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Abstract
Assessing the impact of the COVID-19 crisis on economies
is fundamental to tailor the responses of the governments
to recover from the crisis. In this paper, we present a
novel approach to assessing the economic impact with a
large-scale credit card transaction dataset at a fine granular-
ity. For this purpose, we develop a fine-grained economic-
epidemiological modeling framework COVID-EENet, which
is featured with a two-level deep neural network. In sup-
port of the fine-grained EEM, COVID-EENet learns the im-
pact of nearby mass infection cases on the changes of local
economies in each district. Through the experiments using the
nationwide dataset, given a set of active mass infection cases,
COVID-EENet is shown to precisely predict the sales changes
in two or four weeks for each district and business category.
Therefore, policymakers can be informed of the predictive
impact to put in the most effective mitigation measures. Over-
all, we believe that our work opens a new perspective of using
financial data to recover from the economic crisis. For pub-
lic use in this urgent problem, we release the source code at
https://github.com/kaist-dmlab/COVID-EENet.

Introduction
Motivation
The COVID-19 pandemic is far more than a health crisis.
It has almost paralyzed economic activity, as countries im-
pose strict restrictions on moves to contain the virus. In most
countries, countless small businesses have collapsed with
unemployment rising by about 42% and per capita income
falling by around 7% (Acs and Karpman 2020; Coibion,
Gorodnichenko, and Weber 2020; Sumner et al. 2020). The
economic consequences of COVID-19 represent the largest
economic shock that the world has experienced in decades.
The crisis highlights the need for urgent measures to miti-
gate the economic shock of the epidemic, protect the vul-
nerable population, and pave the way for continued recov-
ery (Singh 2020). Therefore, the immediate priority of pol-
icymakers has been to curb economic damage (Neumann-
Böhme et al. 2020).

To efficiently manage the economic crisis caused by the
pandemic with limited resources, the policy-making pro-
cess should be evidence-informed. That is, a good supply
*Jae-Gil Lee is the corresponding author.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of quality evidence and positive prospects should support
the policy. Although COVID-19 vaccines have been devel-
oped, research into the economic crisis to answer the ques-
tions that policymakers deliberate over has not been fully
conducted. Instead of deliberating about the issue, policy re-
sponses have simply relied upon economic statistics such as
the gross domestic product (GDP), unemployment rate, and
demographics (Hale et al. 2020; Elgin, Basbug, and Yalaman
2020; Cheng et al. 2020).

However, policy response based on this coarse-grained
economic consequence faces the fundamental limitation that
local economies have been subject to various degree of im-
pact by the COVID-19 recession and showed unequal recov-
ery trajectories (Demirguc-Kunt, Lokshin, and Torre 2020).
That is, the pandemic hit areas and business sectors differ-
ently, e.g., higher impact on clubs than on restaurants (Harris
2020; Callinan and MacLean 2020; Sidhu et al. 2020). With-
out a full understanding of the fine-grained economic impact
of COVID-19, policy response could be uncertain and in-
appropriate. For example, many countries provide the eco-
nomic impact payments to damaged economic sectors, but
deciding the recipient and amount may not reflect the real
loss by the pandemic (Rahman et al. 2020). Thus, the im-
pact of COVID-19 on local economies should be examined
at a finer granularity based on economic activity big data.

Research Problem and Goal
We present fine-grained economic-epidemiological model-
ing (EEM) developed with close collaboration with a major
credit card company in South Korea. We call our deep neural
network (DNN)-based EEM framework COVID-EENet. In
support of fine-grained EEM, as shown in Figure 1, COVID-
EENet is capable of modeling the impact of each mass in-
fection case on the amount of economic activities in consid-
eration of the economy, geography, and epidemic aspects.
That is, COVID-EENet learns the various degree of the im-
pact from the COVID-19 outbreak and reveals the factors
for the different impact. As a result, given recently occurred
mass infection cases, COVID-EENet can accurately predict
the changes of economic activities (i.e., daily sales) caused
by the mass infection cases per business category and district
in the near future (e.g., two or four weeks).

Accordingly, for high-level insights, COVID-EENet en-
ables us to comprehensively answer two questions: (i) which
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Figure 1: The flow of the fine-grained EEM by COVID-
EENet, which is capable of modeling the impact of mass
infection on economic activities.

local economies are the most vulnerable? and (ii) what
kinds of disparities determine the local economies vulner-
able to COVID-19? Answering these questions provides
policymakers with motivations or quality evidence for var-
ious policies ranging from stimulus measures to govern-
ment campaigns, as well as strategic ways to practically im-
plement policies. For example, because the framework re-
veals the business-geography-epidemic disparities in eco-
nomic damage, the finding can lead to economic stability
by motivating selective and proactive funding policies for
local economies that are expected to severely suffer from
economic damage.

The fine-grained EEM in COVID-EENet is realized
by virtue of a large-scale, fine-grained economic activity
dataset, more specifically, an aggregated credit card trans-
action dataset, which is provided by our collaborator1. The
dataset contains daily sales for each business category and
each district in South Korea for the years from 2019 to 2020.
All registered offline and online stores are classified into
34 business categories. The total number of records (daily
sales per business category and district) even exceeds 408
million. Overall, the dataset represents a large body of eco-
nomic activities at a fine granularity—for each combination
of 34 business categories, 183 districts, and 730 days. In ad-
dition, we collected 150 mass infection cases that occurred
in Seoul from February to December 2020.

In order to precisely find complex patterns from the
economic-epidemiological dataset, COVID-EENet consists
of a microscopic encoder and a macroscopic aggregator.
First, a microscopic encoder models the impact of a spe-
cific mass infection case on a target district, considering the
business category and district where the mass infection case
occurred as well as the severity trend of that mass infection
case. This encoder involves multi-view modeling to combine
various influencing factors such as economic similarity, ge-
ographic distance, and mass infection size. Second, because
multiple mass infection cases affect the target district simul-
taneously, the macroscopic aggregator combines the effects
of multiple influential mass infection cases. This aggrega-
tor exploits a gating mechanism to find the contributions of
individual mass infection cases.

