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Abstract

With widening deployments of natural language processing
(NLP) in daily life, inherited social biases from NLP mod-
els have become more severe and problematic. Previous stud-
ies have shown that word embeddings trained on human-
generated corpora have strong gender biases that can pro-
duce discriminative results in downstream tasks. Previous de-
biasing methods focus mainly on modeling bias and only
implicitly consider semantic information while completely
overlooking the complex underlying causal structure among
bias and semantic components. To address these issues, we
propose a novel methodology that leverages a causal in-
ference framework to effectively remove gender bias. The
proposed method allows us to construct and analyze the
complex causal mechanisms facilitating gender information
flow while retaining oracle semantic information within word
embeddings. Our comprehensive experiments show that the
proposed method achieves state-of-the-art results in gender-
debiasing tasks. In addition, our methods yield better per-
formance in word similarity evaluation and various extrinsic
downstream NLP tasks.

Introduction
Word embeddings are dense vector representations of words
trained from human-generated corpora (Mikolov et al. 2013;
Pennington, Socher, and Manning 2014). Word embeddings
have become an essential part of natural language process-
ing (NLP). However, it has been shown that stereotypical
bias can be passed from human-generated corpora to word
embeddings (Caliskan, Bryson, and Narayanan 2017; Garg
et al. 2018; Zhao et al. 2019).

With wide applications of NLP systems to real life, biased
word embeddings have the potential to aggravate and possi-
bly cause serious social problems. For example, translating
‘He is a nurse’ to Hungarian and back to English results in
‘She is a nurse’ (Douglas 2017). In word analogy tasks ap-
pears in Bolukbasi et al. (2016), wherein

−→
she is closer to

−−−→nurse than
−→
he is to

−−−→
doctor. Zhao et al. (2018) shows that
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biased embeddings can lead to gender-biased identification
outcomes in co-reference resolution systems.

Current studies on word embedding bias reductions can
be divided into two camps: word vector learning methods
(Zhao et al. 2018) and post-processing algorithms (Boluk-
basi et al. 2016; Kaneko and Bollegala 2019). Word vec-
tor learning methods are time-consuming and suffer from
the high computational cost required to train word embed-
dings from scratch. To overcome these limitations, post-
processing algorithms have emerged as popular alternatives.
Yang and Feng (2020), for example, proposes a simple and
efficient algorithm that projects embeddings into a space that
is orthogonal to gender-specific words such as mother and
father and is successful in reducing gender bias.

However, the critical issue of using gender-specific word
vectors remains: information on gender and semantics en-
tangled within these words. For example, the gendered word
pair bride and bridegroom exhibits gender information as
well as semantic information pertaining to weddings. There-
fore, eliminating gender information through pairs of gen-
dered words such as policeman and policewoman also elimi-
nates intrinsic semantic information: this is clearly not ideal.

As a solution, we propose utilizing the differences be-
tween vectors corresponding to paired gender-specific words
to better eliminate gender bias while retaining important se-
mantic information. These differences are between embed-
ded vectors for male- and female-gendered words, such as
−−−→
father−

−−−−→
mother or

−−−−−−−→
bridegroom−

−−→
bride. As a motivating ex-

ample1, Table 1 demonstrates that this simple change from
gender-specific word vectors to the differences between
word-pair vectors indeed retains more semantic information
than the state-of-the-art post-processing framework (Yang
and Feng 2020).

In this paper, we propose novel causal frameworks for re-
ducing bias in word embeddings while maximally preserv-
ing semantic and lexical information. Our contributions are
summarized as follows.

• We develop two causal inference frameworks for reduc-
ing biases in word embeddings that improve upon exist-
ing state-of-the-art methods.

1Please refer to the appendix for detail explanation
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Task 1
Wedding

Task 2
Service

Task 3
Family

Task 4
Religion

Oracle 11.22 (0.2) 9.96 (0.11) 13.51 (0.3) 20.27 (0.3)
DeSIP 7.01 (0.15) 6.67 (0.10) 10.69 (0.25) 13.59 (0.25)

HSR 4.34 (0.14) 5.61 (0.10) 8.90 (0.22) 9.85 (0.20)

Win 100.00% 99.00% 100.00 % 100.00%

Table 1: Semantic information preservation experiment.

• We find an intuitive and effective way to better represent
gender-related information that needs to be removed and
use this approach to achieve oracle-like semantic and lex-
ical information retention.

• We show that our methods outperform other state-of-the-
art debiasing methods in various downstream NLP tasks.

The rest of this paper is organized as follows. We first
present a thorough review of current studies on word em-
bedding bias evaluation and debiasing algorithms. We then
define two types of bias and propose frameworks for dealing
with each. The comprehensive experimental results on a se-
ries of gender bias evaluation and semantic evaluation tasks
demonstrate the effectiveness of our proposed methods.

