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Abstract

Along with the rapid growth and rise to prominence of
food delivery platforms, concerns have also risen about the
terms of employment of the “gig workers” underpinning this
growth. Our analysis on data derived from a real-world food
delivery platform across three large cities from India show
that there is significant inequality in the money delivery
agents earn. In this paper, we formulate the problem of fair
income distribution among agents while also ensuring timely
food delivery. We establish that the problem is not only NP-
hard but also inapproximable in polynomial time. We over-
come this computational bottleneck through a novel matching
algorithm called FAIRFOODY. Extensive experiments over
real-world food delivery datasets show FAIRFOODY imparts
up to 10 times improvement in equitable income distribution
when compared to baseline strategies, while also ensuring
minimal impact on customer experience.

Introduction
Food delivery platforms like DoorDash, Zomato, GrubHub,
Swiggy and Lieferando have become popular means for peo-
ple to order food online and get delivery at their doorsteps,
increasingly so due to the covid-19 pandemic related restric-
tions (Pengonda 2021). Typically, when a customer orders
food from a particular restaurant a delivery agent is assigned
to pick up the food from the restaurant once ready and de-
liver it to the customer. Thus, apart from providing business
opportunities to the restaurants, food delivery platforms also
provide livelihood to thousands of delivery agents. How-
ever, recent media reports have highlighted a range of is-
sues faced by these delivery agents: poor working condi-
tions, long working hours, non-transparent job allocations,
and meagre pay (D’Souza 2021; Anab 2021; Murthy 2021).
Due to the ‘gig’ nature of delivery jobs, a delivery agent typ-
ically gets a small fixed commission per order (except occa-
sional tips and other incentives), and few employment ben-
efits. A recent survey by the non-profit Fairwork (Fairwork
2021) found that despite the gig labels associated with this
work (denoting part time engagements in addition to more
stable jobs), most delivery agents in developing countries ac-
tually work full time on these platforms, depending on them
entirely for their livelihood (Fairwork 2021). Fairwork also
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found that none of the food delivery platforms in India guar-
antee local minimum wage to the delivery agents even if they
work for more than 10 hours per day (Fairwork 2021).

Increasing the pay of delivery agents is a complicated
proposition. If we decrease the number of agents so that
the per-agent pay increases, there is a danger of increased
customer wait time, which is anathema in the food deliv-
ery sector. Charging higher commission from restaurants or
offering higher pay-per-delivery may disproportionately af-
fect smaller restaurants and decrease their customer base.
Recently such concerns led the city of Chicago to cap the
delivery charge at 10% of the order value (City 2020). In
some cities, restaurants are offering their own delivery ser-
vices to cut back on the platform charges (Anand, Borah, and
Majumdar 2021). In summary, it is not easy to increase the
pool of money available to remunerate the delivery agents.
However, apart from the issue of a small pool of money, the
Fairwork report suggests that there is also high variability in
pay – earnings on a platform can vary widely across agents
(Fairwork 2021). To investigate this issue further, we per-
form an in-depth analysis of data obtained from a major food
delivery platform for three Indian cities. Our analysis shows
that there is significant inequality in the amount of money
different agents earn from the platform. Interestingly, we see
that the number of working hours of an agent, or her hours
of operation cannot explain this inequality – it is rather the
catchment area which makes a major difference.

In this paper, we present FAIRFOODY, the first algorithm
to address the food delivery order allocation problem with
fairness of pay distribution as a goal. We address the issue of
catchment-based inequality by doing away with the restric-
tion that a delivery agent must work within a single zone.
Our algorithm, FAIRFOODY, does not, however, make any
special effort to move agents across zones. In fact, in order
to ensure timely delivery it limits the range from which a
delivery agent can be picked to deliver a particular order.
But, nonetheless, to ensure a more equitable pay distribu-
tion, FAIRFOODY ends up creating a more uniform geo-
graphical distribution of agent activity.

