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Abstract

Wearable devices that integrate multiple sensors, processors,
and communication technologies have the potential to trans-
form mobile health for remote monitoring of health parame-
ters. However, the small form factor of the wearable devices
limits the battery size and operating lifetime. As a result, the
devices require frequent recharging, which has limited their
widespread adoption. Energy harvesting has emerged as an
effective method towards sustainable operation of wearable
devices. Unfortunately, energy harvesting alone is not suffi-
cient to fulfill the energy requirements of wearable devices.
This paper studies the novel problem of adaptive energy man-
agement towards the goal of self-sustainable wearables by us-
ing harvested energy to supplement the battery energy and to
reduce manual recharging by users. To solve this problem, we
propose a principled algorithm referred as AdaEM. There are
two key ideas behind AdaEM. First, it uses machine learn-
ing (ML) methods to learn predictive models of user activity
and energy usage patterns. These models allow us to estimate
the potential of energy harvesting in a day as a function of the
user activities. Second, it reasons about the uncertainty in pre-
dictions and estimations from the ML models to optimize the
energy management decisions using a dynamic robust opti-
mization (DyRO) formulation. We propose a light-weight so-
lution for DyRO to meet the practical needs of deployment.
We validate the AdaEM approach on a wearable device pro-
totype consisting of solar and motion energy harvesting us-
ing real-world data of user activities. Experiments show that
AdaEM achieves solutions that are within 5% of the optimal
with less than 0.005% execution time and energy overhead.

Introduction
The increasing cost of healthcare (Dieleman et al. 2020)
and its growing need due to chronic diseases and ag-
ing (Dorsey et al. 2016) motivates the need for remote
health-monitoring (Espay et al. 2016). Towards this goal,
wearable devices that integrate multiple physiological sen-
sors, processors, and communication technologies to moni-
tor the user’s health have emerged as a promising technol-
ogy (Daneault 2018). For example, in patients diagnosed
with cardiac arrhythmia, we can use the measurements from
sensors to predict the likelihood of a cardiac failure. The de-
sign of wearable devices is optimized for user comfort using
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emerging technologies including flexible hybrid electronics
(Khan et al. 2016), as they need to be worn for an extended
duration. As a result, wearable devices are typically light-
weight with a small form-factor which severely limits the
size of the available battery. The small battery, in turn, limits
the operating life, leading to the need for frequent recharg-
ing, reduced usability, and adoption (Johansson, Malmgren,
and Murphy 2018). Therefore, there is a strong need for ap-
proaches that enable sustainable operation of wearable de-
vices and minimize recharging requirements.

Energy harvesting (EH) (Kansal et al. 2007; Vigorito
et al. 2007; Tuncel et al. 2021) from ambient sources has
emerged as a promising solution to enable self-sustainable
wearable devices. We can integrate various EH modalities
including photovoltaic (PV) cells, piezoelectric sensors, and
thermoelectric generators to harvest energy from ambient
light, user motion, and body heat, respectively. The har-
vested energy from ambient sources can be used to sup-
plement the battery of the device and prolong the interval
between manual recharges. The overall goal of energy man-
agement (EM) is to maximize the utilization of harvested en-
ergy and to reduce the frequency of manual recharging. EM
decisions include the timing and duration of manual recharg-
ing. Decision-making for EM is challenging for the follow-
ing reasons: 1) energy availability from ambient sources is
highly stochastic. EM decision-making should account for
this inherent uncertainty so that the battery is not exhausted
completely; 2) the wearable device must not miss any crit-
ical events, such as falls, during recharging periods; and 3)
recharging during intervals of abundant energy availability
can lead to poor utilization of harvested energy. Therefore,
EM algorithms must learn the usage patterns of the users and
the EH potential to optimally schedule manual recharging.

This paper proposes a novel and principled AI-based ap-
proach referred to as AdaEM to solve the above-mentioned
challenges of energy management. AdaEM relies on two key
ideas. First, we use machine learning (ML) techniques to
predict user activities, energy usage patterns, and EH avail-
ability in the future. These predictions are fed as input for
EM decision-making. Second, to reason about the worst-
case uncertainty in ML predictions and ambient energy har-
vest, we formulate a dynamic robust optimization (DyRO)
problem to make EM decisions. Due to limited compute
and energy resources in wearables, we cannot use expen-
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sive methods to repeatedly solve DyRO problem instances
for decision-making. Therefore, we propose a highly effec-
tive light-weight approach to solve DyRO instances for real-
world deployment. We validate our AdaEM approach on a
real wearable device prototype consisting of light and mo-
tion EH. We start by characterizing the potential of energy
harvest on the prototype. The characterization data is then
combined with the user activity data from publicly avail-
able datasets to determine the available energy in day-to-
day activities of the users. Finally, we apply AdaEM on the
user data to maximize the interval between recharging op-
erations without missing critical activities. Our results show
that AdaEM achieves solutions that are within 5% of the
optimal solution with less than 0.005% execution time and
energy overhead on real wearables. Moreover, comparison
with a realistic baseline shows that AdaEM has significantly
lower energy constraint violations while providing the re-
quired level of accuracy for the target application.
Contributions: The key contribution of this paper is the de-
velopment and evaluation of the AdaEM algorithm for en-
ergy management in wearable devices for mobile health.
• Specifying the novel AI-based energy management prob-

lem for self-sustainable wearable devices via energy har-
vesting, which has the potential for high social impact.

