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Abstract

Federated Learning (FL) is a machine learning paradigm
where local nodes collaboratively train a central model while
the training data remains decentralized. Existing FL methods
typically share model parameters or employ co-distillation to
address the issue of unbalanced data distribution. However,
they suffer from communication bottlenecks. More impor-
tantly, they risk privacy leakage. In this work, we develop
a privacy preserving and communication efficient method in
a FL framework with one-shot offline knowledge distilla-
tion using unlabeled, cross-domain public data. We propose a
quantized and noisy ensemble of local predictions from com-
pletely trained local models for stronger privacy guarantees
without sacrificing accuracy. Based on extensive experiments
on image classification and text classification tasks, we show
that our privacy-preserving method outperforms baseline FL
algorithms with superior performance in both accuracy and
communication efficiency.

Introduction
The availability of large collections of data has facilitated
the recent success of deep learning. However, in many cases,
this wealth of data is dispersed over numerous physical loca-
tions and controlled by separate entities. Consequently, col-
laboration among parties, especially clinical institutions, is
restricted due to the decentralized nature of the data. This is
especially true for medical images where various legal, pri-
vacy, technical, and data ownership concerns often make it
impractical or even impossible to gather such medical data
to a centralized location.

To tackle some of these issues, federated learning
(FL) (Shokri and Shmatikov 2015; Yang et al. 2019) has
emerged as a practical machine learning paradigm where
local models are used to collaboratively train a centralized
model using data-free communication. There are several im-
portant challenges that make FL markedly different than typ-
ical distributed learning. First, privacy is a key concern. It is
essential that local data remain protected. Second, commu-
nication is a critical bottleneck, so steps must be taken to
minimize its detrimental effects. Third, due to the decentral-
ized nature of the collection (leading to different settings),
data across various local parties are typically heterogeneous,
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rendering the typical machine learning assumption of inde-
pendent and identical distributions (i.i.d.) invalid.

Mainstream federated learning methods are based on the
repeated sharing of parameters or gradients of local mod-
els during the training process (McMahan et al. 2017; Smith
et al. 2017; Li et al. 2018; Zhao et al. 2018; Hsu, Qi, and
Brown 2019; Wang et al. 2020; Karimireddy et al. 2020).
Typically, such approaches involve each local model sharing
its gradients with a central server after each round of local
training on its local data. The central server then aggregates
the local model parameters with typical data aggregation
techniques (Wang et al. 2020; Li et al. 2020a; Hsu, Qi, and
Brown 2020). Each local node then updates its local model
with the latest global aggregation, and this process contin-
ues. These parameter-based communication methods have
many known security weaknesses and are limited only to
models with homogeneous architectures. While some meth-
ods have shown hope of protecting against data leakage in
medical imaging (Li et al. 2019, 2020b), sharing parame-
ters/gradients is highly susceptible to privacy leakage, and
stealthy attacks. Some recent works (Zhu, Liu, and Han
2019; Geiping et al. 2020) demonstrated the ability to ob-
tain local private data from publicly shared gradients, fur-
ther highlighting the associated privacy risks in general and
in medical applications in particular.

Another class of approaches in FL is to fuse local mod-
els into a single central model based on knowledge distil-
lation (Hinton, Vinyals, and Dean 2015). Knowledge dis-
tillation eliminates the requirement for identical model ar-
chitectures. While (Li and Wang 2019) distills the locally-
computed knowledge on auxiliary public data to get around
data privacy issues, they assume both the public and private
data are sampled from the same underlying distribution. This
further exposes the private data to security attacks. Recently
proposed FedDF (Lin et al. 2020) relaxes the public data to
be unlabeled and non-sensitive (i.e., sampled from another
domain). Similarly, (Zhu, Hong, and Zhou 2021) eliminates
the prerequisite of public data with a generator and aggre-
gates knowledge in a data-free manner. However, both of
them still exchange model parameters recursively, resulting
in privacy vulnerabilities due to model memorization (Zhu,
Liu, and Han 2019).

