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Abstract
High-resolution daytime satellite imagery has become a
promising source to study economic activities. These images
display detailed terrain over large areas and allow zooming
into smaller neighborhoods. Existing methods, however, have
utilized images only in a single-level geographical unit. This
research presents a deep learning model to predict economic
indicators via aggregating traits observed from multiple lev-
els of geographical units. The model first measures hyperlocal
economy over small communities via ordinal regression. The
next step extracts district-level features by summarizing in-
terconnection among hyperlocal economies. In the final step,
the model estimates economic indicators of districts via ag-
gregating the hyperlocal and district information. Our new
multi-level learning model substantially outperforms strong
baselines in predicting key indicators such as population, pur-
chasing power, and energy consumption. The model is also
robust against data shortage; the trained features from one
country can generalize to other countries when evaluated with
data gathered from Malaysia, the Philippines, Thailand, and
Vietnam. We discuss the multi-level model’s implications for
measuring inequality, which is the essential first step in policy
and social science research on inequality and poverty.

Introduction
A recent hike in the availability of high-resolution daytime
satellite imagery has revolutionized how we collect data and
measure economic indicators. These images display detailed
land cover, and they are comparatively easy to collect on
a large scale. Such abundance enables satellite imagery to
be applied as raw input for sophisticated predictions using
deep learning. For example, studies have utilized a convo-
lutional neural network-based framework on satellite im-
ages to estimate population (Robinson, Hohman, and Dilk-
ina 2017), poverty (Jean et al. 2016), and other economic
indicators (Han et al. 2020a).

Conventional methods have largely tackled information
processing at a single geographic level. For example, some
have utilized information at the hyperlocal-level that covers
small geographic areas like neighborhoods (Pandey, Agar-
wal, and Krishnan 2018; Han et al. 2020b), whereas oth-
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Figure 1: A motivational example shows that even though
satellite images from two urban regions do not display no-
ticeable differences, their economic indicators show a large
gap. (A: a district in Daejeon, B: Gangnam district in Seoul,
South Korea)

ers have used information at the district-level that cover
larger administrative units like counties and cities (Jean et al.
2016). Models utilizing multi-level information can poten-
tially outperform those using single-level information. Yet,
there have not been many efforts to utilize such information.

Figure 1 shows an example where two urban grids ex-
hibit varying degrees of purchasing power despite their vi-
sual similarity. Both images appear highly urbanized when
compared as cropped-out grid tiles. However, a large eco-
nomic gap exists at the hyperlocal level because they belong
to districts of substantially different economic scales. This
discrepancy is due to the presence of an agglomeration effect
or the productivity benefit arising in clustered urban commu-
nities with dense populations and industries (Marshall 1890;
Duranton and Puga 2004). As studies have shown (Hui et al.
2020), economies of scale are common in the urban econ-
omy; yet this information cannot be observed easily from
a single grid image. Instead, understanding the interconnec-
tion of hyperlocal economies that make up a district can help
estimate economic indicators.

We present a novel method that utilizes multiple levels of
geographic information to predict economic indicators accu-
rately. The model first measures the hyperlocal economy by
inferring the relative degree of economic development for
individual grid images via ordinal regression. Next, the in-
terconnected relationship among small grid areas within the
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Figure 2: Illustration of the model architecture. Images collected from each district Di are put into our models to calculate
the hyperlocal scores and district scaling factor. These outputs are combined to predict the economic indicator yi of the given
district Di.

same district is summarized as district features. These fea-
tures act as a scaling factor across districts to differentiate
the scores of otherwise similar-looking grids. The model fi-
nally estimates economic indicators of districts by jointly
utilizing the hyperlocal-level predictions and district-level
scaling factors.

Experiments based on a million-scale data suggest that
the district scaling factor, which captures the power-law re-
lationship of urban economies (Figure 8), contributes to the
substantial performance gain of the proposed model in pre-
dicting key economic indicators compared to extant base-
lines that rely on single-level information (Table 1 and Fig-
ure 4). In addition, experiments show that our model is
robust against scarce data conditions (Figure 6), a quality
that is critical for practical policy implications. We present
economic interpretations of the model predictions based on
Zipf’s law and discuss implications for measuring economic
inequality in underdeveloped countries. We release our code
via GitHub.1

Related Work
Satellite imagery conveys visual information about the
earth’s surface and has shown widespread usage in eco-
nomic predictions, replacing labor-intensive survey data
sources (Albert, Kaur, and Gonzalez 2017). Early meth-
ods used nighttime imagery as a proxy of economic activ-
ity (Bagan and Yamagata 2015; Ghosh et al. 2013). Nowa-
days, high-resolution daytime images are in use.