Related Works
Quantifying Gender Bias
Numerous studies have demonstrated that word embeddings
trained by human-generated corpora exhibit human stereo-
type bias. Caliskan, Bryson, and Narayanan (2017) devel-
ops the Word Embedding Association Test (WEAT) as an
analogue to the Implicit Association Test used in psychol-
ogy (Greenwald, McGhee, and Schwartz 1998) to detect im-
plicit stereotypes. WEAT measures the association between
a word and an attribute using cosine similarity; the test com-
pares two sets of target words against a pair of attribute sets.

Bolukbasi et al. (2016) applies word analogy tests as a
way to demonstrate bias. The task uses a word embedding to
find an output to pair with a given input word, say, doctor,
such that the (target, output) pair is in analogy to the gender
pair (he, she). The word embedding passes the test if the
output is stereotype-free, say, physician instead nurse for the
input doctor. However, this task requires crowd-sourcing to
set the benchmark and has been replaced by other evaluation
methods in more recent works.

Another approach from Bolukbasi et al. (2016) for evalu-
ating gender bias involves computing projections onto a gen-
der direction, the difference between vector embeddings of
a pair of gender-specific words (e.g. he and she, as the most
widely accepted definition). This debiasing metric is used in
many other studies (Manzini et al. 2019). Such a method has
failed to become the gold standard because a “true” gender
direction if it exists, is used in the evaluation.

Gonen and Goldberg (2019) later points out that direct
projection does not eliminate gender bias from the geome-
try of the embedding and that biased words tend to cluster
together even after debiasing. To account for this, the neigh-
borhood bias metric was introduced to measure the bias of a
word by counting the difference in the number of (socially)

male- and female-biased neighbors among the word’s K-
nearest neighbors.

Prior Debiasing Methods
Current studies on word embedding bias reductions can
be divided into two camps: word vector learning methods
(Zhao et al. 2018) and post-processing algorithms for in-
stance (Bolukbasi et al. 2016) and (Kaneko and Bollegala
2019) and many more. Word vector learning methods re-
quire retraining of the word embedding and can be time-
consuming due to the retraining of the word embedding.
Therefore, most of the works on debiasing word embeddings
choose to remove the bias through post-processing, includ-
ing algorithms like (Bolukbasi et al. 2016; Kaneko and Bol-
legala 2019; Dev and Phillips 2019; Wang et al. 2020; Shin
et al. 2020; Yang and Feng 2020).

From a technical perspective, we see that Bolukbasi et al.
(2016) formulates the core idea of detecting the subspace
that contains the most information related to gender Based
on the idea of removing gender subspace, other works have
incorporated different strategies, e.g., maximizing the dis-
tance between masculine and feminine words (Zhao et al.
2018), detecting gender direction using partial projection
(Dev and Phillips 2019), or detecting and mitigating distor-
tion in gender direction due to word frequency (Wang et al.
2020). Various extensions of (Bolukbasi et al. 2016) are also
developed, for instance removing bias with respect to multi-
class attributes (like ethnic) (Manzini et al. 2019) or debias-
ing multilingual word embeddings (Bansal et al. 2021).

More recent works (Yang and Feng 2020; Shin et al.
2020) have considered the problem beyond just detecting
and removing gender direction from gender-neutral word
vectors. Shin et al. (2020) models a word vector as a sum
of two components, each containing latent gender informa-
tion and semantic information respectively. An autoencoder
is trained to disentangle these two components and gender-
neutral words are debiased using a counterfactual copy of
itself, i.e. a synthesized word vector with the same semantic
component but biased in the other gender direction.

Similarly, Yang and Feng (2020) approaches the problem
using a causal framework in which it is assumed that la-
tent gender information affects both gendered and gender-
biased words. The model aims to recover gender-specific in-
formation in gender-biased words from the gendered words
through a linear ridge regression. In comparison, the causal
framework used in our approach not only distinguishes gen-
der information from semantic information but also takes
into account the potential effect of the former on the lat-
ter through causal inference. This causal path from gender
information to semantic information is overlooked by the
causal model used in (Yang and Feng 2020).

Methodology
Preliminary Definitions
We characterize two types of gender bias in the causal
framework and propose algorithms for removing each type.
Specifically, we use model intervention techniques to de-
termine causal effects in a causal model. It is more man-
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ageable to apply the model intervention to proxy variables
of the gender bias rather than the gender bias variables
themselves (represented by the differences between gender-
specific word pair vectors, such as

−→
he−
−→
she or

−−→
male−

−−−→
female),

since the latter are generally regarded as inherited attributes
for which interventions are often impossible in practice.

