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3 Massachusetts Institute of Technology
4 Harvard Medical School
† clu@mgh.harvard.edu

Abstract

Deep learning has the potential to automate many clinically
useful tasks in medical imaging. However translation of deep
learning into clinical practice has been hindered by issues
such as lack of the transparency and interpretability in these
“black box” algorithms compared to traditional statistical
methods. Specifically, many clinical deep learning models
lack rigorous and robust techniques for conveying certainty
(or lack thereof) in their predictions – ultimately limiting their
appeal for extensive use in medical decision-making. Further-
more, numerous demonstrations of algorithmic bias have in-
creased hesitancy towards deployment of deep learning for
clinical applications. To this end, we explore how confor-
mal predictions can complement existing deep learning ap-
proaches by providing an intuitive way of expressing uncer-
tainty while facilitating greater transparency to clinical users.
In this paper, we conduct field interviews with radiologists to
assess possible use-cases for conformal predictors. Using in-
sights gathered from these interviews, we devise two clinical
use-cases and empirically evaluate several methods of con-
formal predictions on a dermatology photography dataset for
skin lesion classification. We show how to modify confor-
mal predictions to be more adaptive to subgroup differences
in patient skin tones through equalized coverage. Finally, we
compare conformal prediction against measures of epistemic
uncertainty.

Introduction
As the cost of healthcare continues to rise in many countries
around the world, massive investment has been poured into
medical AI development in the hopes of leveraging these
technologies to lower costs and improve efficiency (Zhang
et al. 2021; Topol 2019). However translation into clinical
deployment has proved extremely difficult – exemplified by
several highly publicized projects ultimately failing to be
widely used in clinical practice (Strickland 2019).

Medical AI tools can pose unique design considerations
that significantly differ from more traditional medical de-
vice software (Lu et al. 2021a). Regulatory agencies such
as the U.S. Food and Drug Administration (FDA) have be-
gun to consider these differences with more scrutiny (Food
and Administration 2021). Research communities such as
human-computer interaction also increasingly explore the
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unique challenges of designing machine learning for health-
care applications (Jacobs et al. 2021; Xie et al. 2020; Beede
et al. 2020).

One challenging obstacle for clinical machine learning is
identifying cases in which the model has low confidence – a
scenario that might necessitate further review of those cases.
Furthermore, the lack of transparency in machine learning
models has also been cited as a major barrier to develop-
ing AI tools that are adopted by clinicians (Yang, Stein-
feld, and Zimmerman 2019; Begoli, Bhattacharya, and Kus-
nezov 2019). A survey by Allen et al. (2021) showed that
even though many radiologists believed that AI tools added
value to their clinical practice, they would not trust AI for
autonomous clinical use.

Deep learning models, in particular, are notoriously dif-
ficult to interrogate and known to be vulnerable to a num-
ber of attacks that can compromise the safety and privacy
of patients (Arun et al. 2021; Finlayson et al. 2019). Also,
many recent studies highlight the risks of algorithmic bi-
ases in machine learning for applications such as skin lesion
classification and facial recognition systems (Bissoto, Valle,
and Avila 2020; Buolamwini and Gebru 2018; Pierson et al.
2021b; Banerjee et al. 2021).

To address these challenges, we explore the use of confor-
mal predictions methods for medical imaging applications.
We argue that conformal predictions may better correspond
to clinical decision-making intuition and can be easily in-
corporated into existing models while providing meaningful
statistical guarantees (Messoudi, Rousseau, and Destercke
2020). For example, doctors routinely express uncertainty
in the form of comparative sets to arrive at a diagnosis i.e.
a differential diagnosis. Additionally, conformal prediction
sets naturally convey a measure of uncertainty by the num-
ber of items contained in their set. Several works promote
uncertainty quantification to facilitate greater trust in medi-
cal black-box models and to detect bias in protected patient
demographics (Bhatt et al. 2021; Kompa, Snoek, and Beam
2021; Lu et al. 2021b).