Prior to satellite imagery, the ground truth of prediction
models was mainly the household surveys collected on small
regions; they report hyperlocal indicators such as wealth in-
dex or public health (Jean et al. 2016; Tingzon et al. 2019;
Bondi et al. 2020). The prediction models for those indica-
tors utilize not only the satellite imagery but also the road in-
formation from OpenStreetMap, which is the editable map
that contains geodata across the world that is actively sup-
porting user (human) intervention (Haklay and Weber 2008).
When the human-mediated data is applied, the latest model
also states that a hyperlocal unit’s economy can be ana-
lyzed even without the ground truth labels. The model can

1github.com/deu30303/DistrictEffect

be trained via a human-guided comparison in a weakly su-
pervised fashion (Han et al. 2020b).

Recent studies have utilized both surveys and daytime
satellite images on districts. Embedded statistics are used
to summarize feature vectors of a target district. For exam-
ple, READ first applied principal component analysis (PCA)
for reducing dimensions of each image’s representation and
summarized each district into a fixed-length vector of multi-
ple descriptive statistics (Han et al. 2020a). These fixed num-
bers of variables enable a regression to predict the district
economy. Daytime images have also been used for quantify-
ing the level of urban green space (Kwon et al. 2021).

Model
Assume multiple districts of arbitrary shape and size com-
pose the territory of a country. We denote a set of grid satel-
lite images in the i-th district as Di = {d1, ...,dni

}. Our
task is to estimate the economic indicator yi of district i,
given Di. We propose a model that measures the economy
at two levels: (1) a hyperlocal score fθ(d) and (2) per dis-
trict scaling factor gφ(D). While the former represents the
degree of economic development of the hyperlocal region
captured by each satellite image, the latter represents the ag-
gregated effect among multiple hyperlocal regions that com-
pose a district. These two elements are then jointly used to
predict the district economy as yi =

∑
d∈Di

fθ(d) ·egφ(Di).
Figure 2 illustrates the model architecture.

End-to-end training on district-level supervision can lead
to overfitting since the number of the annotated districts is
typically much smaller than the satellite image count. To al-
leviate this problem, we propose a stage-wise training using
different datasets and training signals as follows:
• Step 1. Given a small dataset with proxy labels rele-

vant to our target economic variables, train the hyperlocal
score model fθ under an ordinal regression objective.

• Step 2. Learn a district-level representation by training
an image-level encoder eψ in a semi-supervised manner,
then aggregate them into a fixed-size representation ri.

• Step 3. Given the hyperlocal score model fθ and district-
level representation ri, learn a regression model hϕ as
gφ(Di) = hϕ(ri) using the district-level supervision.
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Step 1. Measuring Hyperlocal Economy
Let dn be the n-th satellite image in the entire image set of
a country. Then the first step aims to learn a score model fθ
that predicts the degree of economic development sn of a
satellite image dn (i.e., sn = fθ(dn)). Economic statistics
are typically available at the district level (yi) rather than for
each satellite image. We instead employ an auxiliary dataset
X with surrogate labels indicating the coarse category of an
image as weak supervision. We choose a random set of 1,000
images and manually labeled them as urban, rural, or unin-
habited (i.e., X = {(dn, ŷn);n ∈ (1, ..., 1000)}).2

Since we want our model to produce a continuous score
from the (soft) categorical label, we employ ordinal regres-
sion with the linear property. Ordinal regression establishes
an ordinal relationship between classes and handles ordered
target variables (Brant 1990). We aim to preserve the order
of economic development among three surrogate labels as
follow:

class of d =

{ uninhabited if f(d) < t1
rural if t1 ≤ f(d) < t2
urban if t2 ≤ f(d)

(1)

where f is an abbreviation of fθ and t1, t2 are thresholds for
distinguishing two adjacent classes (t1 < t2). Then, a logit
vector is used to train the score model:
l(d) = [t1 − f(d), min(f(d)− t1, t2 − f(d)), f(d)− t2].