Insight Briefs and Contributions
Beyond achieving high predictive power of COVID-EENet
on the changes of economic activities, due to a nationwide,
large-scale credit card transaction dataset, we obtain gener-

1BC Card (https://www.bccard.com/) is the biggest payment
provider in South Korea and has over 38 million customers.

Attribute Description

Date Transaction date (YYYYMMDD)

St
or

e Address Store district
Business kind Store business

C
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m
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gr

ou
p

Nationality Korean or foreigner
Gender Male, female, or others
Age Age groups in 10s
Household type Classification by family size, etc.

Sa
le Price Total price of the sales

Count Total count of the sales

Table 1: Key attributes in economic activity data.

alizable insights regarding the economic impact of COVID-
19, to list:

• The degree of requiring person-to-person contact in busi-
nesses is positively correlated with the economic damage.

• Economic activities are confined to their residential areas
by severe mass infection cases, so the local businesses in
commercial districts are more vulnerable.

• The economic impact depends on the recency, severity,
geographic adjacency, and business type of concurrent
mass infection cases.

Overall, the main contributions are as follows:

• We formulate the problem of fine-grained EEM for
COVID-19, in order to predict the economic activity
changes caused by simultaneous COVID-19 mass infec-
tion cases. To the best of our knowledge, this is the first
work that addresses the fine-grained EEM for COVID-19.

• We propose a novel DNN-based EEM framework,
COVID-EENet, which consists of a microscopic encoder
and a macroscopic aggregator to model respectively the
individual and overall effects of mass infection cases.

• We conduct an in-depth analysis for the fine-grained EEM
using a nationwide, large-scale credit card transaction
dataset. As for the prediction accuracy, COVID-EENet
outperforms four baseline models by 9.3% and 15.1% on
average in terms of the RMSE and the MAE, respectively.

• We provide high-level insights on the economic conse-
quence of COVID-19, which are expected to be very help-
ful to enact more equitable and effective policies.

Economic-Epidemiological Data
Dataset Description
Economic Activity The economic activity dataset con-
tains aggregated daily sales, which were paid by a credit
card of the data provider (BC Card), for each combination of
districts and business categories in South Korea from 2019
to 2020. Table 1 shows the key attributes of the dataset,
which can be categorized into the (i) date, (ii) store, (iii) cus-
tomer group, and (iv) sale information. That is, each record
represents the sales amount at the stores in the district for the
business category by the customers of the customer group
on that day. This dataset is free from privacy concerns be-
cause it does not include any personal identity information.
Nevertheless, it is sufficiently fine-grained, where the daily
sales information is aggregated for each of 183 (districts) ×
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Attribute Description

Origin place District the mass infection occurred
Business category Business category the mass infection occurred
Title Known title of the mass infection
Start date Date the mass infection started
End date Date the mass infection ended
Confirmed cases Daily number of confirmed cases

Table 2: Key attributes in the mass infection data.

34 (business categories) pairs. Moreover, the sales informa-
tion is broken down into each customer group, sharing the
nationality, gender, age, household type, and address. Be-
sides, the long period from 2019 to 2020 enables us to com-
pare the economic activities before and after the COVID-
19 pandemic. While similar credit card datasets have been
mainly used for market analysis (Di Clemente et al. 2018),
we explore a new perspective of using this dataset to over-
come the economic recession by COVID-19.

Mass Infection Because mass infection cases have mostly
occurred in populated cities, we focused on those occurred
in South Korea’s capital, Seoul, whose population is approx-
imately 10 million. For this purpose, we collected the mass
infection cases reported by the Seoul Metropolitan Govern-
ment2. Table 2 shows the key attributes of the dataset. The
total number of mass infection cases is 150, spanning from
February to December in 2020. The criterion for classifying
mass infection is orthogonal to our study, and we followed
the classification by the Korea Disease Control and Preven-
tion Agency (KDCA)3. Each mass infection case typically
resulted in over 100 confirmed cases.

Exploratory Data Analysis
In order to ascertain the underlying claims of this study, we
conducted an exploratory data analysis using the economic-
epidemiological dataset.

Economy Decline and Degree of Impact First of all,
we want to answer the question: “Does the COVID-19
pandemic damage the economy?” Figure 2(a) shows the
changes in the sales for several business categories in
2020 (after the pandemic) compared with 2019 (before the
pandemic). Overall, the sales declined by 2.4% across all
districts and business categories in Seoul. However, the im-
pact significantly differed by business categories. In general,
the businesses vulnerable to the virus infection, e.g., “restau-
rant” and “entertainment,” were severely damaged, whereas
“grocery” and “logistics” even benefited from the pandemic.

Then, let us answer the question: “Is the economic impact
diverse depending on the business category and district?”
Figure 2(b) shows the monthly sales of two business cate-
gories, each of which was gained or damaged by the pan-
demic. The monthly sales of both categories were rather sta-
ble in 2019; however, those of “restaurant” in 2020 showed
a sharp decline in February, whereas those of “grocery” in
2020 generally increased throughout the year. Thus, this ex-
ample shows the diversity of the economic impact across
2https://www.seoul.go.kr/
3http://www.kdca.go.kr/

business categories. Figure 2(c) shows the daily sales in two
districts for the “entertainment” business in five weeks from
March 2, 2020. The sales in the “Gangnam” district fluctu-
ated a lot, whereas those in the “Guro” district did not. Thus,
this example shows another diversity across districts.

Need for Fine Granularity “Is the fine-grained
economic-epidemiological modeling (EEM) indeed nec-
essary?” The diverse degree of the impact clearly gives
an answer to this question. In Figure 2(c), the daily sales
averaged over all districts are also presented in blue. The
average trend obviously does not reflect the individual
trends in the two districts.