In this study, we demonstrate the potential of conformal
predictors to offer a more clinically intuitive representation
of model uncertainty. Based on interviews with clinicians,
we characterize two conformal use-cases (rule-in and rule-
out) and show how conformal predictors can be adapted to
yield equalized coverage at a subgroup level. We empiri-
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cally evaluate our group conformal predictors on a derma-
tology dataset for skin lesion classification using Fitzpatrick
skin type as our group attribute. Finally, we compare confor-
mal uncertainty against epistemic uncertainty to show how
group-calibrated conformal predictors better represent rele-
vant subgroup differences such as disease prevalence of ma-
lignant skin conditions.

Related Work
Fairness in Machine Learning
A major challenge for the deployment of machine learning
in healthcare is the potential to encode and and reinforce
inequalities among protected patient demographics (Larraz-
abal et al. 2020; Pierson et al. 2021a). Attempts have been
made to formally conceptualize “fairness” statistically and
definitions of fairness have been proposed to measure dis-
parity between demographic groups such as race and gen-
der (Barocas, Hardt, and Narayanan 2019).

Examples of group fairness metrics for binary classifica-
tion, Y ∈ {0, 1}, include demographic parity:

P (Ŷ = 1 | A = a) = P (Ŷ = 1 | A = b), (1)

which desires independence between the group attribute,
a, b ∈ A, and the predicted response Ŷ , equalized odds:

P (Ŷ = 1 | Y = y,A = a) = P (Ŷ = 1 | Y = y,A = b), (2)

for y ∈ {0, 1} and desires conditional independence,A⊥Ŷ |
Y , and calibration parity, which is achieved only if the pre-
diction scores, S ∈ [0, 1], for each subgroup are perfectly
calibrated

s = P (Y = y | S = s,A = a) = P (Y = y | S = s,A = b)
(3)

for all score thresholds, ∀s ∈ S.
As shown in Kleinberg, Mullainathan, and Raghavan

(2017), not all fairness metrics are mutually satisfiable, and
many metrics assume the observed outcome for all sub-
groups is known and measurable (an assumption that may
not be practical in many clinical situations). Furthermore,
many bias mitigation strategies often assume access to the
model’s training procedure or make explicit distributional
assumptions (Zafar et al. 2017; Kusner et al. 2017). For reg-
ulated medical device software, these assumptions may not
be realistic as medical device manufacturers would not per-
mit such access or modifications to their proprietary, com-
mercial models.

Uncertainty for Deep Learning
Epistemic uncertainty concerns the probabilistic estimation
of model parameters. Several approaches to uncertainty have
been developed for deep neural networks, such as Bayesian
deep learning, which encompasses different approaches to
approximating full Bayesian neural networks (Gal 2016).
Techniques such as Monte-Carlo dropout modify the archi-
tecture or training procedure of the model to learn a poste-
rior distribution over the parameters (Gal and Ghahramani
2016). For example, an ensemble of deep models can be

trained with adversarial examples and then averaged to esti-
mate the posterior distribution (Lakshminarayanan, Pritzel,
and Blundell 2017).

Regardless of which technique is used, the posterior dis-
tribution can be randomly sampled to estimate different
measures of epistemic uncertainty, such as predictive en-
tropy, which is the average entropy over T samples and K
classes,

− 1

K

K∑
k=1

(
1

T

T∑
t=1

pt|k log
1

T

T∑
t=1

pt|k

)
. (4)

An alternative approach to uncertainty involves calibrat-
ing model predictions such that the confidence of a predic-
tion matches the actual probability that that prediction would
be correct for all confidence levels. Deep neural networks
are generally regarded to be poorly calibrated. This has mo-
tivated many post-hoc methods, such as Platt Scaling, to help
better calibrate the outputs of the softmax function (Guo
et al. 2017):

Platt(z) =
ez/β∑
i e
zi/β

, (5)

where z is the uncalibrated output and β is a learned param-
eter that minimizes negative log-likelihood on the validation
set.