• Development of a principled dynamic robust optimiza-
tion formulation for decision-making to maximize the
utilization of the harvested energy.

• A light-weight and highly effective algorithm for re-
peatedly solving DyRO instances for decision-making to
meet the needs of real-world deployment.

• Experimental evaluation on a real wearable proto-
type with data from five users over five years to
show the benefits of the AdaEM algorithm in achiev-
ing sustainable operation with negligible overhead.
We also release the source code on GitHub at:
https://github.com/gmbhat/adaEM

Related Work
Research and development of wearable devices has in-
creased in recent years due to their applications in health
and activity monitoring (LIVMOR 2021; Dempsey 2015).
However, their adoption by the medical community is lim-
ited. One of the primary reasons for the limited adoption
is the frequent recharging requirements of most, if not all,
wearable devices (Ozanne et al. 2018). Therefore, recent re-
search in wearable devices has focused on addressing the
energy limitations of wearable devices (Chong et al. 2019).

Energy harvesting and management has emerged as the
most promising technique to overcome the energy con-
straints in wearable devices. Common sources of energy in-
clude ambient light, user motion, and body heat. Out of these
sources, ambient light has the highest power density and ef-
ficiency. For instance, prior studies have shown that ambi-
ent light can provide up to 0.1 mW/cm2 and 100 mW/cm2

in outdoor and indoor conditions, respectively (Valenzuela
2008). Motion EH has received increased attention recently
due to its applicability in activity monitoring devices (Mitch-
eson et al. 2008).

Harvesting energy from ambient sources necessities de-
velopment of algorithms that manage the harvested energy
effectively. This is critical because the ambient energy is not
available at all times during the day. As such, the device
must have sufficient energy reserves to operate effectively
when harvested energy is not available. To this end, Kansal
et al. (2007) proposed the concept of energy neutral oper-
ation using linear programming, whereby the energy used
in a given period (e.g. a day) is equal to the energy har-
vested in that period. Recent work has also used dynamic
programming and control-theoretic methods to achieve en-
ergy neutral operation (Vigorito et al. 2007; Bhat et al. 2017;
Geissdoerfer et al. 2019; Yamin, Bhat, and Doppa 2022).

ML methods have also been used for energy harvest pre-
diction and allocation to achieve energy neutral operation.
For instance, neural networks and other predictors have been
used to estimate light energy available in the future (Barrera
et al. 2020; Dhillon et al. 2020; Shresthamali, Kondo, and
Nakamura 2017). The energy estimates are then used to de-
cide the energy allocation and duty cycle in the future. These
prior methods don’t address our general adaptive EM prob-
lem. In contrast, we formulate a dynamic robust optimiza-
tion to make EM decisions by accounting for uncertainty in
the harvested energy. We propose a light-weight solution,
AdaEM, to make EM decisions at runtime.

Background and Preliminaries
This section first provides a brief background on emerging
technologies in form-factor and EH for wearable devices,
with detailed explanations in the Appendix. Then, we de-
scribe challenges and opportunities for the widespread adop-
tion of wearables using these technologies.
Flexible hybrid electronics: Flexible electronics can en-
able comfortable wearables through the use of materials that
are fully bendable and rollable. However, the performance
capabilities of fully flexible electronics are low compared
to conventional CMOS devices. To address these limita-
tions, recent research has proposed flexible hybrid electron-
ics (FHE) (Khan et al. 2016). FHE uses rigid components
on a flexible substrate to implement a device that conforms
to the shape of the user’s body. By using rigid components
for processing and sensing, FHE devices are able to utilize
the performance advantages provided by CMOS technology
and form factor advantages of the substrate.
Light EH: Small form-factor flexible PV cells have shown
potential for use in wearable devices (Park et al. 2009).
These PV cells can be easily integrated into wearable de-
vices including fabrics, hats, and jackets. Therefore, they are
an important step towards sustainable operation and adop-
tion of wearable devices.
Motion EH: Motion EH is another promising technology
for wearable devices as motion energy harvesters can be eas-
ily integrated with human activities (Mitcheson et al. 2008).
For example, piezoelectric harvesters can be used on knees
and elbows to harvest energy whenever the user moves.
Some studies have also used motion EH as a feature in per-
forming activity classification (Khalifa et al. 2017). As a re-
sult, motion EH can act as a sensor and an energy source.
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Figure 1: Overview of the system for sustainable wearable health monitoring via adaptive energy management.