To address these issues, we present a new framework for
federated learning (Fig. 1) with several innovations. First,
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Figure 1: Traditional methods transfer private parameters or gradients from local nodes to a server, risking privacy leakage. Our
framework trains local models independently, and only transfers products of the unlabeled public data. We further perturb the
local predictions with a quantized and noisy ensemble for a stronger privacy guarantee.

unlike existing FL methods for either general or medical ap-
plications, our framework only shares the outputs of pub-
lic data with one-shot (single round) distillation. The pub-
lic data is unlabeled and decoupled from the private data.
This, by design, eliminates the security vulnerabilities iden-
tified in prior works. Second, in contrast to the existing
distillation-based FL work (Li and Wang 2019; Lin et al.
2020; Sui et al. 2020; Zhu, Hong, and Zhou 2021) that ex-
clusively train local models incrementally and update them
synchronously through online distillation, we keep the lo-
cal training asynchronous and independent, and then aggre-
gate the local predictions on unlabeled cross-domain pub-
lic data. This offline strategy largely limits the server’s ex-
posure to local models’ knowledge, reducing the consump-
tion of communication bandwidth and reducing the risk of
local information leakage. Furthermore, we deploy quan-
tized and noisy aggregation on the locally-computed log-
its for stronger privacy guarantees. We experiment with CI-
FAR10/100 and large-scale chest x-ray datasets, showing
very competitive classification results in accuracy, band-
width, and privacy guarantees. Extensive experiments on
text classification tasks also demonstrate our method outper-
forms prior works with higher accuracy, lower bandwidth as
well as stronger privacy guarantee.

Our contributions can be summarized as:
• We propose a one-shot federated learning framework

with one-way knowledge distillation (FedKD) on unla-
beled, cross-domain, non-sensitive public data, explicitly
addressing the communication bottleneck and preserving
the privacy of local proprietary data without sacrificing
accuracy.

• We introduce a seminal quantized and noisy ensemble
before distillation, so that the privacy cost is meaning-
fully decreased with stronger security guarantees.

• We demonstrated the flexibility and efficiency of the pro-
posed framework with extensive evaluations showing su-
perior performance on accuracy, bandwidth and privacy-
preserving capability compared to prior arts, on both im-
age classification and text classification tasks.

Related Work
Knowledge Ensemble
With the success of knowledge transfer (Hinton, Vinyals,
and Dean 2015), recent advancements on ensemble net-
works are dominated by the student-teacher learning
paradigm (Shazeer et al. 2017; Zhou et al. 2021; Song et al.
2021). Ensemble learning aggregates the knowledge of mul-
tiple teachers before it distills the knowledge into the student
network. Supervised ensemble learning is dominated by gate
learning to design the weight for aggregation (Shazeer et al.
2017; Asif, Tang, and Harrer 2019; Xiang, Ding, and Han
2020). In semi-supervised and self-supervised scenarios,
(Wu et al. 2019) and (You et al. 2017) exploit the relative
similarity between samples for aggregation weights. Fur-
thermore, co-distillation extends one-way transfer to bidi-
rectional collaborative learning (Song and Chai 2018; Zhu,
Gong et al. 2018; Dvornik, Schmid, and Mairal 2019; Guo
et al. 2020).

Federated Learning.
In parameter-based FL methods, each local model shares
its parameters/gradients with the central server after every
round of local training on its local data, following which the
central server aggregates them by average (McMahan et al.
2017). The result of this aggregation step is then shared by
the central server with the local nodes, which in turn up-
date their corresponding local model and proceed with the
next training round. This process is then repeated until the
stopping criterion is met. A variety of extensions of Fe-
dAVG (McMahan et al. 2017; Wang et al. 2020; Li et al.
2020a; Hsu, Qi, and Brown 2020) employ improved aggre-
gation schemes, such as adding momentum (Hsu, Qi, and
Brown 2019), and local weighting (Li et al. 2020a; Hsu, Qi,
and Brown 2020). Another set of approaches improve local
training by incorporating proximal term (Li et al. 2018) or
control variations (Karimireddy et al. 2020) to restrict local
training. However, such sharing of model parameters or gra-
dients can be thought of as a naive way of information ex-
change, it is highly susceptible to privacy leakage and stealth
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attacks, as also demonstrated elsewhere (Zhu, Liu, and Han
2019; Geiping et al. 2020).