Conformal Predictions
One limitation of epistemic uncertainty is its lack of any
standard or intuitive meaning to aid users in their decision
making. While post-hoc calibration techniques do have a
statistical interpretation, they do not usually provide any
distribution-free guarantees of reliability or miscalibration.
Additionally, common approaches often require access to
the model (e.g. training with a modified loss function) or
distributional assumptions (e.g. sampling from a Bernoulli
distribution), which may not be feasible in third-party med-
ical device software. Conformal prediction methods do not
have these limitations.

First introduced by Vovk, Gammerman, and Shafer
(2005), conformal prediction is a method of distribution-free
uncertainty quantification, which is model agnostic and pro-
vides formal results for marginal coverage, defined as the
average probability that the true class will be contained in
the prediction set. Formally, this coverage guarantees states:

1− α ≤ P (yn ∈ {y ∈ Y | S(xn)y > q̂}) , (6)

where α is some predetermined miscoverage level, yn is the
true class, xn is the unseen test example, S(xn)y is the yth
index of the output score, and q̂ is the estimated score quan-
tile needed to achieve proper coverage at the desired level.
The score quantile is estimated on a held-out set (assumed
to be IID with the test set) to ensure marginal coverage for
any classifier over the joint distribution, DX,Y .

Any classifier that learns a score function, such as a
deep neural network, can be adapted to output confor-
mal predictions. For example, instead of outputting the
predicted class with the highest score, e.g. (“basal cell
carcinoma”, 0.51), a conformal prediction with a miscover-
age level of 10%, α = 0.1, might produce a set of predic-
tions, e.g. {(“basal cell carcinoma”, 0.51), ( “squamous cell
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participant role experience (years)

P1 neuroradiologist 20
P2 radiologist 15
P3 neurologist 10
P4 clinical fellow 5

Table 1: Role and years of experience with medical imaging
of the four clinicians in our field interviews.

carcinoma”, 0.27), ( “seborrheic keratosis”, 0.13)}, which
will contain the true class on average 90% of the time.

These prediction sets naturally lends themselves to be uti-
lized as a form of uncertainty and are well-suited for medical
decision making (Kompa, Snoek, and Beam 2021; Vazquez
and Facelli 2022). Although we focus on multi-class classi-
fication, the conformal framework is general and has been
extended to other prediction tasks such as regression and
multi-label classification (Romano, Patterson, and Candes
2019; Cauchois, Gupta, and Duchi 2021).

Field Interviews
To better investigate how conformal predictors could be uti-
lized in clinical workflows, we conduct semi-structured in-
terviews with four clinicians from a large hospital system
(their role and level of experience is shown in Table 1). By
asking participants to characterize their clinical workflow,
we observed a distinction being made in the motivating rea-
son for the imaging study, with one radiologist (P1) com-
menting:

I got to [...] decide whether it’s normal or just typi-
cal expected abnormalities for age and describe those,
[...] eventually there will be AI algorithms that are
setup to evaluate all those things and sometimes your
sensitivity and your thresholds for what you expect
are different if you’re just checking if everything
looks normal versus if it was a study done to specifi-
cally evaluate that.

When asked how predictions of AI medical device soft-
ware should be presented within the radiologist’s user inter-
face, P2 responded:

Don’t overwhelm the radiologist with 83% or 87%. Is
it good enough or is it not? [...] You just wanna say
is this ”highly confident”, ”cautionary”, ”uncertain”,
or ”non-diagnostic”? You have to set cutoffs but you
don’t have to show those numbers to radiologists.

In addition to wanting AI outputs to be more semantically
meaningful, clinicians were also concerned about the relia-
bility and confidence of the model’s predictions. P1 and P3
even suggested that low confidence predictions should not
be presented to the user at all depending on the clinical con-
text.

