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Abstract

Understanding how a city’s physical appearance and environ-
mental surroundings impact society traits, such as safety, is
an essential issue in social artificial intelligence. To demon-
strate the relationship, most existing studies utilize subjective
human perceptual attributes, categorization only for a few vi-
olent crimes, and images taken from still shot images. These
lead to difficulty in identifying location-specific characteris-
tics for urban safety. In this work, to address this problem, we
propose a large-scale dataset and a novel method by adopting
a concept of “Deviance” which explains behaviors violating
social norms, both formally (e.g. crime) and informally (e.g.
civil complaints). We first collect a geo-tagged dataset con-
sisting of incident report data for seven metropolitan cities,
with corresponding sequential images around incident sites
obtained from Google street view. We also design a convo-
lutional neural network that learns spatio-temporal visual at-
tributes of deviant streets. Experimental results show that our
framework can reliably recognize real-world deviance in var-
ious cities. Furthermore, we analyze which visual attribute is
important for deviance identification and severity estimation.
We have released our dataset and source codes at our project
page: https://deviance-project.github.io/DevianceNet/.

1 Introduction
Urban planners and policymakers have traditionally utilized
social sciences, such as economics, criminology, and soci-
ology, to inform their decisions. Identifying location spe-
cific attributes is particularly important for urban safety de-
velopment. The most relevant research can be categorized
into two classes: micro-level (Arietta et al. 2014; Naik et al.
2014; Porzi et al. 2015) and macro-level approaches (Suel
et al. 2019; Maharana, Nguyen, and Nsoesie 2019; Alves,
Ribeiro, and Rodrigues 2018).

The micro-level approaches focus on only parts of vis-
ible cues from disordered environments (e.g., broken win-
dows and graffiti) where may affect perceived safety of
places (Kelling, Wilson et al. 1982). One notable example
which utilizes the perceived safety is “Deep Learning the
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Figure 1: Which place looks more dangerous? People and
existing model (Dubey et al. 2016) perceive the place (a)
as safe, but actual crimes have occurred. By contrast, the
place (b) seems to be dangerous due to the construction site.
Surprisingly, there is no crime occurrence. Based on official
crime statistics of all 25 local districts in Seoul, we report
relationships between four major sociodemographic indica-
tors and incident rates, a ratio of incident to a population of
each district, in (c). The scatter plots represent no correlation
exists between them.

City” proposed by Dubey (Dubey et al. 2016). With a Place
Pulse 2.0 dataset consisting of pairwise image comparison
data obtained through crowdsourcing, a convolutional neu-
ral network (CNN) was trained to predict perceived safety
and other visual attributes of cities. However, these meth-
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Dataset Input Crime label Image# Viewpoint GPS Open City#
PlacePulse1 (Salesses et al. 2013) Single Image Crowdsource Perceived Safety 4K Street-level X O 4
PlacePulse2 (Dubey et al. 2016) Single Image Crowdsource Perceived Safety 110K Street-level X O 56

Crime-Rate (Andersson, Birck, and Araujo 2017) 4-directional Images Crowdsource Incident Report 83K Street-level O X 1
Satellite (Najjar, Kaneko, and Miyanaga 2018) Single Image Official Incident Report 57K Satellite-level O X 3

StreetNet (Fu, Chen, and Lu 2018) Single Image Official Incident Report 44K Street-level O X 2
UK Dataset (Suel et al. 2019) 4-directional Images Official Socio-demographics 1561K Street-level X X 4

Ours 12-directional Sequential Image Official Incident Report 760K Street-level O O 7

Table 1: Dataset comparison. GPS indicates whether images and incident labels are geo-tagged together, or not.

Deviant place 2
GPS : 40.8176, -73.9240
Deviance Class : 1 
Ex) Felony Sex Crimes

Deviant place 1
GPS : 40.8192, -73.9179
Deviance Class : 4 
Ex) Offenses Against Public

20m

Figure 2: Dataset acquisition. Given official incident report
data consisting of GPS locations and incident types, we take
sequential images around an incident site and classify it into
one of the deviance categories. The coverage of a deviant
place is 100m.

ods rely on subjective attributes such as safe, lively, wealthy,
and boring. Since disorderliness depends on the perception
of survey respondents (Gau and Pratt 2010), correspond-
ing perceived safety has no relation to actual crime occur-
rences (Keizer, Lindenberg, and Steg 2008). Figure 1(a) pro-
vides an example of place that is perceived safe, but vio-
lent crimes frequently occur. By contrast, even though Fig-
ure 1(b) looks like a dangerous place, the place is safe in
reality. The gap between reality and human perceptions re-
sults from using single images with a specific viewpoint or
4-direction images which provide insufficient coverage of an
incident sites’ visual appearance.