Federated distillation methods exchange model outputs
rather than model parameters. Given that some methods
produce central models by distilling knowledge from pri-
vate data (Zhou et al. 2020; Shin et al. 2020) in the same
spirit as those above, there is a growing concern on local
data privacy. In contrast, some works (Jeong et al. 2018;
Li and Wang 2019) distill with the output of public data.
Although model agnostic, these methods select public data
based on the prior knowledge of private data. Recently pro-
posed methods FedDF (Lin et al. 2020) and FedGEN (Zhu,
Hong, and Zhou 2021) relax the prerequisites of distillation
data, but they are still far from privacy-preserving or com-
munication efficient due to the iterative exchange of models
over hundreds of rounds. Besides, the above mentioned ap-
proaches exclusively require many rounds of back-and-forth
communication, leading to bandwidth bottlenecks and other
inefficiencies.

Privacy Issues
As noted above, parameter-based FL works have been
shown to be highly susceptible to privacy leakage (Zhu,
Liu, and Han 2019; Geiping et al. 2020). Distillation-based
FL works with recursive model exchanges involved (Lin
et al. 2020; Zhu, Hong, and Zhou 2021) also post privacy
risk. Utilizing unlabeled public data during distillation has
proven to be effective in protecting private local data from
attackers (Hamm, Cao, and Belkin 2016). PATE (Papernot
et al. 2017) also suggests that restricting the student net-
work’s access to the teacher’s network and training with
non-overlapping public datasets can further guarantee pri-
vacy protection. Unlike PATE, which uses topmost local
votes to train the central model, we quantize and add noise
on logits for aggregation and distillation. This retains more
local expertise information and therefore improves the util-
ity of the target model without sacrificing the protection of
private data.

Method
In a federated learning setting with K local nodes, each lo-
cal note hosts a private, labeled dataset Dk = {(xk

i , y
k
i )|i =

1, . . . , |Dk|}. A shared, unlabeled public dataset D0 =
{x0

i |i = 1, . . . , |D0|} is accessible by the central server and
all local nodes. In the first stage of FedKD, the model at
each local node k is initialized with model parameters θk by
training with its own local private dataDk. Note that FedKD
is agnostic to the type of neural network architecture, and
hence each local node can have its own specialized architec-
ture suited for the particular distribution of its local data.

In the second stage, the local, private datasets are first
disconnected from local training servers to minimize the
risk of any data leakage and to protect privacy. The pub-
lic dataset D0 that is hosted on the server and deployed at
each local node is then used for one-way knowledge dis-
tillation from the local nodes to the server. Local models
θk, together with the central model θs on the server, con-
stitutes a student-teacher knowledge transfer configuration.

The teacher here is an ensemble of multiple local models,
one at each local node. The following sections introduce
our privacy-preserving ensemble and distillation schemes
for various tasks.

Privacy-Preserving Ensemble
The private dataset is denoted Dk = {(xk

i , y
k
i )|i =

1, . . . , |Dk|} (k ∈ K), where K = {1, ...,K}, yk ∈ Ck,
Ck is the set of existing classes in the dataset Dk, and
Ck ⊂ {1, . . . , C} (C is the number of classes across all lo-
cal nodes). Let zcki = f(x0

i , θk, c) be the logits of a public
data sample x0

i corresponding to class c ∈ Ck, produced
by the model at local node k, where c ∈ {1, . . . , C}. We
omit i in the following descriptions for simplicity. The con-
ventional aggregation ẑc = 1

|K|
∑

k∈K zck takes an average
of all teachers’ logits. However, under the FL setting with
a high degree of heterogeneity, a conventional ensemble al-
gorithm is not appropriate primarily due to its inability to
cope with the more general scenarios when local nodes are
not sharing the exact same set of target classes. To take this
into consideration, we introduce an importance weight ω for
each local node to reflect the distribution of the local private
data:

ωc
k =

N c
k∑

k∈K N c
k

, (1)

where for single-label classification, N c
k =

∑|Dk|
i=1 (y

k
i = c)

denotes the number of samples of class c used in training the
model at local node k.