For example, a computed tomography (CT) imaging exam
is typically performed on patients with suspected stroke to
rule-out hemorrhagic bleeding, a condition that would pre-
vent administration of tissue plasminogen activator (TPA)
(Figure 1). Thus, an application to detect hemorrhagic

Figure 1: A diagram of typical stroke care pathway, in
which a CT exam study is ordered to “rule-out” hemor-
rhagic stroke, a contraindication for clot-breaking medica-
tion (TPA), which is the usual treatment for ischemic stroke.

Figure 2: A depiction of a triage workflow in the emergency
room to expedite patients without severe conditions and to
“rule-in” patients with one or more critical conditions.

bleeds must prioritize sensitivity (true positive rate), even
if the prediction confidence level had to be lowered, because
giving TPA to a patient with a hemorrhagic stroke would
worsen the bleeding. This use-case of confidently “ruling-
out” critical conditions seems to us an ideal setting for con-
formal prediction.

From our interviews, another clinical example was given:
the initial triage of patients in an emergency department:

They want to discharge patients from the ER as
quickly as possible – healthy patients that don’t need
to be there. Bed space is limited. Sometimes they’re
waiting to get an answer from radiology. So one of
the workflows is the algorithm identifies normal cases
– no disease – but you want it to identify patients
that were definitely normal with very high confidence.
You want the high specificity. If the doctor is oversee-
ing 20 patients, and the algorithms said these 3 have
very low chance of having any abnormality. Those
ones, you may feel comfortable discharging with just
your look at them instead of waiting on the radiolo-
gist.

To better allocate limited resources, patient with milder con-
ditions may be discharged to outpatient care whereas pa-
tients more likely to have one or more severe conditions may
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need more immediate or invasive intervention (Figure 2).
Therefore, we formulate another use-case for conformal pre-
dictors to “rule-in” critical conditions. This “rule-in” use-
case seems ideal for conformal predictors since the set of
possible critical conditions can be very large and naturally
lends itself to thinking in terms of prediction sets and pos-
sible interactions between present conditions (some condi-
tions are of low concern when present separately but may be
of higher concern if present together).

Lastly, on the issue of fairness and bias, P4 saw the need
for auditing platforms and monitoring dashboards to display
metadata for clinically relevant demographics, such as age
and race, to check for bias. Continual review of model pre-
dictions would be necessary to adjust decision thresholds in
order to recalibrate models to changing disease prevalence
over time.

Methods
As conformal methods provide distribution-free coverage
guarantees regardless of the number of data examples or how
the machine learning model was trained, they can be easily
extended to provide equalized coverage with the group at-
tribute is known. Introduced by Romano et al. (2020) for the
regression setting, equalized subgroup coverage can adapt
better to differences between subgroups than aggregate con-
formal methods.

While we acknowledge that any definition of fairness will
be reductive and problematic with respect to some criteria,
conformal fairness has several advantages for measuring dis-
parity in medical AI tools. First, the prevalence of many
disease naturally differ between some patient demograph-
ics, such as race and age, due to various genetic, social, and
behavioral risk factors. Attempting to encapsulate these dif-
ferences solely with a statistical parity measure without the
necessary clinical context would be misguided and may mis-
lead clinical decision-making. Instead, outputting a set of
likely predictions allows greater flexibility in clinical use-
cases, such as triage and screening, by providing the clini-
cal user more intuition to discern what should be considered
normal or abnormal, on a patient level as well as a group
level. Practically, distribution-free uncertainty quantification
techniques like conformal prediction can be applied to cali-
brate and monitor differences between patient cohorts in ar-
bitrary medical AI devices for real-time clinical workflows.

We now describe a conformal algorithm to achieve equal-
ized coverage for some coverage level, α, on an attribute
group A. Assume that group membership is known at infer-
ence time, we can then estimate the empirical quantile, q̂a,
for each subgroup separately on their respective held-out set
and, at inference time, apply that subgroup’s score quantile.

