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Abstract

Breast cancer is the most common type of cancer world-
wide. A robotic system performing autonomous breast pal-
pation can make a significant impact on the related health
sector worldwide. However, robot programming for breast
palpating with different geometries is very complex and
unsolved. Robot learning from demonstrations (LfD) re-
duces the programming time and cost. However, the avail-
able LfD are lacking the modelling of the manipulation
path/trajectory as an explicit function of the visual sensory
information. This paper presents a novel approach to manip-
ulation path/trajectory planning called deep Movement Prim-
itives that successfully generates the movements of a manip-
ulator to reach a breast phantom and perform the palpation.
We show the effectiveness of our approach by a series of real-
robot experiments of reaching and palpating a breast phan-
tom. The experimental results indicate our approach outper-
forms the state-of-the-art method.

Introduction
Breast cancer is the most common cancer worldwide with
a significant impact on the life of patients and society (Fer-
lay et al. 2021). 2.3 million females were diagnosed with
breast cancer in 2020 with 685,000 related deaths world-
wide (Sung et al. 2021). Less invasive and cheaper cancer
treatments and higher quality of patients’ lives post-cancer
detection are among the benefits of early breast cancer de-
tection (Kösters and Gøtzsche 2003). Breast Palpation (BP)
is the easiest, most effective and most widely used early can-
cer detection method. BP – both self and clinical exami-
nations – seeks to detect palpable anomalies in the breast
tissue (Provencher et al. 2016; Saslow et al. 2004). BP in-
volves human tactile and visual inspection during palpating
the breast and lymph nodes. Because of the lack of patients’
expertise in palpation, self-examination is ineffective across
societies. Moreover, subjects are reluctant to be examined
by human experts (Yang et al. 2010), detection precision de-
pends on the examiner’s expertise, and the availability of
experts everywhere may be limited. Therefore, our survey
shows autonomous robotic BP (ARBP) is of great interest
to both clinicians and patients (Houghton et al. 2021)
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ARBP reduces the burden on the general healthcare sys-
tem for clinical BP, improves the accessibility of the ser-
vice and precision of early breast cancer detection. Al-
though there are many studies for robotic tissue palpation
for tumour detection (Scimeca et al. 2020; Herzig et al.
2018; Kobayashi et al. 2009; Nichols and Okamura 2015;
Keshavarz and Mojra 2015), most of them focus on tis-
sue stiffness classification and developing a suitable robot
finger/hand for palpation. Hence, the problem of efficient
path/motion planning for autonomous robotic palpation re-
mains vastly unexplored. Geometrical variability across dif-
ferent palpation paths and the subjects’ breasts leads to the
complexity of motion/path planning for breast palpation.

Human experts suggest benchmark patterns for an effec-
tive way of performing breast palpation (see Fig. 1a), such
as circular, wedges or linear (Murali and Crabtree 1992).
An autonomous robotic palpation system needs to encode
the expert knowledge into the palpation movements and
adapt the planned motions according to the breast geome-
try. Movement Primitives as a tool for compact representa-
tion of robot’s control policy are used for generating robot
motions (Ude et al. 2010; Ghalamzan E. and Ragaglia 2018;
Ghalamzan E. et al. 2015). Probabilistic Movement Prim-
itives (ProMP) (Paraschos et al. 2013) can be used for
planning and control purposes where it can express a dis-
tribution of trajectories by the corresponding variance and
mean. Nonetheless, these conventional Movement Primi-
tives methods (Paraschos et al. 2018, 2013; Schaal 2006;
Ude et al. 2010) cannot capture the correlation between the
visual information and the generated movements.

We propose a novel Learning from Demonstration (LfD)
approach called deep movement primitives (deep-MP)1 di-
rectly mapping the visual sensory information into the
learned trajectory. Other contributions of this paper include:
(i) the effectiveness of deep-MP variations for different tasks
complexities are extensively studied; (ii) a series of real-
robot breast palpation experiments that show the effective-
ness of our proposed approach to complex trajectory/path
planning tasks.