Impact of Mass Infection Last, we answer the important
question: “Does a mass infection case affect the economic
activity in the vicinity?” Figure 2(d) shows the daily sales
in the “Guro” district for the “entertainment” business in
March and April 2020, with the dates when two mass infec-
tion cases occurred in that district. We compared the same
day of the week, Friday, which typically reached its peak in
that business. The sales dropped immediately after the two
mass infection cases and started to recover in a couple of
weeks. Since mass infection cases are reported frequently in
public media, they significantly affect consumer sentiment.

Feature Engineering
To generate the input of the proposed EEM from the afore-
mentioned dataset, we extract the features that represent di-
verse perspectives (views): economy-view, geography-view,
and epidemic-view. The economy-view and geography-view
features are derived from the credit card dataset in Table 1,
and the epidemic-view feature is derived from the mass in-
fection dataset in Table 2. These three views are comprehen-
sively integrated in COVID-EENet.

Economy-View Feature The economy-view feature is to
represent a district (and together with a business category)
from the perspective of the consumer economy. Basically,
it represents how purchases are normally made by the con-
sumers in a district. Thus, to consider normal activities, the
consumer activities before the pandemic (i.e., in 2019) are
used for extracting this feature, where the economic activ-
ities (i.e., sales) are broken down into (i) business and (ii)
consumer categories, as follows:

(i) The business structure of a district is a probability vector
whose dimensionality corresponds to the total number of
business categories (34 in this study):
⟨. . . , fraction of the sales for the i-th business category, . . .⟩.
Here, a fraction is the average of the two fractions sepa-
rately calculated using price and count as in Table 1.

(ii) The consumer structure of a district-business pair is
a probability vector whose dimensionality corresponds
to the total number of consumer categories (27 in this
study4):
⟨. . . , fraction of the sales by the j-th consumer category, . . .⟩.
Again, each fraction is the average of the two fractions
created in terms of price and count.

43 (gender) × 3 (age) × 3 (household) = 27.
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(a) Sales changes per business. (b) Monthly sales trends. (c) Daily sales trend. (d) Impact of mass infection.

Figure 2: Visualization of the economy changes caused by the COVID-19 pandemic in Seoul, South Korea.

Geography-View Feature The geography-view feature is
to represent the relationship between two districts on the per-
spective of the physical and social geography, and thus con-
sists of two numeric numbers in [0, 1] that correspond to the
(i) physical and (ii) social distances, as follows:
(i) The physical distance between two districts is simply the

normalized Euclidean distance between the borough of-
fices of the two districts. This physical distance is sym-
metric and invariable to time.

(ii) The social distance from a district to another district in-
dicates the amount of personal flow from the former to
the latter. More specifically, it represents the fraction of
the sales count by the residents of the former among
the total sales count in the latter. This social distance is
asymmetric and calculated using the consumer activities
in 2019 to reflect normal situations.

Epidemic-View Feature The epidemic-view feature is to
represent the severity trend of a mass infection case along
the temporal dimension. More specifically, for each mass in-
fection case, it is a sequence of quadruples, {. . . , ⟨ number
of confirmed cases (i) in a specific day, (ii) within a week,
(iii) until the specific day, (iv) number of elapsed days since
the beginning of the mass infection ⟩, . . .}. The length of the
sequence is determined by the duration of the corresponding
mass infection case.

Problem Formulation
Given a set D of districts and a set B of business categories,
a district-business pair in Definition 1 is used for the tar-
get (granularity) of the predictive analysis.
Definition 1. (DISTRICT-BUSINESS PAIR) A district-business
pair is (d, b) ∈ D × B, where d ∈ D and b ∈ B. □

A set M of mass infection cases is given as the source of
the economic impact, where each mass infection case m ∈
M is specified by Definition 2.
Definition 2. (MASS INFECTION CASE) A mass infection
case m ∈ M consists of (i) the district-business pair where
it occurred and (ii) its epidemic-view feature indicating the
number of patients from the mass infection case. □

The economic impact on a given district-business pair
(d, b) is measured by the change of the sales for the district-
business pair compared with the sales made one year ago,

precisely speaking, 364 days ago to keep the same day of the
week. For example, May 4 (Saturday), 2019 is referenced for
May 2 (Saturday), 2020. Besides, the sales amount is quan-
tified by the “sale price” attribute in Table 1. Then, to pre-
dict the economic impact for the future, the economic impact
trend in Definition 3, which is a sequence of the changes for
upcoming w days, is used as the target variable.
Definition 3. (ECONOMIC IMPACT TREND) The economic im-
pact trend on (d, b) is y(d,b) = {y(t)}wt=1, where

y(t) =
sales amount on day t − sales amount a year ago from day t

sales amount a year ago from day t
(1)

and day t is the date after t days from the current date. □

Problem Definition: Finally, the fine-grained EEM is for-
mulated by Definition 4.

Definition 4. (FINE-GRAINED EEM) The fine-grained EEM
is, given a set D of districts, a set B of business categories,
and a set M of mass infection cases, to predict the economic
impact trend y(d,b) in Definition 3 for each district-business
pair (d, b) ∈ D × B for upcoming w days. □

Note that the previous economic impact trend is not given
as the input of the problem for practical usability in real-
world scenarios, where the credit card transactions do not
become available immediately. Hence, the problem is much
more challenging than a typical time-series prediction prob-
lem. Once a trained model is ready, the goal is to predict
the economic impact trend only using the information about
mass infection cases at the current date.