For example, we can modify the conformal approach
adaptive prediction sets (APS) from Romano, Sesia, and
Candes (2020) for the group setting: Let {(Xi, Ai, Yi)}ni=1
be a set of three tuples containing a training example Xi ∈
Rd, group attribute Ai ∈ {1, 2, . . .K}, and target classYi ∈
{0, 1, . . . ,K}, where K is the number of classes. The scor-
ing function s sorts the classes according to their softmax
score in descending order for each example and outputs the
cumulative sum until the softmax score of the true class is

Algorithm 1: Group adaptive prediction sets (GAPS)
Input: Held-out calibration set {(X,A, Y )}n ∈ Xn ×An × Yn,
Miscoverage level α ∈ (0, 1),
Test example (xn+1, an+1) ∈ X ×A,
Number of classes k := |Y|,
Prediction function f : X → Rk,
Scoring function s : Rk × Y → R,
Sorting function SORT : Rk → Rk,
Quantile function q : {R}m × [0, 1]→ R

1: for a ∈ A do
2: sa ← { (f(Xi), Yi) : i ∈ {1, 2, . . . , n} | Ai = a}
3: qa ← q(sa,

d(1−α)·(n+1)e
n

)
4: end for
5: for a ∈ A do
6: if a = an+1 then
7: yn+1 ← f(xn+1)
8: y′ ← SORT(yn+1)

9: cn+1 ← {y′j : j ∈ {1, 2, . . . , k} |
∑k
j=1 y

′
j < qa}

10: end if
11: end for
12: return cn+1

Output: Conformal prediction set cn+1

reached. Assuming all samples are drawn interchangeably
from a potentially unknown distribution, then marginal cov-
erage can be assured for each subgroup,

1− α ≤ P (Yn+1 ∈ C(Xn+1 | A = a) ≤ 1− α+
1

n+ 1
(7)

for all a ∈ A, α ∈ (0, 1).

Experiments
We compare four methods: a non-conformal baseline
(Naive), adaptive prediction sets (APS) (Romano, Sesia,
and Candes 2020), regularized adaptive prediction sets
(RAPS) (Angelopoulos et al. 2021), group adaptive predic-
tion sets (GAPS), and group regularized adaptive prediction
sets (GRAPS). In our experiments, we investigate the fol-
lowing questions:

1. How do different methods compare in rule-in and rule-
out use cases for malignant skin lesion classification?

2. How do group conformal predictors compare with aggre-
gate conformal predictors conditioned on skin type as the
group attribute?

3. What is the relationship between prediction set size and
epistemic uncertainty?

Skin Lesion Dataset
For our experiments, we use the Fitzpatrick17k dataset,
which aggregates 16, 577 photography images from two der-
matology atlases (Groh et al. 2021). This dataset contains
a hierarchical labeling scheme of 114 different skin condi-
tions, which are further aggregated into three dermatological
categories: non-neoplastic lesions (12,080), benign lesions
(2,234), and malignant lesions (2,253). Additionally, each
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Figure 3: Distribution of skin conditions by Fitzpatrick skin
type and categorization of the 114 different lesions into one
of three broad categories: non-neoplastic, malignant, or be-
nign.

skin type non-neoplastic benign malignant

1 69.6% 15.0% 15.4%
2 70.5% 14.0% 15.5%
3 71.8% 14.4% 13.8%
4 75.9% 13.2% 10.8%
5 80.0% 10.4% 9.6%
6 83.4% 7.0% 9.6%

missing 68.9% 13.0% 18.1%

total 72.8% 13.5% 13.7%

Table 2: Percentage of skin conditions in each of the three
broad dermatological categories for different Fitzpatrick
skin type subgroups.

image is labeled with a Fitzpatrick skin type – an ordinal 6-
point scale that estimates the amount of melanin pigment in
the skin. The disease distribution for each skin type is shown
in Figure 3 and Table 2.