(2)
Eq. (2) ensures that each element in the logit vector rep-

resents the distance between score and threshold. When the
score grows over t2 (i.e., urban), the third component’s value
in l(d) becomes positive, while the remaining becomes neg-
ative. The second component becomes positive if the score
lies between the two thresholds (i.e., rural). Therefore, ap-
plying a softmax function to this logit l(d) and performing
classification guarantees that the score model fθ preserves
the predefined label order. Unlike the existing approaches
in ordinal regression employing the non-linear output ker-
nels (Liu, Wai Kin Kong, and Keong Goh 2018; Brant 1990),
the linearity in Eq. (2) encourages our model to produce con-
tinuous scores. This property is important to learning the
continuous economic scale of an image based on discrete
surrogate labels. We clamp the scores into the fixed range
[tmin, tmax] and train our model to minimize the cross-
entropy loss for numerical stability:

Lclass = − 1

|X |
∑

(d,ŷ)∈X

ŷT · LogSoftmax(l(d)) (3)

We use the outputs from the model s = fθ(d) as an
economic scale of the hyperlocal image d. Figure 3 illus-
trates the score distribution in the projected space obtained
by PCA. The learned model separates different classes well
while ordering images even within the same class. In the
experiment, we verify that such relative order of images pre-
dicted by our score model is aligned well with actual eco-
nomic development among regions.

2Each data was annotated by four annotators, whose aggregated
decisions were used as soft labels. Fleiss kappa, which assesses the
degree of agreement, was 0.72.

Urban
Rural
Uninhabited

Figure 3: Visualization of score distribution obtained by our
model (i.e., s = fθ(d)). The model clearly separates images
in different classes while providing relative orders among
in-class images.

Step 2. Extracting District Features
Although the score model provides a relative economic
score on a hyperlocal image, predicting district-level econ-
omy requires understanding the interconnection between hy-
perlocal images within the district. For example, when urban
towns are geographically close, an agglomeration effect al-
lows for a much larger economic development than when
urban towns are positioned far from one another (Duranton
and Puga 2004). Step 2 aims to encode such information into
the district-level representation.

Extracting features from an image Before incorporat-
ing district features, we first train an encoder eψ as a fea-
ture extractor for each satellite image. Our encoder training
is guided by the surrogate loss in Eq. (3) but also regular-
ized by additional clustering loss to improve the general-
ization and enhance the correlation between visually similar
images (Han et al. 2020c). We employ a large set of unla-
beled satellite images U to compute the regularization3 and
adopt DeepCluster for clustering (Caron et al. 2018). By
computing the k-means algorithm over the embedded vec-
tors, DeepCluster generates clusters that can be regarded as
pseudo-label. These pseudo-labels are then utilized to up-
date the encoder by minimizing the following classification
loss:

Lcluster =
1

|U|
∑
d∈U

ȳT · LogSoftmax(W · eψ(d)), (4)

where ȳ denotes the pseudo-label of the image from k-
means clustering, and W is a weight matrix that projects the
encoder output to the pseudo-label space. (i.e., cluster head)

We repeated the clustering algorithm for urban (i.e.,
fθ(d) ≥ t2) and rural classes (i.e., fθ(d) < t2) respectively
and got an equal number of nc clusters from both classes. Fi-
nally, the encoder is trained in a semi-supervised way with

3We eliminate the uninhabited images in U by applying the
score model fθ , as they are irrelevant to economic measures.
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multi-task loss using two datasets X and U to preserve the
label order while gathering similar visual traits in embed-
ding space (Eq. 5).

Lencoder = Lclass + λ× Lcluster (5)

We initialize the encoder eψ using the score model’s param-
eters fθ except the last layer. We observed that the adjusting
parameter λ = 1 works well in all experiment settings.

Summarizing district features Given the encoder eψ , the
next task is to aggregate the image-level features to obtain
the district-level representation. Districts can be of any shape
and size, and the number of images for districts can show or-
ders of magnitude differences. Accordingly, the feature set’s
size extracted from satellite images in each district may vary.
Hence, summarizing a different number of satellite images’
features into a fixed-length representation is essential to han-
dle the district scaling factors.