The challenge we faced in designing FAIRFOODY is that
at any given time the number of orders may not be large
enough to ensure that every idle agent is kept busy, and,
hence, fairly remunerated. To deal with this issue we drew
on Fairwork’s finding that a number of delivery agents treat
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food delivery as a full-time job to relax this temporal con-
straint: since the orders arrive throughout the day, we amor-
tize fairness over a longer period of time than trying to be
fair at each assignment. In our scheme if an agent does not
get her fair share of assignments in a given time period, she
may still make up for it on subsequent periods, and get a
fair income over a longer term. With this relaxation FAIR-
FOODY is able to fairly remunerate those delivery agents
who spend a significant period of time on the platform, and,
consequently, rely on it to provide them with a living wage.

In summary, our key contributions are as follows:
• In-depth investigation of food-delivery data: We per-

form the first in-depth study of real food delivery data
from large metropolitan cities and establish that the in-
come distribution shows high levels of inequality.

• Problem formulation and algorithm design: We formu-
late the problem of fair income distribution in food deliv-
ery assignment, without compromising on customer expe-
rience. We show that the problem is not only NP-hard, but
also inapproximable in polynomial time. To mitigate this
computational bottleneck, we develop an algorithm called
FAIRFOODY that uses bipartite matching on a data stream
to perform real-time fair assignment of orders. ours is the
first proposal to ensure fairness in food-delivery.

• Empirical evaluation: We evaluate FAIRFOODY exten-
sively on real food delivery data across a range of metrics,
and establish that it is successful in its dual objective of
fair income distribution and positive customer experience.

A detailed version of our work containing proofs of impor-
tant results, illustrative examples and additional experiments
is available at (Gupta et al. 2022).

Inequality in Delivery Agents’ Income
Dataset Used
We use six days of food delivery data from three large In-
dian cities, provided to us by a major food delivery service
provider in India. Table 1 summarizes the dataset charac-
teristics. The dataset consists of three components: trajecto-
ries of the delivery vehicles, the road network of each city
(obtained from OpenStreetMap.org), and metadata de-
scribing various factors such as the vehicle IDs, informa-
tion on each received order, locations of restaurants and cus-
tomers, mean food preparation time in each restaurant, av-
erage speed in each road segment at different hours, etc. We
match the vehicle GPS pings to the road network to obtain
network-aligned trajectories (Newson and Krumm 2009).

Inequality in Payment Distribution
We perform allocation using FOODMATCH (Joshi et al.
2022) on the described dataset and compute the payment
earned by different delivery agents over the course of these
6 days. Fig. 1(a) shows the Lorenz curve of their income,
where the y-axis represents the cumulative percentage of to-
tal income and the x-axis represents the cumulative percent-
age of all agents. The diagonal line in Fig. 1(a) is the equal-
ity line; the further the income distribution from this line, the
higher is the inequality. We see in Fig. 1(a) that there is high
inequality in the income earned by the agents; the top 10%

City A City B City C
# Restaurants 2085 6777 8116
# Vehicles 2454 159160 10608
# Orders 23442 112745 112745
Food prep. time (avg.in min) 8.45 9.34 10.22
# Nodes 39k 116k 183k
# Edges 97k 299k 460K

Table 1: Summary of the dataset.

earners get 50% of the total payment while the bottom 60%
only get 10% of it. Such a high inequality can starve many
agents from getting decent income and would force them to
quit the platform.

What Drives Inequality?
Next, we try to uncover the sources of such high inequality.
I. Number of working hours: It is reasonable to assume
that pay variability springs from variability in the number of
hours worked. However this is not the case in our data. We
normalized payment by the number of active hours worked:
Fig. 1(b) shows the Lorenz curve of the hourly income. We
can see in Fig. 1(b) that the high inequality persists even
after accounting for the activity levels.
II. Hours of operation: We may conjecture that top earn-
ers are active during lunch (11AM-2PM) or dinner (7PM-
11PM) times when order volumes are high, and the bot-
tom earners are active during other periods of the day.
Fig. 1(c,d,e) show the distribution of the operational periods
(fraction of active times during lunch, dinner and all other
time periods) for both the top 25% and bottom 25% earners.
We can see that except City A, there is no noticeable differ-
ence in their activity patterns. It is not that the top earners
were overwhelmingly more active during lunch and dinner
times compared to the bottom earners. In fact, in City A,
we can see that the bottom earners were more active dur-
ing lunch times. Thus, difference in activity period is not a
reasonable explanation for the inequality.
III. Geographical distribution: Next, we focus on the
geographical spread of the order locations. Fig. 2 show
heatmaps of restaurants’ and customers’ locations for the or-
ders assigned to top earners and bottom earners, along with
the location of the delivery agents when the orders were
assigned to them. We can see a clear difference in the ar-
eas where top and bottom earners were active. For exam-
ple, Fig. 2 shows that top earners deliver food mostly in the
western part of City C, whereas the bottom earners are active
more in the eastern part. It turns out that the order volume
is higher in the western part, creating the inequality. We see
similar trend in City A and City B as well.