Challenges & Opportunities for Wearables
Despite the development of the above technologies, the
widespread adoption of wearable devices has been limited
to laboratory studies and smartwatches. One of the primary
reasons for the lack of adoption of wearable devices is fre-
quent recharging requirements along with lack of comfort
of rigid devices. To address these challenges, we take a
holistic view of the problem. Specifically, our problem for-
mulation considers the application requirements, user activ-
ity patterns, and EH together to enable optimal operation
of wearable devices. The formulation also includes unique
properties of FHE, such as bending, so that the changes in
EH are accounted correctly (Park et al. 2017).

Figure 1 shows an overview of the system for sustainable
wearable health monitoring. The left side shows an illustra-
tion of a user wearing number of sensors and EH modules.
The data obtained from the sensors is used to identify the
user’s activities and health status. During each interval of
operation, the system takes the current battery level, energy
constraints, and activity constraints as the input. The energy
constraints may specify that the battery must be maintained
above a certain minimum level to ensure sufficient reserves
in case of an emergency. Similarly, the activity constraints
specify a set of activities that have the highest priority for
the user. The first step in the EM is to predict future activ-
ities using the sensor data. The activities are then used to
predict future energy requirements and harvest. Finally, the
energy consumption of the device is allocated such that the
battery life is maximized while satisfying the constraints.
At the end of the interval, we use the actual energy and
activities of the user to update the models. We also deter-
mine the optimal charging time for the device so that criti-
cal events are not missed and ambient energy is not wasted.
For instance, the battery trajectory on the right shows that
we do not need charging at hour one because there is suffi-
cient ambient energy available, while hour 23 needs charg-
ing. The AdaEM approach accurately predicts this behavior
and schedules charging only for hour 23.

Dynamic Robust Optimization Approach
The energy management (EM) problem is challenging due
to the following reasons: 1) Energy harvesting from ambient
sources is highly stochastic; 2) At the same time, the wear-

able device should have sufficient energy to fulfill the re-
quirements of target application at all times; and 3) Recharg-
ing during periods of important activities (e.g., gait moni-
toring in a patient with Parkinson’s disease) leads to a re-
duction in the quality of service to the user. Therefore, EM
algorithms for wearable devices must account for the fu-
ture worst case uncertainty in the ambient energy harvest
and predictions about user activities and energy usage. To
overcome these challenges, we formulate the EM decision-
making as a dynamic robust optimization (DyRO) with con-
straints on the battery energy and activity accuracy. In what
follows, we first describe the DyRO formulation and then
provide a light-weight algorithm for real-world deployment.

DyRO Formulation

Setup for Decision-making: Without loss of generality, we
consider a set of equal length intervals T (minutes, hours,
etc.) in a given time horizon T . The EM decision-making is
performed at each discrete interval t ∈ T over a fixed time
horizon of T , such as a day, to account for the repetitive na-
ture of human activities. At the beginning of each interval
(decision epoch) t, the EM algorithm allocates the energy to
be consumed in the interval based on the user activities, bat-
tery level, and energy harvest. Similarly, any manual charg-
ing is scheduled for one or more intervals depending on the
energy required to replenish the battery. For example, the
EM algorithm can decide to recharge the battery for three
consecutive intervals.
Variables and Constraints: We define the following vari-
ables and constraints to describe the system dynamics.

1) Battery recharging indicator B(t): This binary vari-
able indicates whether recharging is scheduled in a given
interval or not. At each decision epoch t ∈ T , the EM algo-
rithm assigns B(t) to 1 (recharge) or 0 for maximizing the
duration between recharges while satisfying the constraints.

2) Battery energy dynamics: In each interval t ∈ T , the
battery receives energy from the harvesting sources and a
charging source, if the charging is enabled. The harvested
energy in an interval ξHt is a random variable with uncer-
tainty because environmental conditions can affect the har-
vested energy. We have a random variable for the energy
harvested for each interval in T . Furthermore, the target ap-
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plication will draw energy from the battery to execute the
required tasks. The energy used by the application is a deci-
sion variable that is computed by the EM algorithm. These
dynamics of the battery can be captured as follows:

EB
t+1 = EB

t + ηξHt + EI
tB(t)− Ec

t , t ∈ T (1)

where EB
t and EB

t+1 are energy at the beginning of the cur-
rent and next interval respectively, η is the EH efficiency,
ξHt ∈ ΞH

t is the realization of harvested energy at interval
t ∈ T , B(t) is the battery charging flag, EI

t is the charging
energy, and Ec

t is the energy consumed in the interval t.
3) Battery energy constraints: The battery must always

maintain a minimum level of charge so that it has sufficient
energy to take actions in case of an emergency. For example,
if the device detects a patient fall, it must be able to notify
a caretaker and call for help. We also ensure that the energy
at the end of any horizon T is equal or greater than a target
level Etarget for the next horizon. Similarly, the energy in
the battery cannot exceed the design capacity. Therefore, the
battery energy constraints can be expressed as:

Emin ≤ EB
t ≤ Emax, t ∈ T , EB

T ≥ Etarget (2)

where Emin and Emax are the min. and max. energy values.
4) Accuracy constraint: Without loss of generality, we

assume that the device is performing a prediction task for
monitoring health of the user. It is critical to ensure that ap-
propriate accuracy is provided to the user and their health
providers. Therefore, we impose an accuracy constraint on
the application using a threshold Amin as follows:

At >= Amin, t ∈ T (3)

where At is the accuracy in interval t.
5) Critical activity constraint: In general, some activi-

ties performed by the user have a higher priority for health
monitoring than others. For example, in a user with move-
ment disorders, it is critical to monitor for falls or freezing of
gait when they are walking. We designate a subset of the ac-
tivities Ac ∈ A as critical activities, during which recharg-
ing cannot be scheduled.

Optimization Problem: The primary objective of the EM
algorithm is to maximize the utilization of harvested en-
ergy and maximize the duration between consecutive charg-
ing operations. Suppose the start times of the charging are
given by the set Tc = {c1, c2, . . . , cm}. The charging times
are a function of the realizations of the harvested energy
ξHt , t ∈ T . Therefore, the optimization objective is:

maximize [minE{∆Tc(ξH1 , · · · , ξHT )}] (4)

The objective function first takes the first-order difference of
the elements in the set Tc. The minimum value of the first-
order difference gives the shortest time interval between two
charging sessions. Since our goal is to prolong the operation
of the device, we maximize the minimum of the first-order
difference of Tc. In summary, we can write the overall opti-

mization problem as follows:

maximize minE{∆Tc(ξH1 , · · · , ξHT )} (5)

s. t. EB
t+1 = EB

t + ηξHt + EI
tB(t)− Ec

t , t ∈ T (6)

Emin ≤ EB
t ≤ Emax, t ∈ T , EB

T ≥ Etarget (7)
At ≥ Amin, t ∈ T (8)

B(t) = 0 ∀t : At ∈ Ac (9)

Optimization variables: Solving the above optimization
problem involves determining the values of B(t), Ec

t , and
EB

t+1. The battery charging indicator is the primary variable
that directly relates to the objective function. The EM algo-
rithm must assign a zero or one to each of the intervals in T
while satisfying the constraints. Ec

t , and EB
t+1 are indirect

variables which affect the battery dynamics and target ap-
plication accuracy. Specifically, higher energy consumption
Ec

t leads to a faster depletion of the battery, which in turn
requires the user to recharge the device sooner. At the same
time, higher energy consumption typically leads to higher
accuracy. Therefore, the EM algorithm should minimize the
energy consumption of the device while satisfying the ac-
curacy constraints. Finally, EB

t+1 is a function of the energy
consumption, harvest, and the charging availability. The goal
of the optimization is to ensure that the battery level always
stays between Emin and Emax constraints.

Problem complexity: The optimization problem in Equa-
tions 5–9 is an instance of dynamic robust optimization
(DyRO) (Bertsekas 2012) with a discrete and non-linear ob-
jective. In particular, solution to the problem must consider
the worst-case uncertainty in the energy harvest to ensure
that battery constraints are not violated. Furthermore, as new
information becomes available at runtime in the form of ac-
tual EH values, the optimization for adaptive EM should
change future decisions as a function of the new informa-
tion. The uncertainty in the problem, along with a mix of ze-
ro/one (B(t)) and continuous variables (Ec

t and EB
t+1) make

the problem computationally hard to solve. Specifically, ob-
taining the optimal solution to the general problem formu-
lation requires an exhaustive search, which leads to a time-
complexity of O(c|T |), where c > 1. If we make the prob-
lem convex and use continuous variables for B(t), the time-
complexity will be at least O(|T |3) for iterative algorithms.
The time-complexity is especially critical for wearable de-
vices since they are energy constrained and repeated calls
to computationally expensive algorithms can defeat the pur-
pose of energy management. Therefore, in the next section,
we develop a light-weight algorithm that achieves compara-
ble results to the optimal solutions from a solver.