Inspired by PATE (Papernot et al. 2017), we perturb the
locally computed logits with a quantized and noisy ensemble
for a stronger privacy guarantee:

ẑc =
∑
k∈K

ωc
k ·Q(zck;S) + Lap(

1

γ
), (2)

where Q(·, S) is the quantization function with S as quanti-
zation scale, and Lap( 1γ ) is the Laplacian distribution with
location 0 and scale 1

γ . γ is a privacy parameter to trade
off between privacy-preserving capability and accuracy. A
smaller γ (i.e., higher noise level) results in stronger privacy
guarantee and relatively lower accuracy.

To achieve better communication efficiency, we apply
uniform quantization to floating point logits so they occupy
fewer bits:

Q(zck;S) = qs, if zck ∈ (qs−1, qs], (3)

We determine the quantization intervals (qs−1, qs] with
qs = 2(s−1)zmax

S−1 − zmax(s = 1, . . . , S), where zmax =

maxi,c,k |zcki | is the maximum absolute value of all the log-
its across public data samples i = 1, . . . , |D0| and classes
c = 1, . . . , C . Thus, Equation (3) becomes:

Q(zck;S) = ⌈S · z
ck

2zmax ⌉ ·
2zmax

S
, (4)

where a smaller S sacrifices more logits precision, while
maintaining a higher level of privacy.
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Algorithm 1: Federated Knowledge Distillation (FedKD)
Input: Labeled private datasets {Dk|k ∈ K} (K =
{1, . . . ,K}), unlabeled public data D0, central model θs,
local models {θk|k ∈ K}, T distillation steps, batchsize
B, quantization scale S, privacy hyperparameter γ.
Local Training:
Train each local model θk with private data Dk.
Logits Ensemble:
for each sample x0

i in D0 do
for each local k ∈ K do
zk
i ← f(x0

i , θ
k)

end for
ẑi ← aggregate {zk

i ;S, γ|k ∈ K} ▷ Eq. 2
end for
Distillation:
for each distillation step t = 1, ..., T do
x0 ← a batch of public data from D0 with size B
z̃ ← f(x0, θs)
Update the central model: θs← θs− 1

B∇θsL ▷ Eq. 7
end for

During ensemble, we protect the private data at each local
node by: (1) transferring only the final prediction inferred
with the non-proprietary public data D0; and (2) perturbing
the local outputs with quantization and random noise .

One-shot Distillation
Conventional knowledge distillation aggregates all teachers’
soft labels subject to the Kullback-Leibler divergence:

L =
∑
c

pclog
pc

qc
, (5)

where pc and qc denote the probabilities of a sample of class
c for the teacher and student models, respectively. The ag-
gregated logits ẑc can be viewed as teacher knowledge, and
the output logits of the central model z̃c = f(x0, θs, c) can
be viewed as student knowledge. Without loss of generality,
we denote the activation by pc = σ(ẑc) and qc = σ(z̃c). For
single-label classification, we obtain the probabilities using
softmax activation:

pc = σ(ẑc) =
eẑ

c/τ∑
c e

ẑc/τ
, qc = σ(z̃c) =

ez̃
c/τ∑

c e
z̃c/τ

, (6)

where τ is a temperature parameter. Hinton et al. (Hinton,
Vinyals, and Dean 2015) showed that minimizing Eq. 5 with
high τ is equivalent to minimizing the ℓ2 error between
the teacher and student logits, thereby relating cross-entropy
minimization to matching logits.

Based on the observations above by Hinton et al. (Hinton,
Vinyals, and Dean 2015), we consider the case of τ → ∞
so the loss can be written as:

L = ∥z̃ − ẑ∥, (7)

where z̃ = [z̃1, ...z̃C ], and ẑ = [ẑ1, ...ẑC ].
Note that we use one-shot offline distillation where the

local nodes predict with each public data sample only once,

and the predicted logits are used to train the central model it-
eratively. This distillation strategy (1) provides a higher pri-
vacy guarantee by executing fewer queries to the local model
(limiting the access to local knowledge); and (2) eliminates
the iterative and repetitive communication requirement of
synchronous updates, improving communication efficiency
and flexibility. The overall process is described in Algo-
rithm 1.