Embedded spatial statistics can summarize all feature vec-
tors within a district. This approach extracts fixed-length
representations from different numbers of images. We ap-
plied PCA to reduce the dimension of the encoder represen-
tation4 and aggregated all representations within the district
and calculated the descriptive statistics, such as mean and
standard deviation, to produce a fixed-length vector. We also
add the summarization of the hyperlocal scores fθ within the
district to provide hyperlocal information. The final district
feature vector ri is defined as follows:

ri = [µ(e′ψ(Di)), σ(e
′
ψ(Di)),Σd∈Difθ(d)], (6)

where µ(·) and σ(·) denote mean and standard deviation,
respectively, and e′ψ denotes the projected encoder outputs
by the PCA. We calculate ri for every district and utilize it
as an input to the regressor hϕ, which estimates the district
scaling factor.

Ensemble approach for better representation. An en-
semble approach is considered to improve the representation
quality. This method trains several models on the same ob-
jective from different conditions and is robust against uncer-
tain quantitative predictions (Opitz and Maclin 1999; Ovadia
et al. 2019; Park et al. 2021).

We enrich the representation r by the ensemble of en-
coders {e′ψ2

, .., , e′ψM
} as follows:

µi = [µ(e′ψ1
(Di)), ..., µ(e

′
ψM

(Di))] (7)

σi = [σ(e′ψ1
(Di)), ..., σ(e

′
ψM

(Di))] (8)

ri = [µi,σi,Σd∈Di
fθ(d)] (9)

where [·] denotes the concatenation.
To introduce the diversity to the ensemble of encoders, we

employ two strategies: (1) training encoders using different
data sources or (2) randomizing cluster assignment in Deep-
Cluster. As an additional data source for ensemble, night-
light intensity data is used as a proxy to train the extra fea-
ture extractor. The model can learn about the general char-
acteristics of urban development by maximizing the Pear-
son correlation between nightlight intensity and hyperlocal

4We set the number of principal components to three, as they
explain about 80% of the total variance.

scores from entire daytime satellite images of a country. To
introduce randomization during clustering, we trained mul-
tiple encoders by optimizing Eq. (4) with a various number
of clusters nc ∈ {0, 30, 90} in two data sources (i.e., X and
nightlight intensity) independently. Thus, six models are im-
plemented to construct the final representation vector ri.

Step 3. Estimating District Indicators Combining
Multi-Level Information
Given the hyperlocal score model fθ and district-level rep-
resentation ri, the last step combines the two to estimate the
economic development of districts. The prediction on i-th
district-level economy is defined as follow:

yi =
∑
d∈Di

fθ(d)× ehϕ(ri). (10)

The hyperlocal score model is trained independently of the
target district economic indicators. In contrast, the district
scaling model is trained to adjust the prediction scores ac-
cording to the target economic indicators. We train the re-
gression model hϕ in Eq. (10) using the supervision on the
district-level economic measure as follow:

hϕ(ri) ≈ ln
yi∑

d∈Di
fθ(d)

(11)

District data augmentation. Although the optimization
of Eq.(11) is limited with only respect to the regressor hϕ,
the amount of training data with district-level economy la-
bels is still insufficient to avoid overfitting. To alleviate
this challenge, we present a new data augmentation tech-
nique. Let N be the number of annotated districts with the
economic label. Then we generate a new larger district by
randomly selecting two districts and unifying them, i.e.,
Di∪j ≡ Di ∪ Dj . Accordingly, we assign an economic
label to these new districts by aggregating their respective
labels by summation (or weighted average). The proposed
data augmentation combinatorially increases the number of
training instances (i.e., N +

(
N
2

)
), thereby preventing the

overfitting.