1Code, data and an extended appendix are available here:
https://github.com/imanlab/deep movement primitives
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(a) Palpation patterns (Deepthi 2017)

(b) Panda arm at home configuration

(c) Breast phantom (d) Reach-to-palpate

Figure 1: (a) well-known breast palpation paths: Spiral (left),
Wedges (middle) and Lines (right); (b) 7-DOF Panda arm at
Home Configuration; (c) the breast phantom used use for
study in this paper and the demonstrated palpation paths.
The phantom is made of silicon with 2 lumps implanted on
path 4 and 7; (d) reach-to-palpate (RTP) action of Panda
arm; RGB-D images taken at home configuration shown in
Fig. 1b.

Related Works
LfD methods use demonstrations to build a task model
and execute it. Probabilistic approaches such as Gaussian
Mixture models (GMM) (Jaquier, Ginsbourger, and Calinon
2019; Girgin et al. 2020), Gaussian Process (Schneider and
Ertel 2010) are applied in LfD settings for expressing the
distributions of trajectories by the corresponding mean and
covariance. However, these models do not encode the re-
lation between the visual information of robot’s workspace
and the demonstrated behaviour (Rana et al. 2018).

End-to-end learning such as Inverse Reinforcement
Learning (Levine, Popovic, and Koltun 2011), vision-based
Model Predictive Control (Finn and Levine 2017), or Be-
haviour cloning (Rahmatizadeh et al. 2018) usually suffer
from lack of generalisation and they are only applied to a
class of tasks involved complicated motion control but not
complex motion planning. (Crivellari et al. 2021) presents
deep-LfD models for the ARBP with a simple breast model

and without visual inputs. End-to-end LfD enables generat-
ing control commands directly from raw image data, e.g.,
(Rahmatizadeh et al. 2018) proposed behaviour cloning
probabilistic generative model. However, high dimensional
observation space, e.g. raw images, make the combined mo-
tion/path planning and motion control intractable in such
settings (Akgun et al. 2012; Nagahama and Yamazaki 2019).
In a line of research, deep-time-series are used to learn the
control policy of a robot to perform a specific task. For in-
stance, (Levine et al. 2018, 2016) applied Deep Neural Net-
works (NNs) combined with Recurrent NNs to image data to
learn robots’ control policy. In these frameworks, deep NNs
finds a mapping between the raw image and desired control
signals. These approaches are proved to be effective only
for limited classes of tasks with challenging motion control.
Moreover, such models are hard to interpret.

Dynamic Movement Primitives (DMP) model (Schaal
2006) is a well-known LfD approach useful for imitating a
single demonstrated trajectory. Recent works on deep DMP
(d-DMP) show a Deep NN learning to generate the param-
eters of a DMP model from an image (Ridge et al. 2020;
Pervez, Mao, and Lee 2017). For instance, (Ridge et al.
2020) propose a neural network that is trained to output
the parameters of DMP (Schaal 2006). (Pervez, Mao, and
Lee 2017) also use deep NNs to learn the forcing terms of
the DMP model for visual servoing. A distribution of a set
of demonstrations expresses variability of the task execu-
tions which is captured by Prbabilistic Movement Primitives
(ProMP) (Paraschos et al. 2018, 2013). However, it fails to
capture the relation between visual information and trajec-
tory variations, hence, it misses the generalisation capabil-
ity (Rueckert et al. 2015).

Breast palpation movements are hard to program and
needed for ARBP (Scimeca et al. 2020; Herzig et al. 2018).
Our proposed method can address the existing challenges in
motion planning for Breast Palpation, such as (1) variations
across different palpation executions; (2) variability across
different palpation paths; (3) relation between the visual in-
formation and demonstrated trajectories.