On the other hand, the macro-level approaches leverage
sociodemographic information which is mainly based on
statistical data such as income, crime, and region population.
(Suel et al. 2019) developed a CNN that measures the spa-
tial distributions of education, health, unemployment, hous-
ing, living environment, and crime from raw images. How-
ever, there is no significant correlation between actual crime
occurrences and sociodemographic information. As an ex-
ample, we plot the relationship between sociodemographic
information (i.e., elderly population, middle-income class,
sex ratio, and suicide rate) of all 25 local districts in Seoul
and incident rates in 2018 in Figure 1(c).

To address these challenges, we introduce a large database
of geo-tagged images at a city-scale based on “Deviance”
which explains deviant incidents violating social norms,
both formally (e.g., crime) and informally (e.g., civil com-
plaints). Our dataset contains objective incident report data
for seven metropolitan cities with various incident types in-

cluding violent crimes and civil complaints collected from
government agencies, and their corresponding sequential
images from Google street view. The images cover the en-
tire street, and are not limited to individual viewpoints,
whose example is illustrated in Figure 2. Since our dataset is
the first deviance dataset which contains sequential images
based on objective incident reports, there is no dataset that
can be directly compared with ours. To highlight the nov-
elty of our dataset, we summarize the attributes of relevant
datasets in Table 1.

With our dataset, we design a CNN framework, called
DevianceNet. DevianceNet can identify potential deviant
places and their dangerousness from sequential images.
Since existing video understanding models with sequential
images are not suitable to handle large gaps between im-
age frames obtained from Google street view, we use an in-
terest point matching to find reliable correspondences be-
tween associated descriptors (DeTone, Malisiewicz, and Ra-
binovich 2018). In addition, since not all crimes are equiva-
lent to one another, many works (Kwan, Ip, and Kwan 2000;
Huey 2016; Ratcliffe 2015; Koss, Woodruff, and Koss 1990)
impose different weights on the severity of crime types. In-
spired by statistical theory (Hayhurst 1932), we propose a
severity-aware loss for deviance prediction.

Using DevianceNet and the severity-aware loss, we ob-
tain state-of-the-art results for various places. In particular,
our network shows consistently promising performances for
seven different cities in South Korea and the US. Addition-
ally, we investigate whether the DevianceNet trained on only
one city is transferable to other cities, indicating the extent
to which visual attributes linked to measures of deviance
are shared between cities. Ablation studies also indicate that
each of these technical contributions leads to appreciable im-
provements in deviance prediction. Lastly, we conduct var-
ious analyses to understand roles of visual attributes which
affect deviance occurrences.

2 The Proposed Approach
In this work, we aim to learn a CNN to predict deviance
classes from visual attributes of streets. For this, we need to
overcome three main challenges: (1) the huge gap between
actual crime occurrences and perceived safety, (2) the repre-
sentation of location-specific attributes, and (3) a considera-
tion of the severity of crimes.

To address these challenges, we firstly construct a large-
scale dataset consisting of sequential images corresponding
to actual crime reports, which takes advantage of both the
objectiveness of macro-level approaches and local specific
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Class # South Korea Chicago New York

1 Homicide Homicide Murder & Non-negligent
manslaughter

2 Grand theft Motor vehicle theft Grand larceny of
motor vehicle

3 Demoralization Public indecency Disorderly conduct

4 Public peace Interference with Offenses against
violation public officer public administration

5 - Non-Deviance -

Table 2: Incident data categorization. Incident types are cat-
egorized into 4 classes based on criteria of incident reports
for each city. The class 5 is for negative samples, which does
not include any incident.