Training Setups
Datasets
Satellite images We use high-resolution daytime satellite
images of five Asian countries: South Korea, Malaysia, Viet-
nam, the Philippines, and Thailand. We chose Korea for
its rich datasets and ground truth and the others for pre-
dicting different degrees of inequality in developing coun-
tries. A GIS software company, Esri, provides daytime satel-
lite image tiles at various zoom levels (Z). The zoom level
determines a tile size, where Z = k indicates that the
tile’s width/height covers over 2k of the entire earth’s lon-
gitude/latitude. For example, an image covering the whole
earth has a zoom level of 0, and both the width and height
become half at each zoom level increment. Since the num-
ber of pixels per image tile remains identical (256 by 256), a
higher zoom level indicates a richer resolution. We utilized
images of Z = 15, which has 4.7m per pixel resolution for
all experiments. Images are from 2017 to 2019.
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Model Total population Purchasing power Energy consumption GRDP
Domestic Total

Nightlight Proxy 0.1144 ± 0.3505 0.0999 ± 0.3401 0.1484 ± 0.3187 -0.9765 ± 1.0647 -0.9932 ± 1.0386
Tile2Vec 0.2320 ± 0.1225 0.2199 ± 0.1547 0.3196 ±0.1580 -0.1572 ± 0.4397 -0.3217 ± 0.3237
SimCLR 0.4081 ± 0.1217 0.4271 ± 0.1342 0.4093 ±0.1291 0.0319 ± 0.2619 -0.2675 ± 0.2682
READ 0.5920 ± 0.0979 0.5286 ± 0.1052 0.5632 ±0.1030 0.2412 ± 0.1917 0.2036 ± 0.2273

Full model (ours) 0.8149 ± 0.0721 0.8212 ± 0.0721 0.8553 ± 0.0447 0.4853 ± 0.1923 0.4568 ± 0.1701
Without ensemble 0.7296 ± 0.1262 0.7152 ± 0.1422 0.7721 ± 0.1033 0.3775 ± 0.2388 0.2968 ± 0.2102
Without fine-tuning 0.7781 ± 0.1067 0.7790 ± 0.1009 0.8266 ± 0.0633 0.4783 ± 0.2013 0.4023 ± 0.2013
Without hyperlocal scoring 0.5249 ± 0.1045 0.5058 ± 0.0812 0.4624 ± 0.1072 0.2088 ± 0.1531 0.2011 ± 0.2435

Table 1: Evaluation results including four existing baselines and ablation studies. Performances are evaluated on four repre-
sentative economic indicators: total population, purchasing power, energy consumption, and gross regional domestic product
(GRDP) of districts in South Korea. Every ground-truth value is in its original scale, and R-squared values are reported for
evaluation.

Economic indicators We use four ground truth indicators
that explain the district-level economy: total population, pur-
chasing power (i.e., the disposable income after taxes and
transfers), energy consumption, and gross regional domes-
tic product (GRDP). Esri Demographics makes the first two
economic indicators available for 135 countries via its Ar-
cGIS GeoEnrichment API.5 For the latter two, we use the
official statistics released by the studied country.

Training Details
Hyperlocal score model fθ in step 1 was trained for 100
epochs with batch size 50. Thresholds for distinguishing
two adjacent classes (i.e., urban-rural and rural-uninhabited)
were set to 0 and 10. For numerical stability, we clamped the
scores into the fixed range [-10, 20]. Adam optimizer with a
learning rate 1e-4 was utilized.

Feature extractor model eψ in step 2 utilized multi-
task loss from two datasets: X and U . Batch sizes for X
and U were set to 40 and 256, respectively. The model
was trained for 5 epochs. For ensemble, six extractors
{e′ψ1

, e′ψ2
, .., , e′ψ6

} were implemented by altering the num-
ber of clusters nc ∈ {0, 30, 90}, and by introducing two dif-
ferent data sources (i.e., X and nightlight intensity) inde-
pendently. In the case of the nightlight intensity dataset N ,
the encoder model was trained to maximize the Pearson cor-
relation between nightlight intensity ỹ and hyperlocal scores
from entire daytime satellite images of a country. ResNet-18
was used as a backbone network for both hyperlocal score
model fθ and feature extractor eψ .

Final regressor hϕ in step 3 is fit with ground-truth eco-
nomic indicators y. A random forest regressor with 200 es-
timator trees was used.