We consider five types of variables corresponding to five
word-related matrices: an s1-dimensional pure gender bias
variable D with a corresponding matrix D ∈ RN×s1 com-
posed of pure gender bias vectors such as

−→
he−
−→
she and

−−→
male−

−−−→
female; an s2-dimensional gender bias variable proxy

P with a corresponding matrix P ∈ RN×s2 composed of
vectors that are directly influenced by D that should not af-
fect the final prediction; an m-dimensional resolving, non-
gender-specific word variable Z with a corresponding ma-
trix Z ∈ RN×m composed of vectors that are influenced
by D in a manner that we accept as non-discriminatory; a
d-dimensional, non-gender-specific word variable Y with
a corresponding matrix Y ∈ RN×d composed of word
vectors potentially containing gender bias that needs to
be removed, such as −−−→nurse and

−−−−−→
engineer; and another p-

dimensional, non-gender-specific word variable X with a
corresponding matrix X ∈ RN×p that may retain seman-
tic information. Here N is the dimension of the word em-
bedding vector, and s1, s2, m, d, and p are the sizes of the
variables D, P , Z, Y and X , respectively.

It is clear that using the vectors in D can eliminate pure
gender bias information contained in word embeddings. In
this way, semantic information can be preserved. As shown
in Figures 1 and 2, we generally allow influence along the
pathway D → X → Y in our framework. Motivated by
Kilbertus et al. (2017) and these conventions, we introduce
the following definitions.

Definition 1 (Potential proxy bias.) A variable Y in a
causal graph exhibits potential proxy bias if there exists a
directed path from D to Y that is blocked by a proxy vari-
able P and if Y itself is not a proxy.

This definition indicates that potential proxy bias from P
articulates a causal criterion that is in a sense dual to unre-
solved bias from Z.

Definition 2 (Unresolved bias.) A variable Y in a causal
graph exhibits unresolved bias if there exists a directed path
from D to Y that is not blocked by a resolving variable Z
and Y itself is non-resolving.

This definition implies that all paths from a gender-bias
variable D are problematic unless they are justified by a re-
solving variable Z.

Removing Potential Proxy Bias
We now develop a practical procedure for removing proxy
bias in a linear structural equation model. For each y ∈ RN ,
the column vector of Y, it can be decomposed into two parts
as y = y∆ + y∆⊥ , where y∆ and y∆⊥ are the projec-
tions of y onto the mutually orthogonal spaces ∆ and ∆⊥.
In particular, let φj ∈ RN denote the basis vectors for ∆
and ψj′ ∈ RN denote the basis vectors for ∆⊥. The whole

space Ω = ∆ ∪ ∆⊥. We can write y =
∑

j:φj∈∆ ξjφj +∑
j′:ψj′∈∆⊥ κj′ψj′ , where ξj , κj′ ∈ R. In this paper, we

take ∆ = Span(D), namely, the linear space spanned by
the column vectors of D. Consequently, ∆⊥ contains the se-
mantic information not described by D. As bias reduction is
primarily concerned with reducing bias along paths starting
from D, we do not remove information from y∆⊥ .

(a) Proxy bias (b) Intervention on proxy bias

Figure 1: A causal graph for proxy bias removal.

We next propose an algorithm for debiasing non-gender-
specific word vectors y. As illustrated in Figure 1, the cor-
responding linear structural equations are

P = Dα0 + e1

X = Dα1 + Pα2 + e2 (1)
Y = Pβ1 + Xβ2,

where e1 and e2 are unobserved errors and α0 ∈ Rs1×s2 ,
α1 ∈ Rs1×p, α2 ∈ Rs2×p, β1 ∈ Rs2×d and β2 ∈ Rp×d

are parameters. Here, we note that the proxy matrix P con-
tains vectors of words that are direct descendants of D and
should not affect the prediction of Y. In this paper, we pre-
specify P using the gendered-word pairs listed in Zhao et al.
(2018). We build predictors that remove proxy bias by in-
tervening on P , that is, by setting P = p′, where p′ is a
random variable: this is similar to the approach in Kilber-
tus et al. (2017). In particular, we want to guarantee that P
has no overall influence on the prediction of the non-gender-
specific variable Y by adjusting the P → Y pathway to
cancel the influence along P → X → Y . We do not gen-
erally prohibit the potential for the gender bias variable D
to influence the non-gender-specific variable Y in this case:
see Figure 1. The non-gender-specific word matrix Ŷ with
potential proxy bias removed is2

Ŷ = (X−Pα̂2)β̂2, (2)

where the parameters α̂2 and β̂2 are estimated by par-
tial least squares (PLS), a supervised dimension reduction
method that works particularly well when variable dimen-
sionality is very large (Vinzi et al. 2010) and becomes a
popular tool in various scientific areas in recent years (Yu,
Kong, and Mizera 2016).However, since the debiasing pro-
cedure above does not retain any information of Y∆⊥ since

2Please refer to appendix for detail derivation
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Algorithm 1: (P-DeSIP) Removing potential proxy bias.