Class # Seoul Busan Deajeon Daegu Incheon NewYork Chicago

Class 1
3369
(672)

648
(156)

1044
(240)

946
(204)

1124
(204)

1013
(245)

1044
(324)

Class 2
3486
(742)

852
(204)

1164
(228)

993
(204)

1164
(276)

977
(180)

1056
(240)

Class 3
3731
(816)

833
(180)

1421
(228)

1095
(267)

1200
(300)

988
(264)

1076
(240)

Class 4
3109
(705)

801
(168)

1130
(262)

1048
(192)

1080
(264)

984
(216)

1179
(226)

Class 5
3313
(720)

804
(144)

804
(156)

916
(195)

924
(168)

870
(205)

932
(240)

Table 3: The number of clips of our dataset. (·) indicates the
number of clips in test set. Seoul contains 150 deviant places
for each deviance class and other cities have 50 places.

representations of micro-level approaches. We then build a
CNN model to predict deviance classes from input sequen-
tial images. Lastly, we propose a novel loss function to cope
with the difference of severity among deviance classes be-
cause violent crimes such as murder cases are much serious
than civil complaints in the real-world.

Through our dataset and DevianceNet, we focus on two
tasks: deviance identification and severity estimation. A goal
of the identification task is to detect whether an event of
deviance appears in a sequential image. The task is actu-
ally binary classification like RSS-CNN (Dubey et al. 2016).
We also perform a 5-way classification task which estimates
severities of deviances.

2.1 Dataset Construction
Here, we introduce our novel large-scale dataset consisting
of objective incident report data with its corresponding se-
quential images to fully represent the visual attributes of de-
viant locations. The Deviance dataset is based on official in-
cident report data of South Korea and the US for 2018. The
report data of South Korea is provided by the National Po-
lice Agency, and the US data is collected from official open
data portal of Chicago1 and New York2. The reports consist
of many different types of incidents including violent crimes

1Chicago Data Portal: https://data.cityofchicago.org/Public-
Safety/Crimes-2001-to-Present/ijzp-q8t2

2NYC Open Data: https://data.cityofnewyork.us/Public-Safety/
NYPD-Complaint-Data-Historic/qgea-i56i
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Figure 3: Examples of our dataset. Each row and column
indicates a deviance class and its corresponding city, re-
spectively. The examples have visually similar attributes,
but there are differences between actual crime levels. This
means that people’s perception of urban appearance often
fails to take account of it.

and civil complaints. Based on the reports, our dataset is col-
lected from 5 major cities in South Korea (Seoul, Busan, In-
cheon, Daegu, and Daejeon) and 2 major cities in the US
(Chicago and New York) in the following steps:
1. We first categorize incident types into four classes ac-

cording to severities of deviances. We follow the inci-
dent classification criteria of incident reports for each city
(e.g., criminal classification codes and levels of offense)
in Table 2. In addition, we add a non-deviance class,
which includes places where no deviance has occurred.

2. We then sort out the deviant places for each class, where
deviance frequently occurred at the GPS-level. To avoid
a vagueness and a class imbalance, we exclude places
which have less than five occurrences. For further expla-
nation, we report the percentage of deviant places accord-
ing to incident occurrences in Seoul where 95% of places
have less than five occurrences.

3. Based on the selected deviant places, we obtain sur-
rounding Google Street View images of each deviant
place. At least 10 GPS coordinates within a radius of
50m of a sorted deviant location are selected to con-
sider entire neighborhood environments. The reason for
the coverage is that we adopt a standard range for ur-
ban environments and planning with location-specific at-
tributes (Özbil, Yeşiltepe, and Argin 2015; Gorgul et al.
2019). From the selected GPS coordinates, we collect im-
ages with 12 directions for each GPS position. As a re-
sult, each deviant place has at least 120 images in total.

We extract a total of 2,250 deviant places, consisting of
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Figure 4: An overview of DevianceNet. T is the number of input images, U is an upsampling block, C is a concatenation, and
SP Attention means an attention module based on an interest point matching network. The two branches with 3D block, 2D
blocks learn generic representations and, specifically, 3D Down Block is a reduction block for temporal and channel dimension.
M is a merging block that fuses the outputs of 3D block and 2D block.