Experiments
Performance Evaluation
District-level evaluation The first evaluation uses multi-
ple district-level ground-truth statistics. We randomly split

5Data from Michael Bauer Research GmBH. More details are
listed on doc.arcgis.com/en/esri-demographics/data

the data into a training set and a test set with an 80%-20%
ratio 100 times. We report the R-squared values as an evalu-
ation metric to show how well our predictions approximate
the ground truth; this metric shows the proportion of the
variance for a dependent variable explained by a regression
model. Previous work on economic predictions (Jean et al.
2016; Han et al. 2020a) employed log-scaled ground truth
values for evaluation. However, we evaluate all models with
their original scales for practical usage.

We use seven baselines: four from existing studies and
three from ablations. All baselines had an identical setting
of the split ratio and the backbone network. (1) Nightlight
Proxy uses the nightlight intensity as a proxy to train an
encoder (Jean et al. 2016). It extracts features from day-
time images with an encoder, and features are summarized
to predict economic indicators by averaging. (2) Tile2Vec
adopts a triplet loss using geospatial distance information
to represent individual satellite images in an unsupervised
manner (Jean et al. 2019). We summarize district features
from the learned model by averaging. (3) SimCLR is a self-
supervised framework of visual representations (Chen et al.
2020). It learns visual features by maximizing agreement be-
tween different views of the same image. The learned fea-
tures are summarized by averaging and eventually used for
prediction. This model was originally proposed for satellite
imagery, but we apply it for its superior representation qual-
ity. (4) READ is the weakly supervised model that can sum-
marize visual features from districts to estimate population
density (Han et al. 2020a). Since this model predicts popu-
lation density, we multiply the predicted number by the area
size to report the total population. The next are ablations,
where we vary the proposed model by intentionally miss-
ing a key component. (5) Without ensemble is an ablation
of our model without the ensemble approach Eq 7–9. (6)
Without fine-tuning is an ablation without the fine-tuning
step Eq 4–5. (7) Without hyperlocal scoring is an ablation
that only uses district scaling factors.

Table 1 shows that our model outperforms all baselines
by a large margin across all tasks, for the case of predic-
tions on South Korean data. The Nightlight Proxy model
shows relatively poor performance than the other daytime
image models due to the light saturation, nighttime glare,
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(a) Total population (b) Purchasing power

Figure 4: Prediction results over four Asian countries on two
economic indicators: total population and purchasing power.
The R-squared values are compared for the proposed model
and the best performing baseline. MY is Malaysia, PH is the
Philippines, TH is Thailand, and VT is Vietnam.

and missing detailed landscape information. The light sat-
uration is known to occur when the light intensity above
a certain level does not increase, making it challenging to
distinguish subtle differences across urban districts (Zheng
et al. 2018). The table also shows that removing any key
component in the proposed model lowers the performance,
indicating all three components contribute to predicting eco-
nomic indicators. Among them, the hyperlocal score has the
most critical role.

The proposed model also performs well in the other four
Asian economies. We train the model independently for each
country and test the performance with an 80-20 train-test
split. All results are intra-national predictions. Figure 4 com-
pares the prediction result against the best performing base-
line, READ (Han et al. 2020a). The proposed model per-
forms substantially better than the baseline for all countries
studied.

Hyperlocal-level evaluation Given the importance of the
hyperlocal scoring, we also compare two variants of the
model for the grid-level prediction: One is the original
scores fθ(d) and the other is the adjusted scores fθ(d) ·
egφ(D) that are re-scaled by the district scaling factor. The
hyperlocal economy can be computed by aggregation of a
geo-located economic indicator within the arbitrary area.
Gross floor area (GFA), the amount of space filled by a
building, could work as an excellent ground-truth indicator
for aggregation, publicly released by the Ministry of Land,
Infrastructure, and Transport from South Korea.

Table 2 shows that while both hyperlocal scores dis-
tinctly correlate with ground-truth GFA, the adjusted hy-
perlocal score exhibits more precise prediction. The origi-
nal hyperlocal scores fθ(d) showed a moderate correlation
(Pearson correlation = 0.626). The adjusted hyperlocal score
exhibits a more precise prediction (Pearson correlation =
0.777). These findings underscore the importance of multi-
level considerations.