Input: D, P, X, and Y.
1: Solve X = Dα1 + Pα2 + e2 by PLS to get (α̂1, α̂2)
2: Solve Y = Pβ1 + Xβ2 by PLS to get (β̂1, β̂2)
3: Compute Ŷ = (X−Pα̂2)β̂2

4: Compute Ŷ∆⊥ = Y −D(DTD)−1DTY

5: Compute ŶP-DeSIP = Ŷ + Ŷ∆⊥

Output: ŶP-DeSIP as debiased word matrix.

Ŷ is a descendant of D, we must find a way to restore the
information of Y∆⊥ .

In particular, we propose obtaining a least-squares esti-
mate Ŷ∆ of Y∆ through multivariate linear regression of
Y on D. We then use the residual Ŷ∆⊥ as an estimate of
Y∆⊥ . Finally, we compute ŶP-DeSIP = Ŷ + Ŷ∆⊥ as the
bias-reduced version of Y . This post-processing algorithm
is formally presented in Algorithm 1.

In practice, when the dimensionality of X is extremely
high, the computational cost of this algorithm becomes a
concern. With this in mind, we introduce a preliminary
screening step to reduce ultrahigh dimensionality to a mod-
erate level before conducting a refined analysis. Before
conducting a simple screening procedure using correlation
learning, each column of X and Y are standardized to a
mean of zero and a standard deviation of one. Inspired by
Fan and Lv (2008) and Xie et al. (2020), we propose the
following marginal screening utility to measure the depen-
dence between Y and the columns xk (k = 1, . . . , p) of X:
τk = max

j=1,...,d
|x>k yj |/N, where yj (j = 1, . . . , d) denotes

the j-th column of Y. We propose ranking xk by sorting τk
from largest to smallest. We denote the reduced non-gender-
specific word matrix by XM̂, where M̂ = {k : τk ≥ γn}
and γn is a pre-specified threshold value.

Removing Unresolved Bias
We take a similar approach to remove unresolved bias when
a proxy gender bias matrix P is not attainable. We consider
the resolving non-gender-specific word matrix Z ∈ RN×m

that directly affects X instead of the proxy bias matrix P:
this is illustrated in Figure 2.

Resolving variables are influenced by D in a manner that
we accept as non-discriminatory: therefore, Z is chosen to
directly affect X and have some correlation with D. In par-
ticular, we choose Z containing the adjectives and nouns
correlated to D based on mean cosine similarity, while X
includes the words that are otherwise contained by Y, Z,
and D. Since all adjectives in English have an adverb form,
this ensures that the path from Z to X exists.

The causal dependencies in the corresponding linear
structural equation model are equivalent to those in Figure
1 for potential proxy bias:

Z = Dγ0 + ε1

X = Dγ1 + Zγ2 + ε2 (3)
Y = Zθ1 + Xθ2,

(a) Unresolved bias (b) Intervention on
unresolved bias

Figure 2: A causal graph for unresolved bias removal.

where ε1 and ε2 are unobserved errors and γ0 ∈ Rs1×m,
γ1 ∈ Rs1×p, γ2 ∈ Rm×p, θ1 ∈ Rm×d, and θ2 ∈ Rp×d are
parameters. We can proceed as before by intervening on Z,
that is, by setting Z = z′. In this case, we want to cancel the
remaining information from D to Y by intervening on Z:
Figure 2 illustrates this procedure. The non-gender-specific
word matrix Ŷ with unresolved bias removed is

Ŷ = Zθ̂1. (4)

This debiasing procedure does not retain any information of
Y∆⊥ . Therefore we restore the information from Y∆⊥ by
taking a similar way to the previous procedure.

Experiments
In this section, we compare the proposed methods against
other debiasing algorithms in a set of comprehensive experi-
ments. Our results show that the proposed methods not only
reduce bias in various evaluation tasks, but also enhance
the performance of word embeddings in semantic evaluation
tasks. Our debiasing methods outperform in downstream
part-of-speech (POS) tagging, POS chunking, and named-
entity recognition tasks.

We apply the proposed debiasing methods to 300-
dimensional GloVe embeddings pre-trained on English
Wikipedia data with 322,636 unique words (Pennington,
Socher, and Manning 2014). As baselines, we also compare
our results against previous state-of-the-art debiasing meth-
ods, including the hard-debiasing method (Hard) (Bolukbasi
et al. 2016), the gender-preserving debiasing method (GP)
(Kaneko and Bollegala 2019), word vector learning method
(GN) (Zhao et al. 2018), and the half-sibling regression debi-

Algorithm 2: (U-DeSIP) Removing unresolved bias.