760,952 images. The number of sequential image clips for
the training and test set is 46,630 and 10,275, respectively.
We note that the test set are unseen places in training set,
whose details are reported in Table 3. The same number of
deviant places were selected for each deviance class, and
none of the deviant places overlaps. In the identification task,
clips of deviant places for each deviance class are randomly
selected as many as non-deviant places in the test set for data
balance. The examples of our dataset are displayed in Fig-
ure 3.

2.2 Framework Architecture
We train a spatio-temporal network to learn deviance judg-
ments, which is an extended concept of crimes, from input
sequential images, and encourage it by introducing a linear
combination of identification and severity estimation losses
based on sociology (Hayhurst 1932; Carine and Park 2019).

Accompanying the concept of deviance and our dataset,
we design a CNN which infers different types of deviance
from sequential street-level images (Figure 4). Although ex-
isting works, which mainly deal with violent crimes, only
focus on a small part of the whole street such as graffiti
and broken windows, the overall surrounding environments
are needed to be considered to find visual attributes which
affect an individual’s deviance. Accordingly, holistic repre-
sentations for input sequential images should be learned for
deviance representation.

There have been several works regarding video under-
standing which mainly focus on small parts of scenes where
many changes occur. In contrast, we choose Holistic Ap-
pearance and Temporal Network (HATNet) (Diba et al.
2020) as a baseline of our architecture. HATNet learns a
holistic representation by merging outputs of 2D and 3D
convolution blocks at intermediate stages. The 2D convo-
lutional blocks capture static cues from single frames, and
the 3D convolutional blocks extract relative temporal in-
formation between frames. By fusing feature maps from
these blocks, HATNet learns spatio-temporal representa-
tions. However, the 3D convolutional block requires many
learnable parameters, which causes unstable training and
overfitting problems. To address this issue, we decompose

each 3D convolution block into 2D and 1D convolution
blocks (Tran et al. 2018). Despite the same number of pa-
rameters, it doubles the nonlinear activation between the 2D
and 1D convolution in each block. This leads to learn more
complex structures in the data that can be represented sepa-
rately, and to make the optimization tractable.

Due to the nature of Google street view, our dataset has
large viewpoint gaps between frames, compared to regular
videos. We overcome the limitation by adopting an interest
point matching network (Sinha et al. 2020). We bring this
idea from a recent work (Sarlin et al. 2019) on scene con-
sistency between consecutive frames for visual localization.
With the matched features and descriptors from the inter-
est point matching, DevianceNet enables to capture tempo-
ral coherency of the image sequences with the large gap.

2.3 Severity-Aware Loss with Heinrich Weight
Violent crimes and civil complaints vary in severity; there-
fore, it is necessary to consider the severity of each deviance
class. We design an effective loss function to enhance the
discriminative power of learned features from DevianceNet.

The proposed loss function is a linear combination of
severity estimation loss LS and identification loss LI :

Loss = LS + λ1LI , (1)

where λ1 is a scale factor to properly balance the ex-
pectation values from the deviance severity estimation and
the identification errors. In this work, we use binary cross-
entropy as the identification loss LI to determine whether
deviance occurs in the scenes.

The severity estimation loss LS is calculated to reflect
different severities among deviance classes. We define rel-
atively incidental deviance classes with less severe incidents
as prior classes. For example, in the case of class 2, prior
classes indicate less severe classes (i.e., class 3,4 and 5). To
incorporate the severity of deviance into our loss function,
we modify a cross-entropy loss as below:

LS = ylog(ŷ) + λ2H (2)
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H =
3∑

i=1

hi[yi,priorlog(ŷi,prior)] (3)

where y and ŷ are a ground-truth and prediction, respec-
tively. In addition, y1,prior and ŷ1,prior are an indicator and
a prediction of a prior class which is the closest class to the
target class, respectively. H is a regularization term, which is
the summation of the log probabilities of prior classes with
a set of scalar values hi. λ2 is also a balance term between
the cross-entropy and H .

We determine the weight values hi using Heinrich’s law
in (Hayhurst 1932). According to the law, for every acci-
dent that causes a major injury there are 29 accidents that
cause minor injuries, and 300 accidents that cause no in-
juries. The law is also applicable for analyzing man-made
disasters including crime (Carine and Park 2019). Based on
the statistical background, we set the weight values to h1 =
0.909(= 300

330 ), h2 = 0.088(= 29
330 ) and h3 = 0.003(= 1

330 )
because our dataset is classified into four classes except for
the non-deviance class. The regularization term H based on
Heinrich’s law imposes a penalty for unrelated classes.