Methodology: COVID-EENet
Overview
Figure 3 illustrates the two-level architecture of COVID-
EENet. A microscopic encoder learns a hidden representa-
tion that represents the economic impact of a given mass
infection case m on a target district d. This encoder com-
prises the economy-view sub-encoder, the geography-view
sub-encoder, and the epidemic-view sub-encoder, each of
which is responsible for the corresponding view features.
These sub-encoders respectively produce the economy-
view representation (ECR), the geography-view represen-
tation (GER), and the epidemic-view representation (EPR),
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Figure 3: The two-level architecture of COVID-EENet.

which are merged into the microscopic representation (MIR)
by the view combiner, as shown in Figure 3(a). Then, the
macroscopic aggregator combines the economic impact of
each mass infection case m into the macroscopic representa-
tion (MAR), followed by the gating module that determines
how much each mass infection case affects the district-
business pairs of a target district d, thereby predicting the
economic impact trend, as shown in Figure 3(b).

Phase 1: Microscopic Encoder
Economy-View Sub-Encoder An outbreak district has
more economic impact on other districts if they have higher
structural similarity in terms of business or consumer distri-
butions. Further, an outbreak business has more economic
impact on a certain business with higher business simi-
larity in other districts. To this end, the economy-view
sub-encoder transforms the economy-view feature into a
business-structure similarity, a consumer-structure similar-
ity, and an outbreak-business similarity, and then combines
them to generate the economy-view representation.

For a district-business pair (d, b), we use a district-
business embedding of Definition 5 in a newly defined em-
bedding space to get a higher learning capability in calculat-
ing each similarity.
Definition 5. (DISTRICT-BUSINESS EMBEDDING) A district-
business embedding eb ∈ Rn is an n-dimensional vector
for a district-business pair (d, b). A set of district-business
embedding vectors in a district d forms a district-business
embedding matrix Ed = [e1, . . . , e|B|] ∈ R|B|×n. □

In Definition 5, Ed is randomly initialized, trainable, and
shared in the economy-view sub-encoder.

Business-Structure Similarity: A business-structure sim-
ilarity between a target district and an outbreak district is
quantified by comparing their sales distributions with re-
spect to business categories. Thus, the economy-view sub-
encoder acquires a business-structure representation in Def-
inition 6 by using the multi-head attention (Vaswani et al.
2017) to consider varying degrees of dependencies among
business categories. For instance, the sales of “entertain-
ment” are likely to depend on those of “leisure” but not on
those of “logistics.”

Definition 6. (BUSINESS-STRUCTURE REPRESENTATION) Let
X ′d = Xd − Σ

|D|
i=1Xi/|D| be the relative business structure

feature of a target district d with a business structure feature
Xd. Then, given the number h of attention heads, the dimen-
sionality n of an embedding space, and a district-business
embedding Ed, the business-structure representation (BR) is
computed by

BR(d) = [Attn1(Ed)X
′
d, . . . ,Attnh(Ed)X

′
d]

⊤ ∈ R|B|×h,

where Attn(E) = Softmax
(
(EWQ)(EWK)⊤/

√
n
)
,

(2)

WQ and WK are query and key projection matrices in
Rn×(n/h). □

Then, the business-structure similarity in Definition 7 is
finally measured as the similarity between the business-
structure representation of a target district and that of an out-
break district.
Definition 7. (BUSINESS-STRUCTURE SIMILARITY) Given a
target district d and the outbreak district dm of a mass infec-
tion case m, the business-structure similarity between d and
dm is calculated by

BS(d, dm) = Cosine
(
BR(d), BR(dm)

)
∈ R|B|, (3)

where Cosine(·) is the cosine similarity function. □
Consumer-Structure Similarity: Contrary to the business

categories, the consumer categories have less dependency on
one another since they are all orthogonal perspectives (i.e.,
gender, age, and household). Thus, the economy-view sub-
encoder directly calculates the consumer-structure similar-
ity in Definition 8 based on the Jensen-Shannon diver-
gence (JSD), which is one of the widely-used distribution
divergence measures.
Definition 8. (CONSUMER-STRUCTURE SIMILARITY) Let Xd

and Xdm
be the consumer structure features of a target dis-

trict d and an outbreak district dm, respectively. Then, the
consumer-structure similarity between d and dm is calcu-
lated by

CS(d, dm) = JSD(Xd, Xdm) ∈ R|B|. (4)

Outbreak-Business Similarity: To determine the impact of
the specific outbreak business of a mass infection case on
local businesses in the affected district, the economy-view
sub-encoder calculates the outbreak-business similarity in
Definition 9.
Definition 9. (OUTBREAK-BUSINESS SIMILARITY) Let Ed be
the embedding matrix of a target district d and em ∈ Edm

be the embedding vector of the outbreak business in an out-
break district dm. Then, the outbreak-business similarity be-
tween d and dm is calculated by

OS(d, dm) = Ed(Wos · e⊤m) ∈ R|B|, (5)

where Wos is a trainable projection matrix in Rn×n. □
Finally, all the similarities are blended to generate an

economy-view representation (ECR) for a target district d
affected by an outbreak district dm as the output of the
economy-view sub-encoder,

ECR(d,dm) = α·BS(d, dm)+β ·CS(d, dm)+γ ·OS(d, dm), (6)

where α, β, γ ≥ 0 are the trainable weights to balance all
the similarities such that α+ β + γ = 1.
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Geography-View Sub-Encoder An outbreak district has
more economic impact on other districts if they are
geographically or socially close. The geography-view
sub-encoder encodes the geography-view feature into a
geography-view representation (GER) containing these two
types of closeness. For a target district d and an outbreak
district dm, GER is computed by

GER(d,dm) = FCN
([

P Dist(d, dm), S Dist(d, dm
)
]
)
∈ R,

(7)
where FCN(·) is a fully connect neural network, P Dist(·)
and S Dist(·) are the physical and social distance functions
between two districts.