Input: D, Z, X, and Y.
1: Solve Y = Zθ1 + Xθ2 by PLS to get (θ̂1, θ̂2)
2: Compute Ŷ = Zθ̂1

3: Compute Ŷ∆⊥ = Y −D(DTD)−1DTY

4: Compute ŶU-DeSIP = Ŷ + Ŷ∆⊥

Output: ŶU-DeSIP as debiased word matrix.
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asing method (HSR) (Yang and Feng 2020). For a fair com-
parison, we utilize the other authors’ implementations. 3

To separate the words in the following experiments, we
manually pick 11 pairs of pure gender words such as (he,
she) and (him, her)4. We form D using the differences be-
tween the vector embeddings corresponding to these word
pairs. We similarly compute P using the gendered word
pairs listed in Zhao et al. (2018). The words represented
in P contain significant non-gender-related information and
gender-related information, e.g., bride and bridegroom. We
choose the 50,000 most frequent words in GloVe to form
Y, which contains the words to be debiased, following the
evaluation procedure in Gonen and Goldberg (2019); X is
formed using the remaining words. In all of the below ex-
periments, we use a fixed screening parameter γn = 0.92 in
P-DeSIP and γn = 0.80 in U-DeSIP.

Quantitative Evaluation for Bias Tasks
Throughout this section, the top N gender-biased words are
chosen by evaluating dot products with the gender direction
−→
he−
−→
she in the original word embedding (i.e. GloVe) and

choosing the most positive and negative values as the most
male- and female-biased words, respectively.

Bias-by-projection Task. Bias-by-projection uses the dot
product between the gender direction

−→
he−
−→
she and the word

to be tested. We compute and average the absolute projection
bias of the top 50,000 most frequent words.

The first column of Table 2 shows that our methods
achieve very good results. Its performance is just below that
of Hard-GloVe, which can be explained by the fact that
Hard-Glove is trained by removing projections along the
gender direction.

Sembias Analogy Task. The SemBias test was first intro-
duced in Zhao et al. (2018) as a set of word analogy tests.
The task is to find the word pair in best analogy to the
pair (he, she) among four options: a gender-specific word
pair, e.g., (waiter, waitress); a gender-stereotype word pair,
e.g., (doctor, nurse); and two highly-similar, bias-free word
pairs, e.g. (dog, cat). The dataset contains 440 instances,
of which 40 instances, denoted by SemBias(subset), are
not used during training. We report accuracy in identifying
gender-specific word pairs.

The second and third columns of Table 2 quantify ac-
curacy in identifying gender-specific word pairs. Our P-
DeSIP methods achieve very good performance in both
tasks. Specifically, in the subset test, P-DeSIP outperforms
GloVe by almost 40%.

Clustering Male- and Female-biased Words. As noted
in Gonen and Goldberg (2019), biased words tend to clus-
ter together. Even some debiased embeddings were unable
to escape from this phenomenon. Here we take the top 500
male-biased words and the top 500 female-biased words and
partition them via K-means clustering (K=2) (Hartigan and
Wong 1979). Accuracy in splitting the 1,000 words into male

3https://github.com/Lei-Ding07/Word Debias DeSIR
4See the accompanying appendix for details of word list

Bias-by-projection SemBias SemBias (subset)

GloVe 0.0375 0.8023 0.5750
Hard 0.0007 0.8250 0.3250
GP 0.0366 0.8432 0.6500
GN 0.0555 0.9773 0.7500
HSR 0.0218 0.8591 0.1000

P-DeSIP 0.0038 0.9523 0.9750
U-DeSIP 0.0038 0.9090 0.5000

Table 2: Gender-direction-related task performance. In each
column, the best and second-best results are boldfaced and
underlined, respectively.

and female clusters is presented in Table 3. Our methods
achieve the best performance among all other methods.

Correlation between Bias-by-projection and Bias-by
Neighbors. Taking again the top 50,000 most frequent
words as targets, we compute the Pearson correlation coef-
ficient between the bias-by-projection and bias-by-neighbor
results. The latter is computed using the neighborhood met-
ric, which counts the percentage of male- and female-biased
words within the K-nearest neighbors of each target word
(Gonen and Goldberg 2019; Wang et al. 2020). Here, we
take K = 100. Referring to the second column of Table 3,
our methods generally achieve the best performance.