As the prevalence of skin conditions such as melanoma
is known to differ between demographics such as race and
ethnicity, we treat the Fitzpatrick skin type as the group at-
tribute in our experiments. We also treat the 11 malignant
skin conditions as “critical” conditions and the other 103
conditions as “non-critical” for the purposes of our two con-
formal prediction use-cases. For the “rule-in” scenario, only
critical cases with one of the 11 malignant skin condition
were considered, with a prediction was considered correct
if the true class was contained in the prediction set. For the
“rule-out” scenario, only non-critical cases were considered,
with a prediction was considered correct if none of the 11
malignant conditions were contained in the prediction set.

Evaluation Metrics
We consider our methods with two evaluation metrics:
marginal coverage and set size. Given some miscoverage
parameter, α, marginal coverage is defined as the number
of times the true class is contained in the prediction set, av-
eraged over all examples.

Set size is the average number of elements in the predic-

tion set. To quantify difference between subgroups, we also
define coverage disparity to be the average pairwise differ-
ence in marginal coverage

1

| A |
∑

a,b∈(A2)

∣∣coverageA=a − coverageA=b

∣∣, (8)

where
(
A
2

)
is all pairwise combinations of subgroups.

We define set size disparity in a similar manner

1

| A |
∑

a,b∈(A2)

∣∣set sizeA=a − set sizeA=b

∣∣. (9)

Implementation Details
We use a ResNet-18 (Xie et al. 2016), pretrained on Ima-
geNet (Deng et al. 2009), as our deep learning image clas-
sifier and average across five different initializations. We
use Monte Carlo dropout of 0.1 and T = 30 to esti-
mate maximum softmax probability (Hendrycks and Gim-
pel 2017) and predictive entropy (Equation 4) with soft-
max scores calibrated using Platt scaling (Equation 5). For
our non-conformal baseline, we form prediction sets by
sorting softmax scores and taking classes until the 1 −
α threshold. All models were trained with cross-entropy
for 100 epochs, early stopping of 20 epochs, a learning
rate of 0.0001, and a batch size of 16. All experiments
were implemented using the PyTorch framework (Paszke
et al. 2019) and trained on a Nvidia A100 GPU. Code and
data to reproduce our experiments is made available here:
https://github.com/clu5/AAAI22.

Results
For our two use-cases, we find all four methods of prediction
sets to perform similarly at α = 0.1 in terms of accuracy
and set size at a subgroup level (Figure 4). Group conformal
methods (GAPS and GRAPS) in performing slightly better
at ruling-out malignant skin conditions and worse at ruling-
out malignant skin conditions than other methods for skin
types 1 and 2 (the lightest skin tones).

Next, we compare performance between Fitzpatrick skin
types in terms of marginal coverage and set size between
aggregate conformal methods (APS and RAPS) and their
group variants (GAPS and GRAPS) in Figure 5. We ob-
serve lower subgroup coverage disparity as well as higher
set size disparity with GAPS and GRAPS compared to APS
and RAPS (Table 3).

Finally, we consider the relationship between set size and
epistemic uncertainty, measured by maximum softmax prob-
ability and predictive entropy, and find a strong correlation
between set size and epistemic uncertainty. Looking at Fig-
ure 6, we can see that the group conformal methods show
increased separation between Fitzpatrick subgroups – par-
ticularly for skin type 1 and skin type 6 – compared to the
naive baseline and aggregate conformal methods. This sep-
aration is quantified in Table 4, which shows that GAPS and
GRAPS have lower Spearman correlation than Naive, APS,
and RAPS across a range of α.
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Figure 4: Subgroup accuracy of different prediction set methods at α = 0.1 for ruling-in and ruling-out use-cases.
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Figure 5: Comparing coverage and set size of group conformal methods (GAPS and GRAPS) and aggregate conformal methods
(APS and RAPS) at different α values for skin lesion classification; colors denote Fitzpatrick skin types; gray star represents
the missing skin type.

Discussion

In this paper, we explored might be conformal predic-
tors integrated into medical imaging workflows. Our inter-
views suggested several ways in which conformal predic-
tions could allow for greater transparency in medical AI,
such as the identification of possible clinical mimics in a
manner similar to differential diagnoses. We also formulated
two general use-cases for conformal predictions for clinical
decision-making.