Cross-domain Analysis

We argue that with cross-domain public data our framework
can distill knowledge from multiple locals with generaliz-
ability. In this section we present a performance bound for
the aggregated central model, which is built upon prior arts
from domain adaptation (Ben-David et al. 2010).

Let the input space be X , DS and DT be source and
target domain respectively, We denote the ground-truth la-
beling function as g and the hypothesis function as f , we
get the error as ϵDS (h, g) = Ex∼DS [|h(x) − g(x)|]. We
denote the risk of h on DS and DT as ϵDS and ϵDT .
(Ben-David et al. 2010) introduces H-divergence to eval-
uate the distance between two domain distributions U , U ′

on the a hypothesis space H. H-divergence is defined as
dH(U ,U ′) = 2 supA∈AH

|PrD(A)− PrD′(A)|, where AH
denotes a collection of subsets of X which support the hy-
pothesis in H. The symmetric different space is defined as
H∆H = {h(x)⊕h′(x)|h, h′ ∈ H} (

⊕
represents the

XOR operation). For the generalizability between two do-
mains, we have the following theorem (Blitzer et al. 2007):

Theorem 1. Generalization bounds. LetH be a hypothesis
space of VC dimension d, US and UT be unlabeled samples
of size N each, drawn fromDS andDT respectively. For any
h ∈ H and δ ∈ (0, 1), the following holds with probability
at least 1− δ (over the choice of the samples):

ϵDT (h) ≤ϵDS (h) +
1

2
dH∆H(US ,UT )

+ 4

√
2d log(2N) + log( 2δ )

N
+ λ,

(8)

where λ = ϵDS (h∗) + ϵDT (h∗) and h∗ is the ideal
joint hypothesis minimizing the combined error: h∗ =
argminh∈H ϵDS (h∗) + ϵDT (h∗).

In our case, DS is the domain of private data distributed
across K local nodes: DS = {Dk|k ∈ K}, and DT =
D0 is the domain of public data. We assume |D0| = N ,∑

k∈K |Dk| = N . Given the local model hDk trained on
data Dk, we learn central model hD0 from public data D0

through weighted aggregation: hD0 =
∑

k∈K ωk(hDk +
nk(γ)), where

∑
k∈K ωk = 1, and nk(γ) is the introduced

noise parameterized by γ to strengthen the privacy. We have
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Method
CIFAR-10 CIFAR-100

Accuracy(%) ↑ Bandwidth Accuracy(%) ↑ Bandwidth
α = 1 α = 0.1 (GB)↓ α = 1 α = 0.1 (GB)↓

FedAvg (McMahan et al. 2017) 78.57 ±0.22 68.37±0.50 58 42.54±0.51 36.72±1.50 63
FedProx (Li et al. 2018) 76.32 ±1.95 68.65±0.77 58 42.94±1.23 35.74±1.00 63

FedAvgM (Hsu, Qi, and Brown 2019) 77.79±1.22 68.63±0.79 58 42.83±0.36 36.29±1.98 63
FedDF (Lin et al. 2020) 80.69±0.43 71.36±1.07 58 47.43±0.45 39.33±0.03 63

FedGEN (Zhu, Hong, and Zhou 2021) 80.31±0.97 68.13±1.37 58 45.97±0.23 35.97±0.31 63
FedMD (Li and Wang 2019) 80.37±0.37 69.23±1.31 6.24 45.83±0.58 38.86±0.78 160

Standalone 61.11±24.90 28.99±27.24 - 27.49±14.76 16.31±15.75 -

FedKD 80.98±0.11 65.46±3.45 0.078 45.55±0.38 40.61±2.54 2

Table 1: Comparisons on the CIFAR-10 and CIFAR-100 datasets with ResNet-8 when K=20. Our FedKD uses S=200, γ=1 for
knowledge ensemble, while the competing methods use the setting in FedDF (Lin et al. 2020) with 100 rounds and a sampled
fraction as 1 at each communication round. Standalone: mean/std performance of all local models. Both logits and parameters
are of type float64 for bandwidth calculation.

aggregation scheme baseline Eq. 1 Eq. 1 Eq. 1
logits distillation τ=∞ τ=3 τ=∞ τ=∞
# local prediction |D0| |D0| |D0| 50×|D0|