Our finding here corroborates the delivery agents’ experi-
ence as reported by Fairwork: agents often complained about
not receiving orders in areas other than their chosen pick-
up zone (Fairwork 2021). Even when an agent delivers food
outside their zone, they are not allocated any orders on their
way back, thus incurring fuel costs on their return journey,
without getting any payment (Fairwork 2021). We suggest
that the delivery platforms can distribute opportunities more
fairly among agents by allowing them to deliver orders in
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Figure 1: (a-b) Lorenz curves for the distribution of agent incomes. (c-e) Distribution of operational periods for top earners and
bottom earners.
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Figure 2: Heat map of order locations: the customers’ lo-
cations, restaurants’ locations and locations of the assigned
delivery agents. In (a-c) we show this location data with re-
spect to the orders serviced by the top 25% agents and in
(d-f) those serviced by bottom 25% agents based on income.

different parts of the city, as long as it does not negatively
impact the waiting time for customers.

Ensuring Fairness in Food Delivery
In this section, we define the concepts central to our work
and formulate the problem of fair food delivery.

Fairness Notions
Since food delivery platforms essentially distribute income
opportunities among the delivery agents, the key question
is: what would constitute a fair/just distribution? Fairness of
distribution have been studied for a long time in Moral Phi-
losophy, particularly in Distributive Justice (Lamont 2017).
Next, we discuss few key principles from distributive justice
and interpret them in the context of fair food delivery.
Strict Egalitarianism: The underlying idea behind this
fairness principle is that people are morally equal, and hence

everyone should be treated equally (Arneson 2013). In food
delivery context, this would mean that every delivery agent
should earn the same income from the platform. To im-
plement this in practice, the platform should pull together
all delivery fees collected and then distribute them equally
among the agents. However, such schemes are practically
untenable; more so due to the gig nature of delivery jobs.
Difference Principle: In his seminal work on the theory of
justice (Rawls 1971), John Rawls defined a system to be just
if those affected by the system agree to be subjected to it.
Rawls permit a departure from equality only if it provides
‘greatest benefit to the least advantaged members of soci-
ety’. In our context, this would translate into allocating the
agent with the lowest income to a new order. However, this
scheme would not consider the number of hours different
agents work for the platform.
Proportional Equality: Ronald Dworkin opposed the idea
of complete equality and argued for eliminating inequal-
ity that happens by sheer luck, but allowing the impact of
people’s choice or hard work (known as ‘Luck Egalitarian-
ism’) (Arneson 2018). In the food delivery context, agents’
incomes should be proportional to their effort, i.e., the num-
ber of hours they are working. In this work, we consider this
notion of Proportional Equality, and propose to ensure that
an agent’s income is proportional to the number of hours
they work for the platform.

Background: The Food Delivery Problem
Next, we formulate the problem of food delivery without
any fairness consideration (Joshi et al. 2021). In general, the
objective is to allocate orders to delivery agents such that the
waiting time for customers is minimized.

Definition 1 (Road Network). A road network is a directed,
edge-weighted graph G = (V,E, β), where V is the set of
nodes representing regions, E = {(u, v) : u, v ∈ V } is the
set of directed edges representing road segments connecting
regions, and β : (E, t) 7→ R+ maps each edge to a weight at
time t. The edge weight at time t denotes the expected time
required to traverse the corresponding road at time t.