AdaEM: a Light-Weight Algorithm for DyRO

Key challenges: Solving the DyRO problem instance opti-
mally at runtime is infeasible for two key reasons: 1) the true
values of the uncertain energy harvest for current and future
intervals within the decision-making horizon; and 2) wear-
able devices are constrained by both computing and energy
resources needed for solving the DyRO problem. Therefore,
we develop a two-stage approach to design an efficient and
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practical algorithm referred to as AdaEM to solve the DyRO
problem instances for making adaptive EM decisions.

Overview of the AdaEM algorithm: The first stage of
AdaEM involves using supervised learning algorithms to
learn the distribution and uncertainty of the energy harvest
in both current and future intervals. We exploit the histori-
cal data and side information about energy harvest for this
purpose. For example, the wearable device can record in-
formation about energy harvested in the past as features to
predict future energy and uncertainty. Similarly, the side in-
formation available for wearable devices includes the loca-
tion (e.g. outdoors vs. indoors), user activity, and current day
(e.g., weekday vs. weekend). This side information can be
used to further improve the ML models for energy harvest.
The energy predictions and uncertainty from the ML mod-
els are then used to get a concrete instantiation of the DyRO
problem to obtain EM decisions.

The second stage of AdaEM solves the concrete DyRO
problem instance as follows. At the beginning of each
decision-making horizon, the predicted energy harvest and
uncertainty are used to obtain initial assignments of battery
charging and energy consumption allocations, i.e., EM de-
cisions. Subsequently, at runtime, the EM decisions are re-
vised based on the actual values of the harvested energy.
This approach ensures that the wearable device takes advan-
tage of any excess harvested energy to extend the battery life
or account for shortfall of energy so that the constraints are
not violated. In what follows, we describe these two stages
in more detail.

Energy Harvest Prediction: The quality of EM decisions
depends critically on the accuracy of predicted future en-
ergy harvest. In addition to energy harvest prediction, we
also need the uncertainty in predictions to reason about the
worst-case behavior. Towards this goal, we use the histor-
ical energy harvest data to train a ML model using super-
vised ML algorithms. The input features of the system state
s, φ(s), for making predictions include the energy harvest in
the past days, hours, and the derivative of the energy harvest
in the past hour (Yamin and Bhat 2021). We also include
side information such as the current location, user activity,
and day as part of the feature set φ(s). The ground-truth en-
ergy harvest values y∗ are used as supervised data. We have a
regression learning problem at hand and any off-the-shelf re-
gression learner can be employed. However, due to the con-
straints on energy and compute resources in wearables, we
need to select a light-weight ML model such as trees, since
comparison operations are efficient.

To choose the energy harvest predictor, we compare the
performance of neural networks, linear regression, and an
ensemble of regression trees. All the learning approaches
have a non-negativity constraint for the predictions since en-
ergy harvest is always non-negative. Neural networks and
regression trees gave similar accuracy while linear regres-
sion showed relatively lower accuracy. In our specific im-
plementation, we employ an ensemble of regression trees:
prediction is the mean and uncertainty is the variance. We
note that our final results are not dependent on any particular
regression learner. In fact, both neural networks and regres-

Algorithm 1: AdaEM for Charging Optimization

Input: EH prediction ξ̂Ht and uncertainty U ∀t ∈ T , Energy con-
straints, Accuracy constraints, Energy vs. Accuracy profile
Output: Battery recharging indicator B(t), t ∈ T , Energy con-
sumption, Battery levels
1: Set B(t) = 0 ∀t : At ∈ Ac

2: Set Ec
t , t ∈ T such that accuracy is maximized

3: Calculate Ec
min that satisfies the accuracy constraint

4: Obtain EB
t+1, t ∈ T using EH prediction and assigned Ec

t

5: while ∃t|(EB
t+1 < Emin) do

6: if ∃t|(Ec
t > Ec

min) then
7: Reduce Ec

t for intervals with higher consumption
8: else
9: Calculate the energy deficit δE = Etarget − EB

T+1

10: Calculate number of charging intervals: δE/EI

11: Set B(t) = 1 starting with the first violation
12: end if
13: Obtain EB

t+1, t ∈ T using EH prediction, Ec
t , and B(t)

14: end while
15: return B(t), Ec

t , E
B
t+1∀t ∈ T

sion trees for energy prediction lead to similar performance
for the overall energy management.

Charging Optimization Algorithm: This algorithm takes
the predicted energy harvest and uncertainty to determine
the charging policy and energy consumption for all inter-
vals in a given decision-making horizon, as shown in Al-
gorithm 1. It is inspired from the water filling algorithm in
communication systems (Cover and Thomas 2012) where
the goal is to allocate a given power to multiple channels so
that the throughput is maximized. At the beginning of each
decision-making horizon, the predicted energy harvest, un-
certainty, and the constraints for all intervals are taken as the
input. Additionally, it also takes a profile of the energy and
accuracy trade-off to ensure that the activity constraints are
satisfied. The energy and accuracy trade-off are obtained by
characterizing the target application on the wearable device.
Specifically, we collect activity data with different sampling
rates and design a classifier for each sampling rate. These
datapoints are then used to obtain the relationship between
sampling rate and accuracy (Mirzadeh and Ghasemzadeh
2020; Bhat et al. 2019).