Accuracy(%)↑ 79.92 80.01 80.98 81.89
Bandwidth (GB) ↓ 0.078 3.91

Table 2: Ablation study on CIFAR-10 with ResNet-8, K=20,
α=1, S=200, γ=1. With the commonly used distillation
scheme (temperature τ = 3) as baseline, we show the com-
parison on different ensemble and distillation schemes. |D0|
indicates the number of samples in the public dataset D0,
and 50×|D0| indicates local model predicts 50 times on each
sample of D0 with different augmentation seeds.

the following weighted noisy generalization bound:

ϵD0(hD0) ≤ϵDS

(∑
k∈K

ωk(hDk + nk(γ))

)
+ λω

+
∑
k∈K

ωk

(
1

2
dH∆H(Uk,U0)

)

+ 4

√
2d log(2N) + log( 2δ )

N
.

(9)

Extension to Other Tasks
While Eq. 6 corresponds to the single-label classification
scenario, our method is also extensible to multi-label clas-
sification. In this case, the private data notation from above
is changed to Dk = {(xk

i ,y
k
i )|i = 1, . . . , |Dk|} with yk

i ∈
{−1, 0, 1}c where -1, 0, and 1 indicate unknown, negative,
and positive for class c ∈ 1, ..., C , respectively. We have
made two other modifications: first, a sigmoid is used as the
activation instead of softmax so pc = σ(ẑc) and qc = σ(z̃c);
second, in Eq. 1, we define N c

k =
∑|Dk|

i=1 (y
k
i (c) = 1) as the

number of samples labeled as class c for training the model
of local node k.
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Figure 2: Ablation study on the CIFAR-10 dataset (K=20,
α=1) with varying public data size |D0|, noise 1

γ , and quan-
tization scale S.

Experiments
We conduct experiments on natural image classification
(single-label), medical image classification (multi-label),
and extensive experiments on text classification. We con-
struct local training sets using heterogeneous data splits
with a Dirichlet distribution as in prior works (Hsu, Qi, and
Brown 2019). The value of α controls the degree of non-IID-
ness. An α of positive infinity indicates identical local data
distributions, and a smaller α indicates higher non-IID-ness.

CIFAR10/100 Classification
For natural image classification task we use CIFAR-
10/100 (Krizhevsky, Hinton et al. 2009) as datasets. To keep
consistency with the prior arts, we use the same experimen-
tal settings as in FedDF (Lin et al. 2020): CIFAR-100 as
unlabeled public data when CIFAR-10 as private data, and
downsampled version of ImageNet (32 × 32) (Deng et al.
2009) as unlabeled public data corresponding to CIFAR-100
as private data. For each experiment, we sample over three
different random seeds as private data split for local train-
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Method Private data Dk Test K = 3 K = 5

FedKD (Single-domain) CXR14 CXR14 75.02 74.80
Xpert Xpert 82.41 82.35

K = 2 K = 6

FedKD (Cross-domain) CXR14+Xpert CXR14 79.03 76.13
CXR14+Xpert Xpert 79.77 80.91

Table 3: Multi-label classification experiments on chest-x-ray images with single/cross domain private data. We report the test
mAUC (%) on NIH CXR14 and CheXpert over 12 and 8 classes respectively.

ing. We report the average accuracy metrics on CIFAR-10
and CIFAR-100 test set corresponding to its private data re-
spectively.

Implementation Details. Following (Lin et al. 2020;
Gong et al. 2021), we use ResNet-8 as backbone. We train
each local model individually with SGD and Cosine Anneal-
ing (Loshchilov and Hutter 2016), decreasing the learning
rate from 0.0025 to 0.001 in 500 epochs with a batch size of
16. For distillation, we use the Adam optimizer, a constant
learning rate of 1e-3, and a batch size of 512. We use 200 and
10 epochs for CIFAR-10 and CIFAR-100 respectively. The
weight decay is 3e-4 and 0 for local training and distillation,
respectively.