We use the notation SP (ui, ui+1, t) to denote the length
of the shortest (quickest) path from ui to ui+1 at time t.
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Definition 2 (Food Order). A food order o = 〈or, oc, ot, op〉
is characterized by four features. or ∈ V denotes the restau-
rant location (pick-up node), oc ∈ V is the customer loca-
tion (drop-off node), ot is the time of request and op is the
(expected) food preparation time.

Let v be a food delivery vehicle. We use Ov
t to denote

the orders assigned to v. Furthermore, loc(v, t) denotes the
node that is closest to v at time t. We assume all vehi-
cles have a maximum carrying capacity of MaxO. Given
a set of orders in Ov

t , a route plan is a permutation of
{ori , oci : 1 ≤ i ≤ m} ⊂ V such that for each i, ori ap-
pears before oci in the permutation. The length of a route plan
RP = {u1, · · · , um} is

∑m−1
i=1 SP (ui, ui+1, t). The quick-

est route plan is, therefore, the one with the smallest length.
We assume that all vehicles always follow the quickest route
plan, and hence any reference to a route plan is implicitly
assumed to be the quickest one.

Definition 3 (Order assignment). Given a set of orders O
and vehicles V , an order assignment function A : O → V
assigns each order o ∈ O to a vehicle v ∈ V . An order o
may be assigned to v at time t only if |Ov

t | < MaxO.

Once order assignments are done, the first-mile distance,
firstMile(o, v), of order o is the distance from v = A(o)’s
current location loc(v, ot) to the pick-up location or in the
route followed by v. Similarly, lastMile(o, v) is the last-
mile distance from or to drop-off location oc.

Definition 4 (Expected Delivery Time). The expected deliv-
ery time of order o when assigned to vehicle v = A(o):

EDT (o, v) = max {time(A(o)) + firstMile (o, v) , op}
+ lastMile (o, v) (1)

Here, time(A(o, v)) denotes the computation time taken
by the assignment algorithm. To explain EDT (o, v), the
time to prepare food, and the time to assign a vehicle and
reach the restaurant can progress in parallel. Thus, we take
the maximum of these two components.

Problem 1 (The food delivery problem (FDP)). Given a set
of orders O and vehicles V , if A is the set of all possible
assignments ofO to V , find the assignmentA that minimizes
the average expected delivery time.

arg min
A∈A

{
1

|O|
∑
∀o∈O

EDT (o,A(o))

}
(2)

At this juncture, we highlight two practical constraints.
(1) In the real world, we work with a data stream of orders
and vehicles instead of sets. The typical strategy to circum-
vent this issue is to accumulate orders over a time window
∆ and assign this order set to available vehicles (Joshi et al.
2021; Reyes et al. 2018). This process is then repeated over
the data stream.
(2) A food delivery service provider guarantees a Service-
level agreement (SLA) of delivering the order within a stipu-
lated time. This SLA is needed since food goes stale within
a short time duration. Thus, it is desirable that the expected
delivery time of all orders is within the SLA threshold Ω.

Problem Formulation: Fair Food Delivery
Problem 1 optimizes only the customer experience and does
not incorporate the driver experience. As discussed earlier,
a system would be fair if it equally distributes the time-
normalized income among all delivery agents. We therefore
formalize the notion of fairness for delivery vehicle.
Definition 5 (Time-Normalized Vehicle Income). Given
any two time points t1 < t2 and a vehicle v, let aT(v, t1, t2)
be the time that v was available in time interval [t1, t2],
and let dT(v, t1, t2) and wT(v, t1, t2) be the total time spent
driving and waiting at restaurant respectively by vehicle v
in [t1, t2]. Then, if aT(v, t1, t2) > 0 we say that v’s time-
normalized income in [t1, t2] is defined as:

inc(v, t1, t2) =
w1 · dT(v, t1, t2) + w2 · wT(v, t1, t2)

aT(v, t1, t2)
, (3)

where w1, w2 are payment parameters decided by the food
delivery company.