Epidemic-View Sub-Encoder The epidemic-view sub-
encoder transforms the historical epidemiological sever-
ity feature into an upcoming economic severity. Specif-
ically, we adopt the sequence encoder-decoder frame-
work (Seq2Seq) (Bahdanau, Cho, and Bengio 2014). The
LSTM encoder encodes the epidemic statistics sequence of
an outbreak district dm into the latent representation until
the t-th day; the LSTM decoder decodes it to the epidemic-
view representation (EPR) for the next w days,

EPR(dm,w) = FCN
(
Decoder

(
Encoder(dm, t), t+w

))
∈ Rw,

(8)
where Encoder and Decoder are the LSTM encoder and de-
coder, respectively.

View Combiner The view combiner merges the repersen-
tations from the three sub-encoders to produce the compos-
ite economic impact as a microscopic representation (MIR),

MIR(d,dm) = ECR(d,dm) ⊗ GER(d,dm) ⊗ EPR(dm,w) ∈ R|B|×w,
(9)

where ⊗ is the outer product.

Phase 2: Macroscopic Aggregator
The macroscopic aggregator combines multiple microscopic
representations of the target district, returned by the micro-
scopic encoder for all outbreak districts. Thus, the macro-
scopic representation (MAR) is formulated by

MAR(d,M) =
[
MIR(d,d1), . . . ,MIR(d,d|M|)

]⊤
. (10)

Last, the economic impact trend on all district-business
pairs of the target district d, Ŷ(d, · ), is predicted through a
FCN with the gating mechanism determining the contribu-
tions of outbreaks to the local economies, as formulated by

Ŷ(d, · ) = FCN
(
Gate

(
MAR(d,M)

)⊤MAR(d,M)

)
=

[
ŷ(d,b1), ŷ(d,b2), . . . , ŷ(d,b|B|)

]⊤ ∈ R|B|×w,
(11)

where Gate(·) = Softmax(FCN(·)) learns the aggregation
weights to combine the economic impacts of the outbreaks
on each target district-business pair.

Training Algorithm Pseudocode
The training procedure of COVID-EENet is described in
Algorithm 1. The training algorithm receives the district-
business pairs, the mass infection cases, the three view

Algorithm 1: COVID-EENet Training
INPUT: District D, business B, mass infectionM

economy-view XB, geography-view XG , epidemic-view XP ,
economic impact trend Y

OUTPUT: Optimal model parameters Θ∗

1: Θ← Initialize model parameters;
2: for epoch = 1 to epochs do
3: for t = 1 to # of training days do
4: Mt← subset ofM effective at day t;
5: for each d ∈ D do
6: k← 1; /* mass infection index */
7: /* PHASE 1: MICROSCOPIC ENCODER */
8: for each m ∈Mt do
9: ECRk←EconomySubEncoder(d, m, XB);

10: GERk←GeographySubEncoder(d, m, XG);
11: EPRk←EpidemicSubEncoder(d, m, XP);
12: MIRk← V iewCombiner(ECRk, GERk, EPRk);
13: k← k + 1;
14: /* PHASE 2: MACROSCOPIC AGGREGATOR */
15: MAR← ((MIR1, . . . ,MIR|Mt|));
16: Ŷ(d, · )← FCN -Gate(MAR);
17: /* MODEL UPDATE */
18: Compute the loss J using Y(d, · ) and Ŷ(d, · );
19: Θ∗ ← Θ∗ − α∇J ;
20: return Θ∗;

features, and the target economic impact trend; and re-
turns the optimal parameter. The forward propagation is
carried out through the microscopic encoder (Lines 7–13)
and the macroscopic aggregator (Lines 14–16). In the mi-
croscopic encoder, the three sub-encoders are concurrently
executed (Lines 9–11), and the learned representations for
each view are combined to form the microscopic represen-
tation (Line 12). In the macroscopic aggregator, after all
microscopic representations are concatenated to form the
macroscopic representation, the gating module is applied
to predict the economic impact trend as the target vari-
able (Line 16). Last, based on the RMSE loss, the backward
propagation is carried out to update the network parame-
ter (Lines 18–19).

Evaluation

Experiment Setup

Dataset Preparation The economy-view and geography-
view features were derived from the economic activity
dataset in 2019; the epidemic-view feature was derived from
the mass infection dataset in 2020. The target variable, the
economic impact trend in 2020, was derived from the eco-
nomic activity dataset. Because the mass infection cases
were collected from Seoul, all 25 districts in Seoul were in-
cluded in the experiments. We divided the epidemic-view
feature and the economic impact trend into two periods:
from February 2020 to October 2020 for the training set and
November 2020 for the test set. For the prediction time span,
we used 14 days (w = 14) and 28 days (w = 28) for short-
term and mid-term forecasting, respectively. That is, the pe-
riods of November 1–14 and November 1–28 were predicted
at the point of the end of the training set (October 31, 2020).
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Business Category
Method District Fashion Goods Travel Restaurant Cram School Pubs&Bars Cultural Activity

Seq2Seq
+Attn

Jung 1.13 (±0.04) 0.69 (±0.03) 1.38 (±0.03) 0.47 (±0.09) 1.10 (±0.07) 1.05 (±0.03)
Jungnang 0.47 (±0.11) 0.21 (±0.02) 0.30 (±0.03) 0.49 (±0.01) 0.37 (±0.04) 0.29 (±0.02)

Mapo 0.37 (±0.06) 0.85 (±0.03) 0.56 (±0.03) 0.54 (±0.05) 0.62 (±0.04) 1.00 (±0.03)

TCN
Jung 1.07 (±0.03) 0.62 (±0.04) 1.32 (±0.04) 0.24 (±0.02) 1.14 (±0.08) 0.99 (±0.04)

Jungnang 0.44 (±0.07) 0.19 (±0.01) 0.27 (±0.04) 0.45 (±0.01) 0.40 (±0.04) 0.34 (±0.04)
Mapo 0.33 (±0.03) 0.78 (±0.04) 0.61 (±0.02) 0.37 (±0.07) 0.67 (±0.02) 0.94 (±0.04)