Results. The comparison in Table 1 shows that our method
achieves a significantly stronger privacy guarantee as well
as a far better communication efficiency compared to prior
arts, without sacrificing accuracy. On CIFAR-10 (α = 1)
and CIFAR-100 (α = 0.1), our method demonstrates bet-
ter accuracy with significantly lower communication cost
than the prior arts. On CIFAR-10 (α = 0.1) and CIFAR-
100 (α = 1), our method achieves the best performance-
bandwidth trade-off compared with the prior arts. More im-
portantly, our method does not share any locally trained
model parameters and further adds noise perturbation on the
transferred product of non-sensitive public data, demonstrat-
ing stronger privacy guarantee than the prior arts.

Ablation Studies. We perform ablation studies to validate
the efficacy of our ensemble and distillation strategy and
show the results in Table 2. The extensive experiments in
Table 2 show the distillation accuracy can be improved by a
large margin with more access to local information (e.g., lo-
cal models predicted on dynamically augmented public data
multiple times). For an accuracy-privacy trade-off, we re-
strict that local model to only predict each public sample
once in our method. Besides, we do ablation study with dif-
ferent temperatures τ for logits distillation (Hinton, Vinyals,
and Dean 2015).

In Figure 2 we study the impact of quantization/noise on
the accuracy for different sized public datasets. The left fig-
ure suggests that increased noise degrades the ensemble dis-
tillation performance, but a (unlabeled) larger public dataset
can substantially improves the robustness to noise perturba-
tion. We observe from the right figure that the distillation re-
sults are insensitive to data precision, which is also observed
in prior work (Shazeer et al. 2017). Thus we use S = 200
and γ = 1 as default setting in the following experiments.

Chest X-Ray Image Classification
Although mainstream FL methods experiment exclusively
with private data from the same dataset (domain), this is
typically not realistic in practical applications. For example,
data acquired at different hospitals may come from different
sources. We thus consider a more general heterogeneous set-
ting where the private data at different local nodes and the
unlabeled public data all come from different domains.

Here we implement multi-label classification on chest-x-
ray images, using the NIH CXR14 (Wang et al. 2017) and
CheXpert (Irvin et al. 2019) datasets to represent different
domains for private data. We ignore ambiguous categories
(Effusion, Pleural Effusion, Pleural Other and Support De-
vice), remaining a total of 14 annotation classes, of which
NIH CXR14 has annotations for 12 classes and CheXpert
for 8 classes, with 6 overlapping classes. So there are totally
86,524 images come from NIH CXR14 and 64,346 images
come from CheXpert dataset. For each dataset, we randomly
sample 90% for training and the rest 10% for validation.
We use 26,684 images from the RSNA Pneumonia Detec-
tion Challenge (RSNA and Kaggle 2018) without using their
labels as public data.

Implementation Details. We use ResNet-34 as the back-
bone. For local training, we use a batch size of 32, same data
augmentation strategies as in prior work (Ye et al. 2020). We
train each local model individually with SGD and Cosine
Annealing , decreasing the learning rate from 1e-4 to 1e-6
in 50 epochs. For distillation, we use SGD and a constant
learning rate of 1e-3 and 50 epochs. For samples with mul-
tiple classes labeled as positive, we choose the most infre-
quent one (the class with least positive samples) as its label
for the Dirichlet data split. In the setting with cross-domain
private data (two datasets as private data), each dataset is
distributed to Kd = K/2 local nodes when there is a total
of K local nodes.

Results with Unlabeled Public Data. In Table 3, we first
study the hyper-parameters K with α = 1, S = 200,
γ = 1 and local data from a single dataset (domain). It shows
larger numbers of locals K negatively affects the distilla-
tion performance. Table 3 also shows cross-domain, cross-
site evaluations using both datasets as private data, with a
total of K local nodes (Kd = K/2 for each dataset, and
each node hosts data from only one of the datasets). We can
see that the introduction of additional cross-domain local
nodes will help to improve the performance of the source do-
main: CXR14 (K = 3) as private datasets achieves 75.02%
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Homogeneous Heterogeneous