Figure 5 visualizes the hyperlocal economic development
score predicted by the proposed model over South Korea.
The zoom-in image on the right shows the development
level predicted over the hyperlocal regions (indicated by the

Correlation Original (fθ(d)) Adjusted (fθ(d) · egφ(D))

Pearson 0.626 0.777
Spearman 0.788 0.790

Table 2: Correlation between the gross floor area (GFA) and
hyperlocal scores measured in two manners.

Figure 5: A 3D visualization of the economic development
predicted for each hyperlocal area by the model for South
Korea (left) and its Busan metropolitan area (right).

height in a 3D plot), demonstrating the model’s ability to
learn economic indicators over multiple geographic levels.

Robustness Testing
Collecting up-to-date economic information requires a con-
siderable amount of resources. Many underdeveloped and
developing economies suffer from such data deficiency
problems. Here we test two practical scenarios to deal with
limited data: (1) utilize a smaller subset of the training
dataset and (2) transfer the model parameters learned from
neighboring countries. Additionally, we also study (3) the
effect of the backbone network choice for empirical usage.

Dataset sizes We first investigate how well the model can
learn from limited data Here we varied the ratio of train-
ing and testing from 0.2 to 0.8 then iteratively computed
the R-squared values of predictions over four Asian coun-
tries: the Philippines, Vietnam, Thailand and Malaysia. Fig-
ure 6 shows that the proposed model is robust against data
shortage. This superiority originates from the district data
augmentation method explained in the model section, which
was intended to prevent overfitting. Results suggest that the
district data augmentation technique is also indispensable
against data scarcity. When the model does not incorpo-
rate augmentation, prediction quality drops for small train-
ing data.

Transferability The transferability test checks whether
model parameters learned from one country (i.e., source)
can be used in another country (i.e., target). The source-data
trained model is used to predict a target country’s district-
level economy. We varied the source and target pairs and
computed the performance using the Spearman correlation
of the predicted economies and the ground truth statistics.
The diagonal line in Figure 7 shows the highest correla-
tion since the source and the target are identical. The fig-
ure also shows that correlations are moderate to strong for
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Figure 6: The effect of the training-to-testing ratio on prediction performance for four countries data: the Philippines, Vietnam,
Thailand, and Malaysia. District data augmentation keeps the model robust under a scarce training set setting.

(a) Total population (b) Purchasing power

Figure 7: The Spearman correlation for the transferability
test on two economic indicators: total population and pur-
chasing power. The model is trained on one source country
and then evaluated on other target countries without fine-
tuning.

many pairs, indicating that the trained features may be re-
usable, especially for countries that miss ground truth mea-
surements. This result suggests that our model is transferable
across countries with similar cultural and geographic back-
grounds.

Backbone network Our experiments utilized ResNet18
to give a fair comparison with existing research (Han
et al. 2020a) that reported ResNet18 to give the best result
compared to other backbones. To validate the current model
choice, we additionally experimented with two different
backbone networks – WideResNet50-2 (Zagoruyko and
Komodakis 2016) and DenseNet121 (Huang et al. 2017)
– and report the results below. Table 3 demonstrates that
there is no significant deviance in performance over the
choice of backbone networks, indicating the model is not
substantially reliant on a particular backbone network.

Backbone ResNet18 WRN50-2 DenseNet121

Tot. Pop. 0.8149 0.8064 0.7788
PP 0.8212 0.7931 0.7857
Ener. Cons. 0.8553 0.8441 0.8657
GRDP 0.4568 0.4472 0.4864

Table 3: Comparison across different backbone networks.

Discussion
For deep learning models to have practical implications for
decision-makers, explainability becomes desirable. Here,
we provide an interpretation of the computed scores and
their implications on estimating economic inequality.

Model interpretation. One of the model’s main outputs is
egφ(Di), the multiplicative adjustment that is applied to the
hyperlocal scores in Eq (10). The distribution of this value
follows Zipf’s law as shown for the example of the size-
rank distribution for two economic indicators in the Philip-
pines (See Figure 8). These plots show a straight line on a
log-log scale, a characteristic fit of the power-law or Zipf’s
law (Gabaix 2009).

Zipf’s law for cities (Auerbach 1913; Gabaix 1999) is a
well-established empirical regularity in economics. The law
says that the 2nd largest city is 1/2 the size of the largest
city, and the 3rd largest city is 1/3 the size of the largest
city. The district scaling factor gφ(Di)’s resemblance to the
law validates that our model captures this complex economic
characteristic well; the district-level economy is not merely
a sum of its hyperlocal economies, but their interconnection
leads to a disproportionately stronger aggregation effect.