Bias-by-neighbors for Profession Words. In this task,
we assess the effect of debiasing by calculating the corre-
lation between bias-by-neighbor measures before and after
debiasing. We use the neighborhood metric, as in the previ-
ous task, but we restrict our targets to the list of professional
words in Bolukbasi et al. (2016) and Zhao et al. (2018). Re-
sults, in the third column of Table 3, show that our methods
outperform GloVe and are comparable to HSR-GloVe.

Classifying Previously Female- and Male-biased Words.
After selecting the top 2,500 biased words for each gender,
for each baseline model we train a support vector machine
(SVM) model using 1,000 randomly sampled words. This
classifier is then applied to the remaining 4,000 words to
predict gender bias direction. Prediction accuracy is shown
in the last column of Table 3: a lower accuracy indicates the
trained model is unable to capture gender-related informa-
tion from the original embedding and thus, that the debiasing
method is superior. Again, both of our methods outperform
the other methods.

Word Embedding Association Test (WEAT) The WEAT
test (Caliskan, Bryson, and Narayanan 2017) is a
permutation-based test that measures bias in word embed-
dings. We report effect sizes (d) and p-values (p) in our re-
sults. The effect size is a normalized measure of how sepa-
rated two distributions are. A higher value indicates a larger
bias between target words with respect to attribute words.
The p-values denote whether the bias is significant or not.

We conduct three tests using the Pleasant & Unpleasant
(Task 1), Career & Family (Task 2), and Science & Art (Task
3) word sets. We consider male and female names as at-
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Clustering Correlation Profession Classify

GloVe 1.0000 0.7727 0.8200 0.9980
Hard 0.8050 0.6884 0.7161 0.9068
GP 1.0000 0.7700 0.8102 0.9978
GN 0.8560 0.7336 0.7925 0.9815
HSR 0.9410 0.6422 0.6804 0.9055

P-DeSIP 0.7910 0.6431 0.7096 0.8547
U-DeSIP 0.7920 0.6421 0.7060 0.8550

Table 3: Gender bias word relation task performance. In each
column, the best and second-best results are boldfaced and
underlined, respectively.

Task1 Task2 Task3

p d p d p d

GloVe 0.090∗ 0.704 0.000 1.905 0.026 0.987
Hard 0.363∗ 0.187 0.000 1.688 0.583∗ -0.104
GP 0.055∗ 0.832 0.000 1.909 0.025 0.997
GN 0.157∗ 0.541 0.074∗ 0.753 0.653∗ -0.222
HSR 0.265∗ 0.340 0.000 1.555 0.410∗ 0.122

P-DeSIP 0.755∗ -0.373 0.001 1.459 0.486∗ 0.019
U-DeSIP 0.732∗ -0.335 0.001 1.462 0.491∗ 0.012

Table 4: WEAT test result. In each column of p-value, ∗ in-
dicates statistically non-significant compare with α = 0.05;
In each column of d, the best and second-best results are
boldfaced and underlined, respectively.

tribute sets.5. As shown in Table 4, we achieve results com-
parable to those for other methods. In two out of three tasks,
the p-value is not significant. We also achieve a reasonably
small effect size in all three tasks.

Visualization
In order to visually illustrate that our proposed methods ef-
fectively reduce gender bias, we took the top 500 male- and
female-biased embeddings and generated a t-SNE projec-
tion (Hinton and Roweis 2002) for all of the baseline em-
beddings. In Figure 3, the two colors in the graphs indi-
cate male- and female-biased embeddings. We can see our
two methods more effectively mix up the male- and female-
biased embeddings.

Word Similarity Tasks
Another important aspect of word embedding is its ability to
encode words’ semantic information. While bias removal is
our main goal, it is unacceptable to disregard how semantic
information is influenced by the debiasing process. We next
implement several word similarity tests to evaluate our al-
gorithms against existing baseline methods. We consider the
following tasks: RG65 (Rubenstein and Goodenough 1965),
WordSim-353 (Finkelstein et al. 2001), Rarewords (Luong,
Socher, and Manning 2013), MEN (Bruni, Tran, and Baroni
2014), MTurk-287 (Radinsky et al. 2011), and MTurk-771

5All word lists are from Caliskan, Bryson, and Narayanan
(2017). Because GloVe embeddings are uncased, we use lower case
words.

(a) GloVe (b) Hard-debias

(c) GP-debias (d) HSR

(e) P-DeSIP (f) U-DeSIP

Figure 3: t-SNE visualization.

(Halawi et al. 2012). SimLex-999 (Hill, Reichart, and Ko-
rhonen 2015), and SimVerb-3500 (Gerz et al. 2016). These
datasets associated with each task contain word pairs and a
corresponding human-annotated similarity score.

As an evaluation measure, we compute Spearman’s rank
correlation coefficient between these two ranks. Results are
shown in Table 6 and 7. We see that our methods have the
leading performance for most of the tasks.