CM ED CS AT PE mAUC CM ED CS AT PE mAUC

Standalone 78.57
±2.27

85.82
±1.95

88.16
±2.12

79.87
±4.22

84.60
±1.58

83.67
±1.24

69.12
±5.15

82.63
±3.48

83.26
±2.74

70.71
±0.63

80.32
±3.49

77.21
±1.29

Public-only 67.34 79.76 79.24 76.38 80.37 82.43 45.28 78.03 77.36 66.98 75.43 68.60
Centralized 82.88 87.04 91.53 80.90 87.02 85.88 75.38 82.28 86.37 75.36 85.93 81.07

FedKD 81.81 86.12 91.15 83.34 86.59 85.81 75.62 82.83 87.95 74.61 83.48 80.90

Table 4: Comparisons of AUCs (%) on the homogeneous/heterogeneous positive data distribution with K = 5 and labeled
public data. Standalone: averaged AUCs of all local models. Public-only: training with only labeled public data. Centralized:
central training with all public and private data. CM: Cardiomegaly, ED: Edema, CS: Consolidation, AT: Atelectasis, PE:
Pleural Effusion.

FedAvg FedDF FedKD Standalone Centralized

AG News Accuracy (%) ↑ 91.98 92.57 92.58 86.30±5.21 93.11
Bandwidth(MB) ↓ 10217 10235 36.6 - -

SST2 Accuracy (%) ↑ 87.13 88.51 91.50 74.80±5.05 90.07
Bandwidth(MB) ↓ 10217 10221 10.3 - -

Privacy (NO shared Param.) ✗ ✗ ✓ - -

Table 5: Comparisons on AG News and SST2 datasets with K=10 under the same experiment setting. Standalone: mean ± std
of local models trained with individual private data. Centralized: centralized training all local private data.

on CXR14 test set while CXR14+Xpert (K = 6) as pri-
vate datasets achieves 76.13%. Note that the model trained
with this cross-domain setting is capable of classifying all
14 classes, whereas training with a single domain can only
classify 12 and 8 classes, respectively.

Ablation Studies on Heterogeneity with Labeled Pub-
lic Data. In this experiment, we use labeled public data
D0 = {(x0

i ,y
0
i )|i = 1, . . . , N0} which is accessible by

all local nodes and included in local training along with lo-
cal private data. Since medical image datasets are usually
characterized by a high degree of imbalance (e.g., far more
negative samples than positive samples with abnormalities),
we study the heterogeneity of the positive distribution, with
each local node having an equal number of private samples.
We set the number of local nodes to K = 5 and the data
size to Nk = 6000, N0 = 1000 and use the official vali-
dation set for testing. Table 4 shows results with homoge-
neous and heterogeneous distributions (w.r.t. positive sam-
ples). Notably, under both homogeneous and heterogeneous
settings, our method achieves results comparable to central-
ized training on all public and local data. This can be viewed
as an upper bound.

Text Classification Tasks
We evaluate our framework on two text classification
datasets: AG News (Zhang, Zhao, and LeCun 2015) and
SST2 (Socher et al. 2013). Following FedDF (Lin et al.
2020), we use pre-trained DistilBERT (Sanh et al. 2019) as
the transformer language model. Local training and distilla-
tion takes 100 and 20 epochs, respectively, and the training
strategy is the same as FedDF. From Table 5, we can note
that our method gives the best performance on both datasets.

On bot AG News and SST2 dataset, our proposed framework
achieves superior accuracy and substantially lower commu-
nication bandwidth compared to the prior arts. More im-
portantly, our method does not share parameters/gradients
of local models during communication, which offers much
stronger privacy guarantee compared to the prior arts.

Conclusions

In this work, we propose a novel distillation-based feder-
ated learning framework, namely FedKD, which can pre-
serve local data privacy by learning with only unlabeled
and domain robust public data. To comprehensively address
the communication bottleneck, we employ a one-shot and
one-way (offline) knowledge distillation process with an ef-
ficient ensemble scheme. Experiments on both image clas-
sification and text classification tasks demonstrate the effi-
cacy of FedKD with better privacy guarantee compared to
prior arts. Given the increasing importance of privacy, we
believe our proposed FL method will be a practical solution
to facilitate privacy-preserving decentralized learning across
multiple sites in real-world scenarios, especially for medical
applications where leveraging valuable local data at different
hospitals without exposing proprietary data to privacy risks
is essential.
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