Even more surprising, the power-law holds at the hyper-
local level: the distribution of hyperlocal economic scores
fθ(d) also shows a straight line in the log-log graph, consis-
tent with the recent study that confirmed the power-law trend
at different spatial scales (Mori, Smith, and Hsu 2020).
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(a) Total population (b) Purchasing power

Figure 8: Log-rank versus log-size of the district scaling fac-
tors based on two economic measures in the Philippines to
show the power-law fit. Districts with the top 75% scaling
factors are plotted.

Figure 9: Within-district inequality prediction. The Philip-
pines’ poverty incidence is plotted against the Gini index of
hyperlocal scores per district, along with the quadratic fit.

Inequality estimation. Another application is on eco-
nomic inequality, a critical challenge for social science re-
search and development policies. Utilizing the model out-
puts, we can measure inequality at multiple levels.

Inequality is commonly measured by computing the Gini
index of economic indicators. Figure 9 shows the Gini index
of districts i based on the hyperlocal scores {fθ(d) | d ∈
Di} computed from satellite images of the Philippines. The
index is compared against Poverty Incidence, the coun-
try’s ground-truth poverty indicator by the district. The pre-
dicted inequality scores have a relatively high correlation
with real data (Pearson 0.659), although no such information
was used at training time. This remarkable correlation im-
plies that our within-district estimates can be used to study
poverty and inequality at the hyperlocal level, which has not
been readily available conventionally. Economic measure-
ments at a granular level are of great potential use for locally
tailored policies, as the role of close neighborhoods has re-
cently been recognized as crucial for fighting poverty and
addressing inequality problems (Chetty et al. 2018).

Our multi-level approach for precise hyperlocal measure-
ments can also improve the prediction of national inequality.
Table 4 shows that the Gini index calculated from our model
shows a high correlation with that published by the World
Bank. Either the hyperlocal information alone (the first row

Country VT TH MY PH ρp

fθ(d) 0.468 0.360 0.571 0.514 0.656
egφ(D) 0.397 0.348 0.385 0.533 0.815
fθ(d) · egφ(D) 0.648 0.632 0.745 0.753 0.942
World Bank 0.357 0.364 0.410 0.444 1.000
fθ(d) : Hyperlocal score, egφ(D) : District scaling factor

Table 4: Prediction of national inequality in purchasing
power for four Asian countries: Vietnam (VT), Thailand
(TH), Malaysia (MY), and the Philippines (PH). The Gini
indices computed by the proposed multi-level model show
a high correlation with the World Bank data. (ρp: Pearson
correlation)

in Table 4) or aggregated district information (the second
row) is not enough to predict the national inequality. The
strength of the proposed model is its ability to compute eco-
nomic indicators at multiple levels, where Gini indices based
on the adjusted hyperlocal scores provide the most remark-
able correlation with the World Bank data.

Conclusion
This work proposed a new model that utilizes high-
resolution geographical images to measure economic indi-
cators over multiple levels (i.e., hyperlocal and district). We
first measured the hyperlocal economy captured in a sin-
gle satellite grid image and then adjusted the cross-district
differences via the target district’s aggregated features. The
model successfully learned the degree of hyperlocal eco-
nomic development by employing the ordinal regression ob-
jective, providing relative orders among satellite grids. The
ensemble approach also enabled the model to produce a
high-quality representation at the zoom-in view. Our district
feature extraction and the district augmentation technique
make the model robust against data shortage, a quality that
is preferable in many underdeveloped and developing coun-
tries. Our multi-level approach shows far advanced predic-
tion performance compared to other baselines.

We showed model’s potential in estimating sub-national
inequality measures, which is of great interest to urban plan-
ners and policymakers. Satellite image-based measurements
are robust against data scarcity, and they are light in compu-
tation; this means the model can be run repeatedly to gen-
erate frequent economic statistics. This ability will bene-
fit countries that require consistent monitoring due to var-
ious risks and sustainable growth projections but lack the
resources for conventional economic measurements.
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