3 Experiments and Results
DevianceNet is evaluated under four different perspectives.
First of all, we demonstrate the effectiveness of DevianceNet
by comparing with state-of-the-art methods and by exhibit-
ing its generality. Second, we show its transferability by
training it on one city data (Seoul) whose validation is car-
ried out of other cities. Third, we perform an extensive abla-
tion study to examine the effects of different components on
DevianceNet performance including the proposed loss func-
tion. Lastly, dominant visual attributes are analyzed to un-
derstand what is more or less salient for deviance prediction.

We follow evaluation manners of RSS-CNN (Dubey et al.
2016) and SEHNet (Suel et al. 2019). We use quantitative
measures of visual perception: deviance Severity Estimation
Accuracy (SEA), Deviance Identification Accuracy (DIA),
and Mean Absolute Error (MAE). The SEA is the percent-
age of correctly predicted deviance class. The DIA indicates
the percentage of whether a given image is correctly deter-
mined as a deviant place or not. Lastly, the MAE is an error
margin among deviant classes. We compute the difference
of class index between GT and prediction in terms of the
severity-classification. For example, the MAE is 3 if a model
infers a deviance class 4 while its GT deviance class is 1.

3.1 Implementation Details
We implemented our model for 100K iterations using the
publicly available PyTorch framework with a batch-size of
32 and an ADAM optimizer with a learning rate of 0.0001
(β1 = 0.9, β2 = 0.999), which takes about 8 hours with two
NVIDIA RTX 3090 with 24GB memory. An inference time
for one sequential image is about 0.1 seconds.

We use a pretrained weight of the interesting point match-
ing (DeTone, Malisiewicz, and Rabinovich 2018) whose
number of points and detection threshold are 256 and
0.0005, respectively. Both 2D and (2 + 1)D convolutional

Method
Severity-Aware Cross-Entropy

SEA DIA MAE SEA DIA MAE
RSS-CNN (R18) 31.20 - 1.25 30.40 - 1.19
RSS-CNN (R50) 32.60 - 1.22 32.40 - 1.22
SEHNet (R18) 41.18 - 1.09 38.15 - 1.15
SEHNet (R50) 41.80 - 1.10 39.83 - 1.14

I3D 41.96 77.12 1.08 40.74 77.88 1.07
C3D 40.17 68.24 1.13 38.98 68.39 1.24
R3D 40.54 76.51 1.15 39.89 77.57 1.92

R2D+LSTM 42.96 80.82 1.04 41.37 75.65 1.05
R2D+Concat 38.77 73.11 1.19 39.02 75.90 1.16
R2D+Mean 40.55 71.79 1.10 39.52 74.18 1.12

R(2+1)D (R18) 41.39 75.44 1.07 40.71 76.97 1.08
R(2+1)D (R50) 42.50 78.89 1.02 41.90 77.17 1.03

HATNet 44.01 83.34 0.99 43.07 80.52 1.01
HATNet+SP 45.08 84.42 0.99 43.86 79.54 1.04

HATNet+(R2+1)D 46.64 87.97 0.95 44.45 81.79 1.02
DevianceNet 48.17 89.77 0.88 47.17 82.51 1.01

Table 4: Quantitative evaluation. We compare DevianceNet
with existing video understanding methods and location-
specific attributes inference models. We also apply each
component of DevianceNet into HATNet to study how it af-
fects overall result including severity-aware loss.

blocks used are constructed with ResNet 18-layer as a back-
bone.

All the experiments are performed with image sequences
with 16 frames. To handle optical distortions of Google
street view images, we crop the center part of an original im-
age into 480×640 and downsample it into 224×224 in both
training and test phase. We set λ1 and λ2 in our severity-
aware loss to 0.5 and 0.15, respectively. In addition, we set
hi of the loss based on weight values of Heinrich’s law. Fur-
ther details of ablation study for the parameter selection are
provided in our supplementary material.

