained by having a strong preference for predicting
male gender. Regarding ∆S, the results tend to be better
for the shared architecture. These differences in ∆S are at-
tributable to the fact that the accuracy of the shared system,
for both pro- and anti-stereotypical occupations, is much
lower than the language-specific system, which derives from
fewer differences. Overall, we can conclude that gender ac-
curacy is much stronger for language-specific architecture.
As an intuitive explanation for these results is that the shared
model representation capabilities are conditioned by sharing
the same set of parameters between all supported languages.
While this can be beneficial to learn better crosslingual map-
pings, it also leads to discarding language-specific features,
such as gender representation. The next section provides
more light to explain these results.

Interpretability Analysis
In this section, we detail the interpretability analysis of the
gender accuracy results that we have obtained in the previ-
ous section.

Gender information in source embeddings We study
source embeddings and attention vector-norms.We choose
two word types for source embeddings classification by us-
ing the information provided by WinoMT to measure how
gender information is reflected in their contextual embed-
dings, determiners (The) and occupations. The first category
is initially neutral, as it is equally employed in all categories.
Therefore, all gender information present in these embed-
dings must come from the context of the sentence. For each
system and word type, we train an SVM (Cortes and Vapnik
1995) classifier with a radial basis function kernel on 1000
randomly selected sentences from WinoMT and test the re-
maining 2888 sentences from the set. Words are represented
as their first subword in case they are split in the vocabulary.
We performed 10 independent experiments to guarantee the
randomization of token representations. Achieving more ac-
curacy in the classification results means that more informa-

tion on gender is encoded in the source embeddings. Figure
2 shows the results for this classification for all bilingual and
multilingual systems (from left to right) for both determiners
and occupations.

Figure 2: Classification Results, from left to right: bilingual
(English-to-German/Spanish/French), shared and language-
specific. Determiner in light, occupations in dark.

Bilingual systems show that the target language substan-
tially impacts the amount of gender information encoded
the contextual representations. While the translation results
are similar between all language pairs, the English-German
system outperforms by a significant margin (30%) all other
pairs even when trained on the same domain and using simi-
lar training set sizes. These results correlate with the gender
accuracy illustrated in Table 1 showing that the systems that
encode more gender information on their contextual repre-
sentations produce more accurate gender translations.

When comparing multilingual systems, we find that the
language-specific approach outperforms the shared method
on both determiners and occupations, demonstrating the
inclusion of more gender information. For all cases, the
amount of gender information encoded in the embeddings
correlates with gender accuracy in translation.

Table 2 reports the list of the 10 most common misclas-
sified occupations by our classifier. We report in italics the
errors in common with the manual evaluation, reported later
in this paper. We observe that there is a great proportion of
errors that coincide both in classification and in translation.
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Figure 3: Attention matrix for bilingual, shared and language-specific models (layer 5). Each row corresponds to the attention
vector-norm distribution of each source token when predicting the Spanish token.

determiners professions
mechanic mechanic
cleaner cleaner
baker baker
receptionist clerk
nurse nurse
carpenter carpenter
hairdresser hairdresser
librarian librarian
physician chief
janitor guard

Table 2: List of the 10 most common misclassified occupa-
tions by the SVM models trained with determiners and pro-
fessions. In italics, the errors in common with the manual
evaluation.

Diversion of attention Figure 3 shows differences in the
attention spread throughout the input sequence among the
different models (for English-Spanish language pair) for a
particular example. In the example of Figure 3, the Chief
should be translated as la jefa. When looking at the way at-
tention is given to each source token, we can see that in the

case of the bilingual model there is a high dependency on the
source determiner. Considering that for this bilingual model,
the determiner embedding has been shown to encode little
gender information (see Figure 2), concentrating attention
does not help in predicting the translated gender correctly.

Since every source sentence follows the example struc-
ture from Figure 4, we show (in Figure 5) the attention
proportion given to each source input sentence part when
predicting the gendered target determiner (t = 0). More
formally, we compute the proportion of attention given to
the source determiner as ||α0,0f(h0)||∑|x|

i=0 ||α0,if(hi)||
, to the occupa-

tion as ||α0,1f(h1)||∑|x|
i=0 ||α0,if(hi)||

, and to the rest of the sentence as∑|x|
i=3 ||α0,if(hi)||∑|x|
i=0 ||α0,if(hi)||

. We can observe in Figure 5 that the pat-

tern from Figure 3 is repeated across multiple (100) random
samples.

When comparing the multilingual systems, we observe
that the language-specific system relies more on the rest
of the sentence tokens while the shared relies more on the
source determiner and occupation. Again, this focus on the
determiner and occupation is detrimental for the shared sys-
tem because these tokens contain little information about
gender (Figure 2). Studying the attention spans helps in in-
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determiner

The

occupation

developer

rest of sentence

argued with the designer because she did not like the design.

Figure 4: Example structure from WinoMT.

Figure 5: Proportion of attention given to the source determiner, profession and rest of sentence when predicting the gendered
target determiner.

terpreting the amount of gender bias.