Typically, w1 > w2. Note that aT(v, t1, t2) −
(dT(v, t1, t2) + wT(v, t1, t2)) is the time during this inter-
val when v was either available, but had no orders assigned
to it, i.e., it was idle.
Problem 2 (Fair Income Distribution in Food Delivery).
Given a set of orders O beginning at time 0 and ending at
time Tm and a set of available vehicles V , if A is the set of
all possible assignments of O to V , give an algorithm to find
an assignment A to minimize the income gap.

arg min
A∈A

{
max
v∈V
{inc (v, 0, Tm)} −min

v∈V
{inc (v, 0, Tm)}

}
(4)

Optimizing Problem 2 may lead to an increase in delivery
time, and hence affect the customer experience. We there-
fore aim to minimize Problem 2 under a bounded increase
in delivery time. Formally,
Problem 3 (The Fair Food Delivery Problem). Find an as-
signment A minimizing Problem 2 under the constraint:

Dist(A(o), o) ≤ Γ× nearDisto, ∀o ∈ O (5)

where Dist(o,A(o) is the road network distance (short-
est path) of order o from its assigned vehicle v = A(o),
nearDisto is the distance to the nearest vehicle from order
o and Γ > 1 is a threshold.
Theorem 1. There is no PTIME algorithm that can approx-
imate Prob. 2 within any constant factor c, where 0 < c ≤ 1,
unless P = NP .

PROOF. Provided in (Gupta et al. 2022).
Corollary 1. There exists no PTIME algorithm that can
approximate Prob. 3 within any constant factor c, where
0 < c ≤ 1, unless P = NP .

PROOF. Any instance of Prob. 2 reduces to an instance
of Prob. 3 for Γ > diameter × min distance, where
diameter indicates the longest shortest path in the road net-
work and min distance is the minimum distance between
any two points in the network.
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Our Proposal: FAIRFOODY
We propose a heuristic algorithm FAIRFOODY to solve the
fair food delivery problem. It builds a weighted bipartite
graph with vehicles in one partition and clusters of or-
ders in the other. The weights of the edges are computed
such that finding a minimum weight matching (Kuhn 1955;
Munkres 1957) in this bipartite graph optimizes the criterion
of Prob. 2, while also ensuring a good solution with respect
to Prob. 1. We now elaborate on the key steps.
Definition 6 (Shortest Delivery Time (Joshi et al. 2021)).
The shortest delivery time for an order o is SDT (o) = op +
SP (or, oc, ot).
SDT (o) is a natural lower bound on EDT (Eq. 1).

Definition 7 (Augmented Order Delivery Time). Consider
a vehicle v at time t. Suppose at this time we add a cluster
of orders O to v’s route plan and v is able to deliver all
orders in this augmented route plan by time t′ > t, on the
assumption that no new orders are added to v’s route plan
in time interval (t, t′). Then we define the Augmented Order
Delivery Time AODT (O, v, t) as t′ − t.
Definition 8 (Augmented Order Payment). Consider a ve-
hicle v at time t which may be currently idle or currently
assigned some order. Suppose at this time we add a cluster
of orders O to v’s route plan (which may be empty if the
vehicle is idle) and v is able to deliver all orders in this aug-
mented route plan at time t′ > t such that the total driving
time in the interval [t, t′] is t1 and the total waiting time is t2.
Then, on the assumption that no new orders are added to v’s
route plan in time interval [t, t′], we define the Augmented
Order Payment AOP (O, v, t) as w1 · t1 + w2 · t2.

As discussed in our problem formulation (Prob 1), we par-
tition the data stream of orders into windows of length ∆,
and allocate all orders that arrived within this window. This
process is then repeated for each of the subsequent windows.
Definition 9 (Next-slot Normalized Income). At time `∆,
i.e. at the beginning of the ` + 1st window, consider a vehi-
cle v that is available. In addition, consider an unassigned
order o. We define the next-slot normalized income of v if it
is assigned o as

ns-inc(v, o, `) =
inc(v, `∆) · aT(0, `∆) +AOP (o, v, `∆)

`∆ +AODT (o, v, `∆)
.