3.2 Comparisons with State-of-the-Art Methods
We compare DevianceNet with state-of-the-art meth-
ods including location-specific attribute prediction meth-
ods (Dubey et al. 2016; Suel et al. 2019) with ad-
vanced backbones (ResNet18 and ResNet50). Similar to De-
vianceNet, they aim to represent attributes of locations from
images. RSS-CNN (Dubey et al. 2016) and SEHNet (Suel
et al. 2019) use a single image and 4 direction images
per place as input, respectively. In addition, because our
dataset consists of sequential images, we also compare it
with state-of-the-art video understanding models such as
RGB-I3D (Carreira and Zisserman 2017), C3D (Tran et al.
2015), ResNet3D (Hara, Kataoka, and Satoh 2017), multi-
view recognition models (i.e., LSTM, mean, and concate-
nation) (Facil et al. 2019), R(2+1)D (Tran et al. 2018) and
HATNet (Diba et al. 2020). In this experiment, we train De-
vianceNet and other methods from scratch, and the results
are reported in Table 4.

Our DevianceNet provides the best performance on all
measures. Interestingly, the video understanding methods
show slightly better performance than the location-specific
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Figure 5: Transferability in different cities. Performance of
DevianceNet trained on Seoul in South Korea and applied to
other South Korea cities (i.e., Busan, Incheon, Daegu, and
Daejeon) and US cities (i.e., Chicago and New York). @A
means A% of the dataset for each city, and TFS indicates
“train from scratch”.

Figure 6: Results on Place Pulse 2.0 dataset. We test our De-
vianceNet on the images captured in Hongkong and Warsaw,
and confirm the generality of DevianceNet.

attributes. However, there are huge gaps between De-
vianceNet and the video understanding methods, even with
interest point matching for handling large gaps between se-
quential images. The holistic representation of DevianceNet
extracted from entire image sequences makes it possible to
accurately classify and detect deviant places.

We also compare the severity-aware loss with a cross-
entropy loss. Table 4 shows the severity-aware loss gener-
ally outperforms the cross-entropy loss in DevianceNet. The
regularization term H enforces the minimization of MAE
because the predictions to adjacent classes are considered.

3.3 Transferability
Following (Suel et al. 2019), we evaluate how well Devian-
Net trained on only one city data (Seoul, South Korea) pre-
dicts deviance for other city clips. We also fine-tune the pre-
trained weight using small sets of deviant places for each
city (5%, 10%, 30%, and all training data). As shown in
Figure 5, the performance improvement plateaus when 5%
data for each city are used for fine-tuning. We note that the
prediction results for South Korea cities are relatively better
than US cities because each country shares similar visual at-
tributes which have an impact on the visual perception-based
deviance prediction. Through this evaluation, it is noticeable
that street images can potentially serve as low cost surveil-
lance tools in data-poor geographies.

In addition, we conduct an experiment on Place Pulse
2.0 dataset (Dubey et al. 2016). We modify the dataset by
augmenting single images into sequential frames based on

Figure 7: Application to developing countries. Since de-
veloping countries do not have publicly available incident
record data in usual, we use violent crime articles and their
street images.

frame: 𝒕 − 𝟏 frame: 𝒕 frame: 𝒕 + 𝟏

(a) Without interest point matching.

frame: 𝒕 − 𝟏 frame: 𝒕 frame: 𝒕 + 𝟏

(b) With interest point matching.

Figure 8: Visualization of attention maps. DevianceNet with
interest point matching maintains a focus on discriminative
visual attributes even with significant viewpoint changes in
Google street view images.

their geo-tagged data. We then categorize the subjective per-
ceived safety into 5 deviance classes. The result is reported
in Figure 6. DevianceNet shows promising results on the
perceived safety as well.

Lastly, to validate a generality of DevianceNet for devel-
oping countries which do not have publicly available inci-
dent record data, we collect sequential street images for de-
veloping countries, and infer deviant classes on them. Our
DevianceNet predicts all places as deviance class 1 correctly,
and check on the facts with news articles in Figure 7.

3.4 Ablation Study
We conduct an extensive ablation study to examine the ef-
fects of different components on DevianceNet performance.
The results are summarized in Table 4.
Interest Point Matching. We compare DevianceNet with
and without SuperPoint (Sinha et al. 2020) as an inter-
est point matching. The interest point matching network
extracts image features and performs a nearest neighbor
matching among interest points of sequential images. As
shown in Table 4, the interest point matching achieves per-
formance improvement over the stacking of input images,
which is commonly used for video understanding tasks.