TADA
Jung 1.06 (±0.02) 0.37 (±0.06) 0.49 (±0.05) 0.40 (±0.06) 1.32 (±0.06) 0.39 (±0.08)

Jungnang 0.75 (±0.06) 0.24 (±0.05) 0.25 (±0.03) 0.48 (±0.04) 0.41 (±0.03) 0.33 (±0.03)
Mapo 0.41 (±0.06) 0.39 (±0.10) 0.61 (±0.07) 0.62 (±0.04) 0.80 (±0.06) 0.45 (±0.10)

DEFSI
Jung 1.04 (±0.01) 0.34 (±0.04) 0.38 (±0.08) 0.22 (±0.03) 1.15 (±0.05) 0.32 (±0.06)

Jungnang 0.51 (±0.03) 0.17 (±0.01) 0.21 (±0.02) 0.36 (±0.03) 0.42 (±0.03) 0.27 (±0.02)
Mapo 0.52 (±0.04) 0.29 (±0.01) 0.61 (±0.05) 0.32 (±0.04) 0.66 (±0.04) 0.55 (±0.06)

COVID-EENet
Jung 1.01 (±0.01) 0.16 (±0.03) 0.32 (±0.04) 0.22 (±0.03) 0.78 (±0.04) 0.22 (±0.03)

Jungnang 0.35 (±0.03) 0.41 (±0.03) 0.17 (±0.01) 0.23 (±0.03) 0.25 (±0.02) 0.25 (±0.02)
Mapo 0.28 (±0.02) 0.19 (±0.04) 0.56 (±0.03) 0.26 (±0.03) 0.34 (±0.06) 0.27 (±0.03)

Table 3: RMSE for 14 days prediction (w = 14) in representative district-business pairs.

Algorithms and Evaluation Metrics For comparison
with COVID-EENet, we chose four deep learning-based
algorithms for sequence modeling that can be employed
in our problem setting—two time-series prediction models
Seq2Seq+Attn (Bahdanau, Cho, and Bengio 2014) and tem-
poral convolutional network (TCN) (Bai, Kolter, and Koltun
2018), a sales prediction model TADA (Chen et al. 2018),
and an epidemiological model DEFSI (Wang, Chen, and
Marathe 2019).

For fair comparison, the exactly same features were fed
to COVID-EENet and the four baselines. The baselines were
modified to use the same features: the economy-view fea-
ture and the geography-view feature were concatenated and
then encoded using fully-connected networks; the impact
of concurrent outbreaks was obtained by simply averaging
the impact of an individual outbreak because there is no
module corresponding to the macroscopic aggregator. The
source code of COVID-EENet and the baselines is available
at https://github.com/kaist-dmlab/COVID-EENet.

We used the root mean squared error (RMSE) and the
mean absolute error (MAE) to evaluate the algorithms. The
mean and standard error of five repetitions with different ran-
dom initialization were reported.

Overall Performance Comparison
Table 3 presents the RMSE results for upcoming 14 days in
representative district-business pairs. Three districts, “Jung,”
“Jungnang,” and “Mapo,” were chosen from each of dom-
inant functional district types—commercial & business,
residential, and diversified, classified by the Ministry of
Environment, Korea. Then, six business categories with
high sales amount were selected for the overall compar-
ison. Overall, COVID-EENet achieved the highest accu-
racy (lowest RMSE) for most district-business pairs and thus
showed the versatility regardless of district functional types
and business categories.

Table 4 presents the RMSE and MAE results for upcom-
ing 14 and 28 days, averaged over all 850 (= 25 × 34)
district-business pairs. As expected, COVID-EENet outper-
formed the four existing algorithms by a large margin: 6.5–

14 days (w = 14) 28 days (w = 28)
Method RMSE MAE RMSE MAE

Seq2Seq+Attn 0.442 0.258 0.471 0.285
TCN 0.444 0.261 0.473 0.284

TADA 0.448 0.262 0.468 0.277
DEFSI 0.428 0.246 0.450 0.264

COVID-EENet 0.403 0.223 0.437 0.254

AVG Improv. 9.3% 15.1% 6.5% 9.3%

Table 4: RMSE and MAE for 14 and 28 days, averaged over
“all” district-business pairs.

9.3% in terms of RMSE and 9.3–15.1% in terms of MAE.
The improvements over the existing algorithms are suffi-
ciently high for both forecast horizons; the improvement for
14-day prediction is more noticeable than that for 28-day
prediction since a longer forecast horizon is more likely af-
fected by external factors unknown at the moment.

Achieving high accuracy for the fine-grained EEM re-
quires (i) finding the complex relationships from the multi-
view—economy, geography, and epidemic—features to the
economic impact trend and (ii) handling concurrent mass in-
fection cases altogether. In COVID-EENet, the two-level ar-
chitecture can support these two requirements. Specifically,
the three sub-encoders in the microscopic encoder fulfill the
former requirement, and the macroscopic aggregator satis-
fies the latter requirement. On the contrary, the existing al-
gorithms are not designed to support the two requirements,
though we chose them to be closest to our problem; there-
fore, multi-view features and concurrent outbreaks cannot
be fully exploited in the existing algorithms.

Ablation Study

We conducted ablation studies using the three variants in
Table 5, each of which lacks one of the main components—
the economy-view sub-encoder and the geography-view sub-
encoder in the microscopic encoder and the macroscopic ag-
gregator itself. The epidemic-view sub-encoder is essential
for the problem setting and thus could not be excluded.
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Variants RMSE Degrade MAE Degrade
No Econ-View 0.502 12.9% 0.297 14.5%
No Geog-View 0.443 1.4% 0.258 1.6%
No Macro Agg 0.444 1.6% 0.259 1.9%
COVID-EENet 0.437 – 0.254 –

Table 5: Ablation study on main components (w = 28).