Discussion. The amount of gender information encoded
on source contextual embeddings has a significant impact
on gender generation. Learning more informative encoder
representations on condition generation in a broader set of
source tokens (i.e., diverse attention) helps improve gender
generation quality. Note that the test set has sentences such
as “The developer argued with the designer because she did
not like the design”. In this sentence, the decoder can obtain
the gender information both from a gender-informed embed-
ding from developer and from the pronoun she when having
diverse attention to the original sentence.

Manual Analysis
In this section, we perform a manual analysis of occupa-
tion errors across languages. Previous works (Lewis and
Lupyan 2020) demonstrate that culture greatly impacts the
forms of career-gender terms where older populations tend
to show stronger associations between career and gender.
Such an impact affects male/female representations in the
data (Madaan et al. 2018b) where some occupations are
represented with the masculine form only or a higher pro-
portion of males is represented. Figure 6 shows that mis-
translated occupations vary from one language to another.
Our study covers occupations incorrectly predicted in 35%3

of the sentences that contained them in bilingual, shared
and language-specific systems. In what follows, we offer a

3This was a trade-off between the percentage of errors and num-
ber of sentences enabling us to perform a manual analysis

nonexhaustive explanation covering an appropriate explana-
tion of the errors shown in Figure 6.

developer
driver

sheriff

construction-
worker

clerk

supervisor

guard

nurse

French
Spanish

German

CEO

physician

lawyer

cook

carpenter

analyst

auditor

designer

editor

farmer

janitor

mover

hairdresser

baker

analyst

house-keeper

laborer

librarian
salesperson

secretary
tailor

receptionist

teacher

writer

Figure 6: Misclassified occupations in terms of gender. Bold
words are mistranslated from male to female, while others
are mistranslated from female to male.

In bold we show the occupations that are wrongly pre-
dicted to female, whereas the rest are occupations that are
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wrongly predicted to male. We observe that most errors
come from associating occupations with males rather than
females. This may be because of having a higher male repre-
sentation in our data (Madaan et al. 2018b). This conclusion
is consistent with previous studies (Stanovsky, Smith, and
Zettlemoyer 2019). Moreover, we see that the occurrences
that are incorrectly translated vary with the language. How-
ever, when comparing Romance languages (Spanish and
French) common errors in occupations increase. We try to
come up with some linguistic/cultural explanation of why
we are obtaining these common errors.

Regarding German errors, nurses tend to be assigned the
feminine form (Krankenschwester = sick + sister), which
is mostly used in everyday language. The masculine form is
Pfleger/Krankenpfleger, which presents the barely used fem-
inine form Pflegerin/Krankenpflegerin.

When comparing Romance languages (Spanish and
French), standard errors in occupations increase. Because
the default gender in Spanish and French was masculine
in the past (Frank et al. 2004), such errors relate to lin-
guistics and culture together. In French culture, mascu-
line forms are predominantly used as gender neutral, and
only the article may vary for some occupations, such as
présidente/président (CEO), even in cases where the fem-
inine form exists. Thus, some speakers say e.g., madame
LE président, even if the feminine version madame LA
présidente is the correct form. In the case of analyst, the
French translation is neutral analyste and gender is deter-
mined by the article, but the gender of the article is missed
by the apostrophe l’analyste. This can help us explain some
errors observed, such as the translation of the word (clerk),
as the clerk’s role was historically assigned to males. Con-
sequently, both languages have only the masculine form, al-
though suitable feminine/masculine translations would be
possible. Moreover, some words have the same form for
both genders, such as sheriff, where only the article differs.
An interesting example of a feminine mistranslation is the
word guard. In the French and Spanish culture, the guard (le
garde/la guardia) has feminine morphological gender and
there is a popular French expression ”mise en garde” which
leads to higher feminine representations of guard in the cor-
pus.

Conclusions
This paper proposes two methods to interpret gender bias
in NMT. By using them, we can understand why the
MNMT architecture has an impact on gender accuracy. The
language-specific model outperforms the shared model.

Our interpretability analysis shows that source embed-
dings in the language-specific architecture retain more in-
formation on gender and it maintains more diversion in at-
tention. The combination of both elements are a useful in-
terpretability tool in the context of NMT. Finally, a manual
analysis shows that most of the errors are made by assuming
a masculine occupation instead of a feminine occupation. In
contrast, inverse error tends to occur when there is a femi-
nine version of a given word with another meaning.

Our conclusions are supported by the performance of
the systems in the synthetic benchmark of WinoMT. Re-

cently, Blodgett et al. (2021) pointed out the downsides of
this benchmark, including unnaturalness and logical fail-
ures, among others. We agree that our conclusions could
slightly be affected by these patterns, so as future work,
we are working on providing real-world data benchmarks
(Costa-jussà, Lin, and España-Bonet 2019; Levy, Lazar, and
Stanovsky 2021) to evaluate gender accuracy in MT sys-
tems. In addition, we want to experiment which are the con-
clusions on more distant language pairs.

Impact Statement Bias tends to be attributed to data
(Costa-jussà 2019). Our work shows that algorithms am-
plify this bias. This conclusion can be taken into account in
research/deployment by systematically evaluating our algo-
rithms in terms of bias. We provide new tools to understand
the bias in our algorithms.
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