To better understand its effectiveness, we visualize the
attention maps for two variants (with and without interest
point matching). As shown in Figure 8, DevianceNet with
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Frames SEA DIA MAE
4 frames (25 m) 40.82 81.03 1.06
8 frames (50 m) 43.82 87.13 1.05

12 frames (75 m) 44.19 86.56 0.98
16 frames (100 m) 48.17 89.77 0.88
20 frames (125 m) 42.88 85.83 0.96
24 frames (150 m) 45.26 86.03 1.00

Table 5: Ablation study on the number of input frames. We
test the performance changes in accordance with the num-
ber of input images. When we use 16 frames as input, De-
vianceNet shows the best performances. Note that (·) indi-
cates the coverage range of the input sequence.

interest point matching consistently focuses on discrimina-
tive parts such as the building and the skyscraper, even with
the significant viewpoint changes.
(2+1)D Convolution. In Table 4, we compare the use of
(2+1)D convolution (Tran et al. 2018) against 3D convo-
lution in DevianceNet. Decomposing the 3D convolution
layer leads to an additional nonlinear rectification between
2D spatial convolution and 1D temporal convolution, which
enables representing more sophisticated functions with the
same number of parameters as those of 3D convolution. The
results verify that the (2+1)D block is better for learning
spatio-temporal representation from our sequential images.
The Number of Input Frames. Lastly, we find the opti-
mal number of frames required for deviance identification
and severity estimation. Since two consecutive frames usu-
ally cover about 6 meters, we test DevianceNet with in-
put sequential images consisting of from 4 frames (25 me-
ters) to 24 frames (150 meters). As shown in Table 5, De-
vianceNet taking 16 frames (100 meters) achieves supe-
rior performance over those trained on shorter and longer
frames.

There is a trade-off between the recognition performance
and the computational complexity like (Tran et al. 2018).
Although more frames provide more information for recog-
nizing deviant places, it becomes difficult to learn context in-
formation of areas as the complexity increases, which causes
the performance drop.

3.5 Analysis of Visual Attributes
We provide visual and statistical analyses to better under-
stand what DevianceNet learns. As shown in Figure 1, it is
difficult for humans to recognize which attributes are associ-
ated with deviance. This naturally raises an interesting ques-
tion: what are the visual elements that affect deviance?

We first examine the statistical distributions of visually
distinct elements by counting the number of objects with
high attention values. To do this, we perform semantic seg-
mentation (Chen et al. 2018) and infer attention maps using
Grad-CAM (Selvaraju et al. 2017) for input images. Here,
we normalize a scale of the attention maps by the number of
pixels for each element (i.e., car, building and road, etc.) in
the semantic segmentation result. We then count the number
of elements with the highest attention value for each input
image. As shown in Figure 9, we display visual elements
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Figure 9: Distribution of visual elements. We report the dis-
tribution for two South Korea (Seoul and Busan) and two
US cities (New York and Chicago).

(a) Class 1 (b) Class 4

(c) Class 2 (d) Class 4

Figure 10: Analysis on visual elements. Example visual ele-
ments in streets according to the deviance classes. The upper
rows show road images of Chicago and lower rows are im-
ages of building in Seoul.

from four different cities (i.e., Seoul, Busan, Chicago and,
New York) in both South Korea and US.

Since our dataset is obtained from Google street view,
its elements consist mainly of roads, trees, and buildings,
etc. Although their statistical distributions are similar across
countries, it is interesting to see that the road is a common
element in most cities with the highest attention value for
deviance class 1, which is related to murders and sexual as-
saults. In Figure 10-(a) and (b), we can observe that there are
illegal road markings and cracks in places for deviance class
1, compared to the places for deviance class 3. It is notable
that as sociologist Kruger and his colleagues also demon-
strate, road signs and damaged roads are associated with
crimes in (Kruger and Landman 2008). Another interesting
element is the building, which is known for its relation to
crime occurrences (Cozens, McLeod, and Matthews 2018).
As shown in Figure 10-(c) and (d), deviance classes vary de-
pending on building styles. In particular, (Katyal 2001) sug-
gests that the design of building has an effect on a crime pre-
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Destination 
Starting Point Shortest Path