After getting the above inputs, the algorithm first initial-
izes the battery charging indicator to zero for intervals where
the user performs critical activities. This assignment is based
on the history of user’s activities. For example, by monitor-
ing a user’s activities for a month, we can generate an ex-
pected pattern of their activities and use it to set the values
of B(t) at the beginning of each horizon. As new data be-
comes available, the algorithm adjusts the values of B(t)
so that any deviations from the expected activity pattern are
taken into account. The algorithm also sets the energy con-
sumption of all intervals to the highest value so that the ac-
curacy is maximized. Next, using the worst-case EH predic-
tions, we calculate the energy in the battery for each interval
in the horizon (Line 4). If the algorithm detects any viola-
tions in the battery levels, it either reduces the energy con-
sumption or enables charging (Lines 5–14). Since our goal is
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to maximize the battery lifetime, we first reduce the energy
consumption of the target application while maintaining the
minimum accuracy. If the reduction in energy consumption
does not resolve the battery violations, the algorithm calcu-
lates the potential deficit in the energy and the number of
intervals required to complete the charging. Finally, it sets
the battery charging indicators for the required number of
intervals to one, starting with the first violation.

The initial values of the energy consumption and battery
charging are based on the EH predictions. At runtime, the
actual energy is typically different from the predicted val-
ues. Therefore, as data about the actual EH becomes avail-
able, we re-run Algorithm 1 with a shorter horizon to adjust
the energy consumption and battery charging. For instance,
if excess energy is harvested in an interval, we can either
increase the energy consumption in the following intervals
to improve the accuracy or reduce the time spent in charg-
ing. The time complexity of the algorithm is O(|T |2) in the
worst-case when the while loop runs |T | times, where |T |
stands for the number of decision-making steps.

Experiments and Results
In this section, we present the experimental results for the
proposed AdaEM algorithm along different dimensions.

Experimental Setup
Wearable device: We employ a prototype based on
the Texas Instruments (TI) CC2652R micro-controller
(MCU) (Texas Instruments Inc. 2018) as the primary wear-
able device in our experimental validation. The TI-CC2652
integrates a low-power ARM Cortex M4 core and interfaces
such as SPI and I2C for sensors. In addition to the MCU,
we include a SP3-37 flexible PV cell (FlexSolarCells 2013)
for harvesting energy from ambient light and a piezoelectric
harvester for motion EH. The wearable device incorporates
a GMB 031009 (GMB 2009) Lithium polymer battery with
a capacity of 12 mAH (160 J) as the energy storage element.
Activity Dataset: We use the American Time Use Sur-
vey (ATUS) (US Department of Labor 2015) to obtain the
user activity data. The ATUS, conducted by the U.S. De-
partment of Labor, contains typical activity data for approx-
imately 10,000 users. We pre-process the ATUS data to ob-
tain five main activity categories: {Sleep, work, exercise,
leisure, and others}. The wearable device is then used to
identify these activities using the sensors available on the
device. Of these activities, we choose ‘exercise’ as the criti-
cal activity. This means that battery recharging must not be
scheduled in time intervals when the user is exercising.
Energy Harvesting Dataset: The potential energy available
from the motion harvesters is a function of the user motion
during the activity. To this end, we set the activity intensity
for legs and hands for each activity. Starting with a baseline
intensity of 1 for exercise, we set the intensity for the ‘active’
activity as 0.5, while the intensity for sleeping is zero. The
activity intensities are then combined with a baseline power
of 13 µW (Tuncel et al. 2020) available from the piezoelec-
tric harvesters. Similarly, the energy available from light is
a function of the location. To illustrate the performance of

AdaEM clearly, we use outdoor light intensity throughout
the day. Specifically, we utilize five years (2016–2020) of
solar irradiation measured by National Renewable Energy
Laboratory (NREL) (Andreas and Stoffel 1981) in Golden,
Colorado. The irradiance is combined with the time of the
day to calculate the light energy using the area and I-V char-
acteristics of the PV cell (FlexSolarCells 2013).
Experiment Parameters: We set the finite horizon to be 24
hours, since EH and user activities typically follow a daily
pattern (Huynh, Fritz, and Schiele 2008). The length of each
interval is set to one hour while noting that other intervals
also work well with AdaEM. Finally, we set the minimum
energy constraint to 10% of the battery capacity and the tar-
get energy constraint to 60% of the battery capacity.
Optimal Solution: We obtain the optimal solution using the
CVX package (Grant and Boyd 2014) in Matlab. Specifi-
cally, we make the problem convex by minimizing the sum
of B(t). This is feasible since the optimization is done over
a finite horizon. As a result, minimizing the sum of B(t)
maximizes the operating time of the device in each horizon.
We make the problem convex to avoid the prohibitive cost of
an exhaustive search. The CVX implementation is run on a
server consisting of 32 Intel® Xeon® Gold 6226R cores with
192 GB of memory. As noted earlier, the optimal solution
uses the actual energy harvest values with no uncertainty.
On-demand Baseline Algorithm: We also implement a
baseline that aims for a fixed accuracy and begins charg-
ing whenever the battery drops below Emin. The charging
continues until the battery reaches Etarget. We refer to this
charging policy as the on-demand baseline algorithm since
it enables charging whenever the energy drops below Emin