Downstream Task Utility Evaluation
In order to demonstrate that our de-biased word embeddings
still retain good downstream utility and performance, we
follow the CoNLL2003 shared task (Sang and De Meul-
der 2003) and use POS tagging, POS chunking, and named-
entity recognition(NER) as the evaluation tasks. Following
Manzini et al. (2019) we evaluate each task in two ways:
embedding matrix replacement and model retraining.

In embedding matrix replacement, we first train the task
model using the original biased GloVe vectors and then cal-
culate test data performance differences when using the orig-
inal biased GloVe embeddings versus other debiased em-
beddings. Table 5 suggests constant performance degrada-
tion for all debiasing methods relative to the original em-
bedding. Despite this, our methods outperform all the other
tasks (in the sense of minimizing degradation) by a large
margin across all the tasks and evaluation metrics (i.e., F1
score, precision, and recall). Furthermore, we even achieve
a small improvement in precision on the NER task.

11869



Embedding Matrix Replacement

POS Tagging POS Chunking Named Entity Recognition

∆ F1 ∆ Precision ∆ Recall ∆ F1 ∆ Precision ∆ Recall ∆ F1 ∆ Precision ∆ Recall

Hard -0.0776 -0.0736 -0.2079 -0.0653 -0.1500 -0.1009 -0.0118 -0.0187 -0.0238
GP -0.1021 -0.1910 -0.2068 -0.0702 -0.1385 -0.1301 -0.0353 -0.0366 -0.0871
GN -0.0987 -0.1001 -0.2554 -0.0702 -0.1269 -0.1401 -0.0294 -0.0610 -0.0472
HSR -0.0666 -0.0589 -0.1820 -0.0377 -0.0753 -0.0689 -0.0055 -0.0068 -0.0128

P-DeSIP -0.0133 -0.0006 -0.0471 -0.0108 -0.0036 -0.0346 -0.0014 0.0002 -0.0052
U-DeSIP -0.0107 0.0033 -0.0405 -0.0110 -0.0073 -0.0324 -0.0007 0.0013 -0.0035

Model Retraining

POS Tagging POS Chunking Named Entity Recognition

∆ F1 ∆ Precision ∆ Recall ∆ F1 ∆ Precision ∆ Recall ∆ F1 ∆ Precision ∆ Recall

Hard -0.0194 0.0078 -0.0741 -0.0106 0.0075 -0.0438 -0.0050 0.0013 -0.0179
GP -0.0071 0.0011 -0.0264 -0.0069 0.0043 -0.0278 -0.0013 -0.0014 -0.0030
GN -0.0027 0.0089 -0.0174 0.0000 -0.0074 0.0067 -0.0011 -0.0254 0.0189
HSR -0.0055 -0.0009 -0.0192 0.0002 -0.0089 0.0084 -0.0017 -0.0011 -0.0050

P-DeSIP -0.0018 0.0002 -0.0068 -0.0005 -0.0041 0.0016 0.0002 -0.0007 0.0011
U-DeSIP -0.0010 0.0000 -0.0036 0.0032 -0.0009 0.0125 0.0005 0.0008 0.0013

Table 5: Result of downstream tasks, positive value means the task has better performance than using Original GloVe. In each
column, the best and second-best results are boldfaced and underlined, respectively.

RG65 WS RW MEN

GloVe 0.7540 0.6199 0.3722 0.7216
Hard 0.7648 0.6207 0.3720 0.7212
GP 0.7546 0.6003 0.3450 0.6974
GN 0.7457 0.6286 0.3989 0.7446
HSR 0.7764 0.6554 0.3868 0.7353

P-DeSIP 0.7794 0.6856 0.3970 0.7484
U-DeSIP 0.7734 0.6828 0.3956 0.7478

Table 6: Word similarity task performance 1. In each col-
umn, the best and second-best results are boldfaced and un-
derlined, respectively.

In model retraining, we first train two task models, one
using the original biased GloVe embeddings and the other
using debiased embeddings. We then calculate differences
in test performance. Table 5 again suggests that our meth-
ods have the closest performance to the model trained and
tested using the original GloVe embeddings. Our method
also displays the most consistent and comparable perfor-
mance across the three tasks.