Safety Path

Figure 11: Safety check with DevianceNet. We infer de-
viance class of street images around an abandoned building,
called Ghost Tower, in Bangkok. Since the streets next to
the dilapidated building are considered as dangerous place,
it is predicted that there may be a deviation. Specifically,
DevianceNet predicts clips corresponding to red route (i.e.,
shortest path) as class 1 and blue route (i.e., a detour path)
as class 4.

vention. We observe that the exteriors of most of the build-
ings in places of deviance class 4 are made of glass blocks as
well. We provide additional visual attributes analysis on the
relationship between a variety of objects (e.g., road, build-
ing, tree, pavement and car) and deviance classes in our sup-
plementary material.

Through the analysis of visual attributes, we note that
there is a main difference between our work and broken
windows theory-based approaches (Arietta et al. 2014; Naik
et al. 2014; Porzi et al. 2015). Our DevianceNet selectively
gives more weight to encoded visual attributes in surround-
ing areas, while the approaches focus on local disordered
visual elements such as graffiti and dustbin.

4 Discussion
Applications in real-world scenarios. Our work supports
policymakers in planning cities and individual users visiting
unfamiliar areas. Urban safety plans can be established with
factors that affect deviance through simple streetview im-
ages, rather than specific GPS-level crime records. Our re-
search can be particularly useful in developing countries that
rely on sociodemographic information covering too broad a
range. We also expect that Crime Prevention Through Envi-
ronmental Design (CPTED), one of the social science stud-
ies related to deviance occurrence, can also be replaced by
our data-driven model which can transfer visual features of
other cities with ease.

Additionally, individual users can identify potential risks
of routes when visiting unfamiliar places. We show an ap-
plication to safety way-guidance. As shown in Figure 11,
a person would like to safely walk from the starting point
to the destination. A path-finding like Google Maps directs

Prediction Class 4 Class 5 Class 2

GT Class 2 Class 3 Class 1

Figure 12: Failure cases. DevianceNet often fails the de-
viance prediction for uncommon places.

the shortest path. However, the route can be considered as
a dangerous path when the high-level deviance is predicted.
For this case, our DevianceNet is applicable for alternative
path-finding to suggest a detour around the unsafe place.
Inspiration of network design. Deviance, including violent
crimes, is an issue in our daily lives and many related theo-
ries are studied in social sciences (e.g., broken window the-
ory, CPTED, and deivance theory). Among them, our net-
work design is partially inspired by a symbolic interaction
approach of the deviance theory that people learn deviance
from their neighborhoods (Burgess and Akers 1966). In
other words, individuals’ deviant actions are associated with
their surrounding environments (e.g., streets and actual cases
of crime). Therefore, we design DevianceNet which learns
holistic representations of streets from sequential images
with its corresponding incident reports. However, other ap-
proaches (i.e. structural-functional and social-conflict) in de-
viance theory which highlight the relationship between de-
viance and social structure, are not covered in this work. We
expect that the performance improvement can be achieved if
the whole deviance theory is incorporated into a design of a
CNN framework.

5 Conclusion
We have developed a CNN framework for the deviance pre-
diction, whose design is inspired by the concept of deviance
which includes formal and informal social norms.

We also collect a large-scale and geo-tagged sequential
images of deviant places based on objective incident report
data. Moreover, we have proposed the severity-aware loss
based on Heinrich’s law, which shows better performances
in both deviance identification and severity estimation than
the traditional cross-entropy loss.

However, there is still a limitation. It is sensitive to un-
common visual appearances in Google street view images
such as dusk, tunnel and coastal roadways as displayed in
Figure 12. An effective incorporation of domain adapta-
tion (Wu et al. 2018; Vu et al. 2019) within DevianceNet
is expected to minimize the gap of the visual appearances.

Lastly, our DevianceNet is designed as an assistive
method that primarily identifies potential deviant places. In
our dataset, one deviance class contains at least 11 incident
types, which is comprehensive. In other words, its prediction
results do not indicate specific crime occurrences. Therefore,
we would like to highlight that DevianceNet can be used as
a supporting tool to provide a primary guidance to policy
makers and researchers.
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