(6)

Creating a weighted bipartite graph: At time `∆, let us
assume that V` is the set of available vehicles and O` is the
set of unallocated orders. We create a weight bipartite graph
(U1, U2, E) where U1 = V`, i.e., one side of the partition is
the set of available vehicles and U2 is a cluster of orders.
Clustering orders: If |O`| ≤ f · |V`| where f is a parameter
chosen in (0, 1), we set U2 = O`. Otherwise we perform a
clustering on O` using Ward’s method, i.e., we successively
coalesce those two clusters whose being delivered by a sin-
gle vehicle leads to the least increase in the extra delivery
time. The cluster size is not allowed to cross MaxO. We stop
either when the number of clusters falls to f ·|V`| or when the
increase in expected delivery time due to clustering crosses
a threshold η. We denote the final clusters as O′`.

Edge weights in bipartite graph: Each edge of the bipartite
graph is of the form (v,O) where O ⊂ O` is either a single
order (a singleton set) or a cluster of orders. If vehicle v is at
a distance not exceeding Γ × nearDistO (Recall Prob. 3),
we set the weight as follows:

w(v,O) = ns-inc(v,O, `)−min
v∈V

inc(v, `∆). (7)

To identify all vehicles whose distance not exceeding Γ ×
nearDistO in an efficient manner, we perform best-first
search on the road network graph (See Alg. 1 in (Gupta
et al. 2022)). Specifically, we start from the restaurant lo-
cations of each order in O and visit all the nearby vehicles
in best first search order till distance from source restaurant
exceeds Γ×nearDistO. All vehicles beyond this boundary
are assigned edge weight ≈ ∞.

Finally, we run Kuhn-Munkres on the bipartite graph to
obtain the allocation for the `+ 1st window.
Theorem 2. The time complexity of the proposed algorithm
is O(m · n(q + max(m,n))), where m = |V`|, n = |O′`|,
O(q) is the time taken for shortest path computation.

PROOF. Provided in (Gupta et al. 2022).

Experimental Evaluation
In this section, we benchmark FAIRFOODY and establish:
• Fairness: FAIRFOODY imparts more than 10X improve-

ment in fairness over baselines.
• Cost of fairness: FAIRFOODY maintains a comparable

delivery time as that of FOODMATCH (Joshi et al. 2021).
Code is available at https://github.com/idea-iitd/fairfoody.

Evaluation Framework
Baselines: We consider (1) FOODMATCH, and (2) Two-
sided Fairness (2SF) (Sühr et al. 2019). The code for both
algorithms are obtained from the authors.
Metrics: The performance is quantified through:
• Gini coefficient: Gini coefficient is the ratio of the area

that lies between the line of equality and the Lorenz curve
over the total area under line of equality (Gastwirth 1972).
• DTPO: DTPO measures the average delivery time per

order. DTPO allows us to quantify the cost of fairness.
• Percentage of SLA violations (SLA-V): We measure

the percentage of orders not delivered within the promised
time limit (Prob. 1). The time limit is set to 45 minutes.
• Spatial distribution distance (ψ): This metric quanti-

fies the total variation distance (Levin, Peres, and Wilmer
2017) between the heatmaps of top-25% and bottom-25%
drivers (Figs. 2 and 3). See (Gupta et al. 2022) for details.
Parameters: The default size of accumulation window ∆ is
3 minutes. Clustering parameter f , and payment weights w1

and w2 (Def. 5) are set to 0.8, 1.0 and 0.8 respectively as
their default values.

Comparison with FOODMATCH and 2SF
Table 2 presents the performance of various algorithms
across all three cities. In Fig. 1(b), we observed that FOOD-
MATCH induces significant income disparity among drivers.
This is reflected in the high Gini of FOODMATCH across all
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Figure 3: Heat map of order locations after applying FAIR-
FOODY. In (a-c) we show this location data with respect to
the orders serviced by the top 25% agents and in (d-f) those
serviced by bottom 25% agents based on income.

cities in Table 2. In contrast, FAIRFOODY reduces Gini more
than 10 times across three cities. This reduction in Gini,
however, does not come at the cost delivery time or SLA
violations (SLA-V). Specifically, there is minimal increase
in DTPO and SLA-V. Similar to Gini, FAIRFOODY is also
significantly better in Income Gap. Overall, this shows that
it is possible to ensure fairness without compromising on the
customer experience.