Variants RMSE Degrade MAE Degrade
No Attn (Eq. (2)) .411 1.9% .231 3.6%
COVID-EENet .403 – .223 –

Table 6: Ablation study on the attention mechanism of
business-structure representations (w = 14).

Effect of Microscopic Encoder COVID-EENet (w/o
economy-view) faced the sharpest drop in the accuracy,
empirically showing that considering the similarity in terms
of business categories is indeed fundamental to modeling
the impact of mass infection cases. Meanwhile, the result
of COVID-EENet (w/o geography-view) shows that the
geography view was less important than the economy view,
possibly because the road and public transport infrastructure
in Seoul is well-equipped.

Effect of Macroscopic Aggregator COVID-EENet (w/o
macroscopic aggregator) is, in fact, identical to simply av-
eraging the economic impacts from all mass infections as
in the baselines, thus not providing an optimal aggregation.
The performance degradation means that the macroscopic
aggregator is required to precisely determine the contribu-
tion of each mass infection case. The performance of this
variant is still higher than those of the baselines, because it
is equipped with the complete microscopic encoder which
better reflects the multi-view aspects.

Detailed Analysis on Economic-View
We analyze the components of the economic-view sub-
encoder considering its significant contribution to the
performance. Regarding the contribution of ECR’s sub-
components, inspection of the trainable weights in Eq. (6)
indicates that the contribution of business-structure similar-
ity (BS) is higher than those of consumer-structure (CS) and
outbreak-business similarity (OS); specifically, the contribu-
tions of BS, CS, and OS are 36%, 32.5%, and 31.5%, re-
spectively. Regarding the effect of the attention in business-
structure representation, because the attention in Eq. (2) is
to capture varying degrees of the dependencies among busi-
nesses, its removal naturally degrades the accuracy by 1.9–
3.6% as shown in Table 6.

Case Study and Discussion
Business Disparities
The determinant contributing to business disparities is how
much person-to-person contact is required. People try to
avoid closed spaces, crowded places, and close-contact as
much as possible. We note that COVID-EENet captures this
determinant by averaging district-business embedding ma-
trix Ed in Def. (5) along districts. Figure 4 shows the cluster-
ing results for business categories by spectral clustering (Ng,

Requiring 
Person-to-person Contact

Less Requiring
Person-to-person Contact

Logistics
Restaurant

Grocery

Health 
functional food

Entertainment

Leisure

Kitchenware

Similar Not Similar

Activities

Beauty care

Membership 
business

Computer/office
supplies

Medical
Institution

Figure 4: Business disparities captured by the ECR.
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Figure 5: District-business disparities in grocery businesses.

Jordan, and Weiss 2002), where a solid or dashed edge indi-
cates being close or far according to the Euclidean distance
in the embedding space. Interestingly, a group (left) mostly
contains the businesses that significantly require person-to-
person contact, while the other group (right) mostly contains
those that do not. As confirmed in exploratory data analysis,
the business categories in the left group mostly suffer from
sales decline, but those in the right group even benefit from
the pandemic.

District-Business Disparities
The fine-grained determinant contributing to district-
business disparities is whether a district’s functionality
is residential or commercial. People reduce unnecessary
movements to minimize the risk of infection; thus, economic
activities could be confined to their residential areas. To as-
certain this insight, we choose the “grocery” category, in
which the sales amount generally increased in 2020 com-
pared with that in 2019, as an example. Figure 5(a) shows
the sales changes of two districts in August, 2020 when mass
infection cases concurrently occurred. The sales amount in
a residential district (e.g., “Dobong”) generally increased as
shown by positive sales changes, but the sales amount in
a commercial district (e.g., “Dongdaemun”) generally de-
creased as shown by negative sales changes. COVID-EENet
can capture this determinant by deriving the economy-view
representation (ECR). In Figure 5(b), we plot the value of the
“grocery” dimension in the ECR for several districts. Inter-
estingly, the ECR values were mostly negative for commer-
cial districts whose local grocery businesses were severely
damaged, whereas those values were mostly positive for res-
idential districts.
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Figure 6: Epidemic disparities shown by the aggregation
weights of COVID-EENet for the district-business pairs (a)
⟨Nowon, cultural activity⟩, (b) ⟨Seocho, cultural activity⟩,
(c) ⟨Gangnam, professional service⟩, and (d) ⟨Gangnam,
fashion goods⟩. An arrow indicates the date when the mass
infection case was first identified. (No arrow exists if the
mass infection occurred before the timeline.)

Epidemic Disparities

The fine-grained determinants contributing to epidemic dis-
parities include the recency, severity, adjacency, and out-
break business type. Figure 6 visualizes the aggregation
weights over time that determine how much each mass in-
fection case contributes to the economic impact in district-
business pairs. Specifically, the aggregation weights are
computed by the gating module of the macroscopic aggre-
gator in Eq. (11) for nine mass infection cases.

(i) Recency: COVID-EENet tends to give high weights to
recent mass infection cases in Figures 6(a)–6(d).

(ii) Severity: The Liberation Day (August 15) demonstra-
tions received the high weights in Figures 6(a) and 6(b),
because this event produced over 500 confirmed cases
nationwide. The event was frequently reported in pub-
lic media (Yonhap 2020) since the demonstrators were
gathered from the entire nation, and thus significantly
influenced consumer confidence.

(iii) Adjacency: The “Network Marketing” and “Wangsung
Church” cases received the high weights in Figure 6(b).
The outbreak district of these two mass infection cases,
“Gwanak”, is geographically close to the target district,
“Seocho”, sharing their administrative boundary lines.