Conclusion
In this paper, we develop two causal inference methods for
removing biases in word embeddings. We show that us-
ing the differences between vectors corresponding to paired
gender-specific words can better represent and eliminate
gender bias. We find an intuitive and effective way to better
represent gender information that needs to be removed and
use this approach to achieve oracle-like retention of seman-
tic and lexical information. We also show that our methods
outperform other debiasing methods in downstream NLP
tasks. Furthermore, our methods easily accommodate situ-
ations where other kinds of bias exist, such as social, racial,

MT-287 MT-771 SimLex SimVerb

GloVe 0.6480 0.6486 0.3474 0.2038
Hard 0.6468 0.6504 0.3501 0.2034
GP 0.6418 0.6391 0.3389 0.1877
GN 0.6617 0.6619 0.3700 0.2219
HSR 0.6335 0.6652 0.3971 0.2635
P-DeSIP 0.6452 0.6741 0.3765 0.2286
U-DeSIP 0.6455 0.6731 0.3756 0.2273

Table 7: Word similarity task performance 2. In each col-
umn, the best and second-best results are boldfaced and un-
derlined, respectively.

or class biases.
There are several important directions for future work.

First, we only consider the linear relationship among the
proposed causal inference frameworks. Further investigation
is warranted to extend these frameworks to incorporate the
non-linear causal relationship (Hoyer et al. 2008). Second,
when P is not attainable, we select the resolving variables
Z to contain the adjectives and nouns correlated to gender
bias variables D. This selection method is rather heuristic.
If prior knowledge about resolving variables was introduced,
it would surely improve the performance of the unresolved
bias removal. Third, we introduce a residual block to restore
the information not retained from the debiasing procedure.
The construction of it is rather intuitive and requires more
rigorous justification. Fourth, incorporating other dimension
reduction techniques such as wavelet and spline methods
(Yu et al. 2019) are deemed for further explorations. Finally,
although our methods facilitate easy accommodations for
situations where other kinds of bias exist, how the proxy and
resolving variables as well as the bias variables are properly
pre-specified may require non trivial efforts.
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Appendix
Detail explanation of Table 1
For each of the four pre-determined words Wedding, Ser-
vice, Family, and Religion, we identify the top 200 most
cosine-correlated words. For each of the 200 words, we fit
a ridge regression against gender-specific words defined in
Yang and Feng (2020) (HSR), and a linear regression against
the differences between gender-specific word pairs from this
paper (DeSIP). The fitted word vectors are used as reduced-
bias word vectors. To quantify the semantic information
preservation, the mean absolute dot product between the pre-
determined words and their bias-reduced versions over the
200 most related words are presented, with standard errors
in parentheses. Note that, the oracle preservation semantic
information is achieved by using the original word vector
instead of the fitted one. The last row shows the proportion
of these 200 words for which DeSIP outperforms HSR with
respect to semantic information preservation.

Pure gender word list of D
Male words: he, him, man, his, himself, son, father, guy, boy,
male, men, sons, fathers, guys, boys, males, sir, gentleman,
gentlemen, mr
Female words: she, her, woman, hers, herself, daughter,
mother, gal, girl, female, women, daughters, mothers, gals,
girls, females, madam, lady, ladies, mrs
D is formed by subtraction of each word in Male words with
the corresponding word in Female words.

Detail derivation of equation (2) and (4)
We present the details about how to obtain the equations (2)
and (4) here as follows:
• Intervene on P by removing all incoming arrows, see

Figure 1, and set P = p′, where p′ is a random variable.
Then we obtain:

P = p′,X = Dα1 + Pα2 + e2,Y = Pβ1 + Xβ2.

• Integrate the first and second equations into the third
equation from their structural equations.

Y = p′(β1 +α2β2) + (Dα1 + e2)β2.

• Require the distribution of Y to be independent of p′, i.e.
for all p1 and p2, Pr{p1(β1+α2β2)+(Dα1+e2)β2} =
Pr{p2(β1 + α2β2) + (Dα1 + e2)β2}, which simply
yields β1 = −α2β2. Hence Y = (X−Pα2)β2.

• Given the dataset, we estimate the parameters α2 and β2

by partial least squares method, denoted the estimators as
α̂2 and β̂2. Then, the equation (2) can be obtained.

Similar to equation (2), we can get equation (4).
• Intervene on Z by removing all incoming arrows, see

Figure 2, and set Z = z′, where p′ is a random variable.
Then we obtain:

Z = z′,X = Dγ1 + Zγ2 + ε2,Y = Zθ1 + Xθ2.

• Integrate the first and second equations into the third
equation from their structural equations.

Y = z′(θ1 + γ2θ2) + Dγ1θ2 + ε2θ2.

• Require the distribution of Y to be invariant under inter-
ventions D, i.e. for all d1 and d2, Pr{z′(θ1 + γ2θ2) +
d1γ1θ2 +ε2θ2} = Pr{z′(θ1 +γ2θ2)+d2γ1θ2 +ε2θ2},
which simply yields θ2 = 0. Hence Y = Zθ1.

• Given the dataset, we estimate the parameter θ1 by par-
tial least squares method, denoted the estimator as θ̂1.
Then, equation (4) can be obtained.
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