We also compare with 2SF at λ = 1 and λ = 0. We choose
these two λ values since they represent the two extremes; at
λ = 1, 2SF optimizes only the driver income gap, whereas
λ = 0 minimizes only the delivery time. Thus, λ = 1 repre-
sents the best possible Gini by 2SF. We observe that even in
this scenario, FAIRFOODY is 9 times better on average. At
λ = 0, although 2SF achieves low delivery times, it fails to

City Algorithm Gini Income DTPO SLA-V
Gap (%)

A

FAIRFOODY 0.035 20.5 15.4 0.33
2SF, λ = 1 0.32 58 17.3 0.37
2SF, λ = 0 0.526 55.9 15.2 0.33
FOODMATCH 0.518 59.2 15.2 0.32

B

FAIRFOODY 0.047 30.4 15.5 0.22
2SF λ = 1 0.316 59.9 15.5 23.12
2SF, λ = 0 0.471 59.4 14.5 19.62
FOODMATCH 0.512 59.3 15.4 0.23

C

FAIRFOODY 0.035 33.5 16.2 0.33
2SF, λ = 1 0.323 58.3 16.9 12.05
2SF, λ = 0 0.513 56.1 15.8 6.63
FOODMATCH 0.562 59.1 16.0 0.32

Table 2: Performance of FAIRFOODY, FOODMATCH, and
2SF across various metrics. The unit of DTPO is in minutes.
The best performance in each metric is highlighted in bold.

City Algorithm 25 h 50 h 75 h 95 h

A
FAIRFOODY 38 51.5 70 88
FOODMATCH 13 29 65 205.3
2SF λ = 1 20 44 80 142

B
FAIRFOODY 31 61 92 115
FOODMATCH 12 33 75 264
2SF λ = 1 23 53 90 156

C
FAIRFOODY 44 64 79 95
FOODMATCH 13 31 74 250
2SF λ = 1 28 52 87 154

Table 3: Number of orders across all six days per driver at
various percentiles(h).

satisfy SLA across a large portion of orders.
In Table 3, we further examine the number of orders de-

livered by drivers across various percentiles based on nor-
malized income (Def. 5). It is clear from the data that FAIR-
FOODY achieves the most equitable distribution.

Impact on Spatial Distribution
In Fig. 2, we showed that spatial distribution is a key
driver of payment inequality. Now we will show that FAIR-
FOODY equalizes the spatial distributions across the pay
range. Fig. 3 studies this question in City C. As visible, the
heatmaps of the top-25% and bottom-25% are much more
similar when compared to Fig. 2. This indicates that dispar-
ity in spatial distribution is correlated to income disparity.

To quantify this observation and examine whether the pat-
tern holds across all cities, we compute ψP across all com-
binations of cities and properties (See (Gupta et al. 2022)
for the exact formula). Table 4 presents the results. Two key
observations emerge from this experiments. First, both for
FAIRFOODY and 2SF, λ = 1, the ψ is lower across all cities
and properties. This indicates that spatial distribution dis-
tance and Gini (as well as Income Gap) are indeed corre-
lated. However, just minimizing spatial distribution distance
is not enough in minimizing Gini. Specifically, although
2SF, λ = 1 has a lower spatial distance than FAIRFOODY
in City B, its Gini is significantly higher. (Table 2).