(iv) Outbreak business type: The two mass infection cases
“Door-to-Door Service” and “Telemarketing Center”
occurred near “Gangnam” received notably different
weights in Figures 6(c) and 6(d). Since these two mass
infection cases have closer connection with professional
services than fashion goods, COVID-EENet puts higher
weights on professional services.

Related Work
COVID-19 has gained a lot of attention to alleviate its devas-
tating impact (Nguyen 2020; Hussain et al. 2020), especially
by predicting the epidemic trends and economic impacts.

Epidemic Models
Numerous studies exploited a traditional approach called the
susceptible exposed infected resistant (SEIR) model to pre-
dict the spread of COVID-19 (Dandekar and Barbastathis
2020; Arik et al. 2020; He, Peng, and Sun 2020; Annas et al.
2020; Pandey et al. 2020; Chang et al. 2021). Also, many
studies enjoyed the power of the DNN to predict the spread
of COVID-19 and its impact. Zeroual et al. (2020) suggested
a model with five different RNNs and a VAE to predict the
spread of COVID-19. Kim et al. (2020) predicted the num-
ber of inbound COVID-19 patients via an architecture based
on the geographic hierarchy. Pal et al. (2020) designed a
country-specific network and predicted risk using the LSTM
model and the Bayesian optimization framework. Despite
these previous studies predicting the spread of COVID-19,
we note that its economic impact is not considered yet.

Economic Models
A number of studies have been developed for time-series
prediction related to the economy (Chen et al. 2018; Seeger,
Salinas, and Flunkert 2016; Kim 2003). In particular, Chen
et al. (2018) proposed a novel framework, named TADA,
using trend alignment-based multitask RNNs with dual-
attention; the framework improved the performance of sales
prediction tasks by aligning the upcoming trend with rel-
evant historical trends. Some studies have developed the
methods of analyzing the economic impact caused by
infectious diseases through traditional statistical model-
ing (Ahmar and del Val 2020; Berger, Herkenhoff, and Mon-
gey 2020). In particular, Berger, Herkenhoff, and Mongey
(2020) extended the SEIR COVID-19 model to understand
the role of testing and quarantine; they showed that testing at
a higher rate with targeted quarantine policies can dampen
the economic impact of COVID-19. However, there has been
no such study predicting the fine-grained economic impact
of infectious diseases.

Conclusion
In this paper, we have proposed a novel approach to pre-
dicting the fine-grained impact of COVID-19 on local
economies. We are provided with an aggregated credit
card transaction dataset by the courtesy of the BC Card
corporation and carefully derive the three fine-grained
features which represent the key factors of economic-
epidemiological modeling. COVID-EENet incorporates
these features through its two-level architecture and can pre-
dict the economic impacts caused by concurrent mass in-
fection cases very accurately. This work is the first work
to bridge the gap between mass infection cases and eco-
nomic activities in local businesses. Overall, we expect that
the government authorities will be able to construct proac-
tive financial aids for the fragile public with the help of the
fine-grained prediction result.
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T. 2020. Once We Have It, Will We Use It? A European Sur-
vey on Willingness To Be Vaccinated against COVID-19.
The European Journal of Health Economics, 21: 977–982.
Ng, A. Y.; Jordan, M. I.; and Weiss, Y. 2002. On Spectral
Clustering: Analysis and an Algorithm. In NIPS, 849–856.
Nguyen, T. T. 2020. Artificial Intelligence in the Battle
Against Coronavirus (COVID-19): A Survey and Future Re-
search Directions. ArXiv:2008.07343.
Pal, R.; Sekh, A. A.; Kar, S.; and Prasad, D. K. 2020. Neural
Network Based Country Wise Risk Prediction of COVID-
19. Applied Sciences, 10(18): 6448.
Pandey, G.; Chaudhary, P.; Gupta, R.; and Pal, S. 2020. SEIR
and Regression Model based COVID-19 Outbreak Predic-
tions in India. ArXiv:2004.00958.
Rahman, M. A.; Zaman, N.; Asyhari, A. T.; Al-Turjman,
F.; Bhuiyan, M. Z. A.; and Zolkipli, M. 2020. Data-Driven
Dynamic Clustering Framework for Mitigating the Adverse
Economic Impact of COVID-19 Lockdown Practices. Sus-
tainable Cities and Society, 62: 102372.

11980



Seeger, M.; Salinas, D.; and Flunkert, V. 2016. Bayesian
Intermittent Demand Forecasting for Large Inventories. In
NIPS, 4653–4661.
Sidhu, G. S.; Rai, J. S.; Khaira, K. S.; Kaur, S.; et al. 2020.
The Impact of COVID-19 Pandemic on Different Sectors
of the Indian Economy: A Descriptive Study. International
Journal of Economics and Financial Issues, 10(5): 113–120.
Singh, A. 2020. COVID-19 Pandemic and the Future of
SDGs. In Malhotra, V. K.; Fernando, R. L. S.; and Haran,
N. P., eds., Disaster Management for 2030 Agenda of the
SDG, 279–317.
Sumner, A.; Hoy, C.; Ortiz-Juarez, E.; et al. 2020. Estimates
of the Impact of COVID-19 on Global Poverty. Technical
report, United Nations University World Institute for Devel-
opment Economics Research.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention Is All You Need. In NIPS, 5998–6008.
Wang, L.; Chen, J.; and Marathe, M. 2019. DEFSI: Deep
Learning Based Epidemic Forecasting with Synthetic Infor-
mation. In AAAI, 9607–9612.
Yonhap. 2020. Liberation Day Demonstrations Take Place
Amid Sharp Upturn in COVID-19 Infections. http://www.
koreaherald.com/view.php?ud=20200815000065.
Zeroual, A.; Harrou, F.; Dairi, A.; and Sun, Y. 2020. Deep
Learning Methods for Forecasting COVID-19 Time-Series
Data: A Comparative Study. Chaos, Solitons & Fractals,
140: 110121.

11981