and more energy is needed. This policy reflects the behavior
of most wearable and smartphone users. As a result, it pro-
vides a useful baseline to evaluate the efficacy of AdaEM.

Energy Management with Ideal Predictions
We start with an ablation study where we provide the ac-
tual EH values to the adaptive charging algorithm. Results
obtained using the actual EH give us the upper bound on
the performance of the proposed charging optimization al-
gorithm. Figure 2 shows a distribution of the daily charging
energy required for five distinct users over a period of five
years. We see that the median values of the charging energy
for AdaEM are within 1% to the optimal solution. Further-
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Figure 2: Energy used for recharging by the optimal and pro-
posed approaches for each month of the year (2016–2020)
under ideal EH predictions
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Figure 3: Energy used for recharging by the optimal and pro-
posed approaches for each month of the year (2016–2020)
under uncertain EH predictions

more, the range and distribution of the charging energies are
close to the optimal solution. This shows that AdaEM is able
to accurately determine the charging intervals with signifi-
cantly lower computations than the optimal algorithm.

Energy Management with Uncertainty in EH
In this section, we analyze the performance of AdaEM with
uncertain energy harvest predictions. To this end, we first
predict the available energy harvest at the beginning of each
day using the trained regression learner. This energy predic-
tion is used by Algorithm 1 to assign the energy consump-
tion and charging policy for each interval of the day while
satisfying all the constraints. Since the actual energy can de-
viate from the predicted values, the algorithm is re-run at the
beginning of each interval to account for these differences.
Figure 3 shows the comparison of the charging energy used
by the proposed approach and the optimal solution. The opti-
mal solution is computed offline and it uses the actual values
of harvested energy. We see that, in general, the energy used
by the proposed approach is close to the optimal solution
for most months. A higher variation is observed for sum-
mer months, where the distribution of AdaEM is wider than
the optimal solution. This is because in summer months the
algorithm generally expects a higher solar energy harvest.
Therefore, when it encounters cloudy days with a lower so-
lar energy harvest, the prediction error increases, which, in
turn, causes the device to use more energy for charging.
Energy Savings: One of the primary advantages of sustain-
able operation and optimal charging is the savings in the to-
tal energy consumption through use of EH. Figure 4 shows
the distribution of energy savings achieved by the proposed
approach when compared to the optimal solution for each
month of the year over a period of five years. The savings
here represent the additional energy that would be needed if
EH is not used. As expected, the energy savings are higher
in summer months due to higher energy availability. The op-
timal solution is able to achieve higher savings than AdaEM
because it has full information about the future energy har-
vest. At the same time, the proposed approach achieves me-
dian savings that are within 5% of the optimal values. We
also see that both approaches achieve significant savings
even in winter months when the harvested energy is lower.
Effect of the Activity Constraints: Next, we analyze the
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Figure 4: Energy saved by using energy harvesting and sus-
tainable allocation by the optimal and proposed approaches
for each month of the year (2016–2020)
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Figure 5: Average daily accuracy of activity recognition for
five users over a period of five years

impact of the critical activity constraint on the accuracy of
the application. We choose five users with varying lengths
of the critical activity constraint. Specifically, user 1 has the
longest critical activity constraint with six intervals while
user 5 has a critical activity constraint with two intervals.
The distribution of average daily accuracy for the five users
is shown in Figure 5. The minimum accuracy constraint in
the figure is 90%. The optimal solution meets the minimum
accuracy constraint for all the users. On the other hand,
AdaEM has few outliers where the accuracy constraint is not
met. This happens on days with limited energy harvest and
the device is unable to recharge the battery in time. As a re-
sult, the energy consumption has to be reduced, which leads
to a reduction in the accuracy. We observe that the number
of outliers decreases as the length of the critical activity con-
straint decreases (user 1 to user 5). This is because a lower
number of critical activity intervals gives more opportunity
for the device to recharge. In summary, these experimental
results show that AdaEM efficiently enables sustainable op-
eration of wearable devices for health monitoring.