To better calibrate conformal predictors to subgroup dif-
ferences, we modified two methods of conformal predic-
tions (APS and RAPS) to guarantee equalized coverage for
known demographic attributes and performed experiments
on a heterogeneous skin lesion dataset with Fitzpatrick skin
type to evaluate group conformal predictors. Results from
our experiments demonstrated that group conformal predic-
tors have lower coverage disparity than aggregate conformal

methods and show greater variability in set size at a sub-
group level, reflecting underlying differences between dif-
ferent skin types. Specifically, skin types 1 and 6 have larger
prediction set sizes, indicating more uncertainty. These dif-
ferences may be due to the fact that lesions of patients with
lighter skin tones have a higher rate of malignancy (Table 2)
while patients with the skin type 6 are underrepresented in
the dataset, comprising only about 4% of the total dataset.

Further comparing group conformal uncertainty against
aggregate conformal uncertainty, we observed that group
conformal methods are less correlated with epistemic uncer-
tainty measures, thus indicating more adaptiveness to sub-
group differences across task difficulty levels as measured
by maximum softmax probability and predictive entropy.
This observation agrees with visual inspection of the scat-
ter plots in Figure 6 that show increased separation for both
malignant and non-malignant skin conditions for the lightest
and darkest skin tones. Therefore, we conclude that group
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Figure 6: Relationship between conformal uncertainty and two epistemic uncertainty measures at α = 0.1; colors correspond
to different Fitzpatrick skin types; × denotes a malignant skin condition and ◦ denotes a non-malignant skin condition.

method 0.1 0.2 0.3 0.4 0.5

co
ve

ra
ge

NAIVE 0.026 0.040 0.059 0.070 0.080
APS 0.026 0.035 0.048 0.056 0.059

RAPS 0.026 0.037 0.049 0.054 0.057
GAPS 0.024 0.029 0.037 0.038 0.045

GRAPS 0.022 0.028 0.037 0.035 0.039

se
ts

iz
e

NAIVE 3.9 2.2 1.2 0.6 0.2
APS 3.5 3.1 2.4 1.9 1.4

RAPS 3.6 3.0 2.4 1.8 1.3
GAPS 9.7 8.1 5.6 4.2 2.8

GRAPS 9.1 8.0 5.5 4.2 2.7

Table 3: Subgroup disparity in coverage and set size between
Fitzpatrick skin types at five different levels of α.

conformal methods can better describe subgroup uncertainty
than regular conformal methods when subgroups come from
different data distributions.

Conclusion
Fair conformal predictors have the potential to increase clin-
ician trust in AI models by providing meaningful notions of
uncertainty across clinically relevant sub-populations. These
distribution-free methods complement existing deep learn-
ing models and require no modifications to existing training
procedures. Based on our experiments, we find group con-
formal predictors to be a promising and generally applicable
approach to increasing clinical usability and trustworthiness
in medical AI. We hope this work promotes further work
into group conformal predictors for clinical applications in
healthcare.
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method 0.1 0.2 0.3 0.4 0.5

so
ft

m
ax

NAIVE 0.71 0.75 0.78 0.75 0.55
APS 0.69 0.72 0.75 0.78 0.82

RAPS 0.69 0.73 0.75 0.79 0.82
GAPS 0.66 0.70 0.74 0.76 0.80

GRAPS 0.66 0.70 0.74 0.76 0.80
en

tr
op

y

NAIVE 0.82 0.84 0.80 0.66 0.34
APS 0.81 0.83 0.85 0.87 0.87

RAPS 0.81 0.84 0.85 0.87 0.87
GAPS 0.77 0.81 0.84 0.84 0.86

GRAPS 0.77 0.81 0.84 0.84 0.86

Table 4: Spearman correlation between set size and epis-
temic uncertainty (maximum softmax probability and pre-
dictive entropy) at five different values of α.
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