Impact of Parameters
Clustering parameter (f ): Lowering of f leads to more
clustering among orders. Fig. 4 analyzes variation in dif-
ferent performance metrics against f . Both Gini coeffi-

City Locations FOOD- 2SF 2SF FAIR-
of the MATCH λ = 0 λ = 1 FOODY

A
Vehicle 0.543 0.500 0.293 0.231
Customer 0.490 0.437 0.268 0.235
Restaurant 0.469 0.442 0.169 0.278

B
Vehicle 0.394 0.394 0.169 0.191
Customer 0.348 0.312 0.152 0.182
Restaurant 0.354 0.342 0.135 0.174

C
Vehicle 0.386 0.403 0.243 0.193
Customer 0.318 0.310 0.217 0.185
Restaurant 0.318 0.382 0.206 0.239

Table 4: Comparison of spatial distribution ψP .
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Figure 4: Impact of clustering parameter (f). Gini in Fig. 4(a) is computed on time-normalized income.
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Figure 5: Impact of number of vehicles on various metrics. Gini in Fig. 5(a) is computed on time-normalized income.

cient (Fig. 4(a)) and Average delivery time per order (Avg.
DTPO) (Fig. 4(c)) increase as we decrease f . Higher clus-
tering prevents equitable distribution of orders (and, there-
fore, income). Hence, Gini increases. DTPO increases since
larger clusters lead to less simultaneous delivery of orders
through multiple drivers. SLA violations remain unaffected
(Fig. 4(d)). There is no consistent trend across three cities in
income gap (Fig. 4(b)).
Impact of number of vehicles: Instead of considering all
vehicles that were available in our real dataset, we randomly
sample a subset of X vehicles. Next, we vary X in the x-
axis and observe the impact of various metrics in y-axis.
Fig. 5 presents the results. We observe that Gini increases
with increase in vehicles (Fig. 5(a)). This is expected since
decreasing the number of vehicles generates higher demand
and more scope to fairly distribute orders. It is also natu-
ral that higher vehicle available leads to lower delivery time
(Fig. 5(c)) and less SLA-violations (Fig. 5(d)).
Further experiments: Please see (Gupta et al. 2022) for
more experiments on this work.

Related Work
Food order assignment: On the problem of food-delivery,
FOODMATCH (Joshi et al. 2021) is the only work to provide
a realistic and scalable solution in food delivery domain.
Other works on food delivery suffer from various unreal-
istic assumptions such as perfect information about arrival
of orders (Yildiz and Savelsbergh 2019), ignoring the road
network (Reyes et al. 2018), and ignoring food preparation
time (Zeng, Tong, and Chen 2019).
Fairness in multi-sided platform algorithms: With the
growing popularity of multi-sided platforms, a number of
recent works have investigated the challenges of unfairness
and bias in such platforms (Patro et al. 2020a; Dash et al.

2021). For example, (Edelman, Luca, and Svirsky 2017)
looked into the likelihood of racial bias in Airbnb hosts’
acceptance of guests, while (Lambrecht and Tucker 2016)
looked at gender discrimination in job advertisements. Few
works have also looked at how producers and customers
treat each other as a group. (Chakraborty et al. 2017) and
(Sühr et al. 2019) proposed strategies for two-sided fairness
in matching situations, whereas (Burke 2017) categorised
distinct types of multi-stakeholder platforms and their re-
quired group fairness qualities. Individual fairness for both
producers and customers is addressed by (Patro et al. 2020b)
in tailored suggestions in two-sided platforms. Despite these
works on fairness in two-sided platforms, there has not been
any studies on food delivery platforms. It is also worth not-
ing that, as discussed in (Joshi et al. 2022), allocation al-
gorithms for the cab service industry (Garg and Ranu 2018;
Yuen et al. 2019; Ma, Zheng, and Wolfson 2013; Cheng,
Xin, and Chen 2017) is not a natural fit food delivery.

Conclusion
In this work, we focused on the unfairness issues faced by
delivery agents in food delivery platforms. Using data from
a large real-world food delivery platform, we showed that
there exists high inequality in the income earned by the
agents. To counter such inequality, we proposed an algo-
rithm FAIRFOODY to assign delivery agents to orders ensur-
ing that income opportunities are fairly distributed among
the agents. Extensive experiments show that FAIRFOODY
outperforms state-of-the-art baselines in lowering inequal-
ity while ensuring minimal increase in delivery time. Given
the increasing adoptions of food delivery platforms, ensur-
ing fairness is the need of the hour and we hope that our
work would lead to more followup works in this space.
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