Comparison to the Baseline Algorithm
In this section we compare AdaEM with the baseline algo-
rithm. Recall that the On-demand algorithm begins charging
whenever the battery level drops belowEmin. This approach
is not suitable for sustainable health monitoring because of
two key limitations: 1) the baseline does not account for crit-
ical activity constraints. Consequently, the device may have
insufficient energy to provide high accuracy for critical ac-
tivities, and 2) Unlike AdaEM, the On-demand algorithm is
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Figure 6: Constraint violations for AdaEM and the On-
demand baseline algorithm

reactive in nature and does not plan for satisfying the min-
imum and target battery energy constraints. As a result, the
quality of service to the application can suffer significantly.

To illustrate the above limitations, we compare the energy
constraint violations for AdaEM and the On-demand algo-
rithm in Figure 6. The optimal solution is not included in
the figure because it does not have any constraint violations
due to the knowledge of exact energy harvest and consump-
tion. The figure shows that the On-demand algorithm suffers
a significantly higher degree of constraint violations when
compared to AdaEM. Specifically, it has more than 3000 oc-
currences of two or more violations over five years of evalu-
ation data for five users. In contrast, AdaEM has negligible
number of instances with two or more constraint violations.
AdaEM is able reduce the number of violations and satisfy
the critical activity constraints by leveraging future EH and
user activity predictions in making EM decisions. In sum-
mary, the comparison with the baseline shows the effective-
ness of the proposed AdaEM approach in achieving sustain-
able operation for wearable health monitoring devices.

Comparison to Energy Neutral Methods
Energy neutral methods that rely only on harvested energy
have been popular for wearable devices (Kansal et al. 2007).
However, as we noted before, energy neutral methods rely
on duty cycling the device, which can lead to reduced per-
formance. To illustrate this, we implemented an optimal en-
ergy neutral approach that uses the actual harvested energy
from 2016 to 2020. The energy neutral approach allocates
the device energy consumption such that the total energy
consumed in a day is equal to the harvested energy. Figure 7
shows a histogram of the accuracies achieved over five years.
As we can see, a significant number of days have close to
zero accuracy. As a result, the user is unable to monitor their
health parameters, which can lead to adverse effects. This
shows the benefits of using AdaEM to balance the accuracy
requirements of the user while utilizing harvested energy.

Implementation Overhead
We characterize the overhead of Algorithm 1 by implement-
ing it on the TI-CC2652 MCU. We observe that the algo-
rithm takes 3 ms to run at a power consumption of 11 mW.
This amounts to 33 µJ of energy. Since the algorithm runs
once every hour, the total energy consumption over a day is
792 µJ, which is less than 0.005% of the battery capacity.
This shows that AdaEM achieves sustainable operation with
negligible overhead.
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Figure 7: Average daily accuracy of activity recognition for
five users over a period of five years

Social Impact
The social impact potential of the proposed AdaEM ap-
proach is two-fold. First, AdaEM can catalyze widespread
adoption of wearable devices by enabling sustainable oper-
ation with high quality of service. Specifically, our holistic
approach of combining energy harvesting and management
with flexible hybrid electronics leads to sustainable opera-
tion with user comfort. This will, in turn, have significant
advantages in public health and healthcare expenditure.

Second, it is projected that there will be billions of internet
of things (IoT) devices by 2050. Integrating AdaEM into the
IoT devices will help in reducing the overall energy footprint
through sustainable operation. For instance, even savings of
100 J per day for each device represents a decrease of 3*107
units of electricity per year. This energy is equivalent to the
consumption of 20,000 U.S. households, as per the Energy
Information Administration (2021).

Conclusion and Future Work
Wearable devices present a tremendous potential to
change the landscape in health monitoring. However, their
widespread adoption has been hindered by frequent recharg-
ing requirements. This paper presented the novel problem of
adaptive energy management towards sustainable operation
of wearable devices. Starting with a dynamic robust opti-
mization, we presented a light-weight solution that uses ML
predictions of energy harvest to optimize the charging of the
wearable device. Using real-world data and a wearable pro-
totype, we showed that AdaEM achieves solutions that are
within 5% of the optimal with less than 0.005% overhead.
Our immediate future work includes deploying the proposed
solution in the field by performing user studies.

The dynamic robust optimization formulation presented
in this paper has applications in a number of fields includ-
ing agricultural monitoring, wide area sensing, and defense.
Even in the area of mobile health, accounting for sudden
changes in user activity remains a challenge. For instance,
conditions such as freezing of gait, cardiac arrest, or falls are
difficult to predict using the history of past activities. The
challenge in the activity prediction further complicates the
energy management problem since the algorithm must ac-
count for these sudden changes in an energy-efficient man-
ner. We hope that this paper inspires the artificial intelligence
community to develop new algorithms in this exciting area
of self-sustainable wearable devices.
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