In contrast to d-DMP (Pervez, Mao, and Lee 2017; Ridge
et al. 2020) being deterministic – i.e. they cannot capture
the distribution of trajectories and are designed only to gen-
eralise to initial and goal points – and ProMP, which only
generalise to initial, goal and via points, our approach suc-
cessfully maps images of breast phantom in robot workspace
to robot joint space trajectories. Deep movement primitives
utilises deep Neural Networks (NNs) for feature extraction
and subsequent generation of the weights defining a ProMP
trajectory. Our customised loss function is defined as the
distance between the Ground Truth (GT) and the trajec-
tory generated by the predicted weights, rather than being
the distance between GT and the predicted weights them-
selves. We implemented several different network and LfD
architectures. The results obtained by our framework show
its effectiveness for breast palpation tasks in a practical and
real-world use case. We consider two sub-tasks for breast
palpation. Reach to Palpate (RTP): RGB-D images of the
breast phantom are used to generate trajectory weights that
control the robot joints to reach the starting point of palpa-
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tion on the breast phantom. Wedges Palpation Path (WPP):
deep-MP is used to generate WPP shown in Fig. 1c) from a
dataset of demonstrations. This framework will be integrated
into a motion control in future works.

Problem Formulation
Consider a set of Ntr demonstrations, which is defined
as T := {{Q1, I1}, . . . , {QNtr , INtr}} where Qn, n =
1, . . . , Ntr, are the joint space trajectories and In is RGB-
D images taken from the corresponding robot’s workspace.
For a single joint, we define a trajectory as the ordered set
q := {qt}t=1,...,T , where qt ∈ R is the joint position at sam-
ple t, and Q := {q1, ...,qNjoint} where Njoint is the number
of the joints of the manipulator.

Probabilistic Movement Primitives (ProMP) In order to
define a distribution over trajectories, We first model a tra-
jectory with an observation uncertainty added to the follow-
ing deterministic model (Paraschos et al. 2013):

q =

Nbas∑
i=1

θiψi(z(t)) + εq (1)

where ψi are basis functions (usually Gaussian (Bishop
2006)) evaluated at z(t). z is a phase function that allows
time modulation. If no modulation is required, then z(t) =
t/f , where f is the sampling frequency. θi ∈ R are weights,
and εq adds zero-mean Gaussian observation noise with vari-
ance Σq .

For stroke-like movements, the following normalised
Gaussian basis functions are used:

ψi(t) :=
bi(z(t))∑Nbas

j=1 bj(z(t))
(2)

where

bi(z(t)) := exp

(
− (z(t)− ci)2

2h

)
(3)

We can also write eq. (1) in a matrix form, as follows:

qt = ΨT
t Θ + εq (4)

where Ψt := (ψ1(z(t), . . . , ψNbas
(z(t)) ∈ RNbas×1,

Θ := (θ1, . . . , θNbas
) ∈ RNbas×1, and we also define

Ω := (Θ1, . . . ,ΘNjoint) ∈ RNbasNjoint×1 and Φ :=

[Ψ1, . . . ,ΨT ]
T ∈ RT×Nbas .

From eq. (1), it follows that the probability of observing
qt is given by:

p(qt|Θ) = N
(
qt
∣∣ΨT

t Θ,Σq

)
(5)

Since Σq is the same for every time step, the values qt
are taken from independent and identical distributions, i.i.d.
Hence, the probability of observing a trajectory q is given
by:

p(q|Θ) :=
T∏

t=1

p(qt|Θ) (6)

However, since parameters Θ are to be learnt from data,
we also assume such parameters are taken from a distribu-
tion Θ ∼ p(Θ|ρ) = N (Θ|µΘ,ΣΘ). We therefore would

like to have a predictive distribution of qt which does not
depend on Θ, but on ρ := (µΘ,ΣΘ). This is done by
marginalising Θ out in the distribution as follows:

p(qt|ρ) =

∫
N
(
qt
∣∣ΨT

t Θ, Σq

)
N
(
Θ
∣∣µΘ, ΣΘ

)
dΘ

= N
(
qt
∣∣ΨT

t Θ, Σq + ΨT
t ΣΘΨt

)
(7)

deep-MP weights learning: The weights of ProMP mod-
els are conventionally learned from demonstrations where
they can be later adapted according to different trajectory
reproduction needs, e.g. (1) the initial/goal point of the
desired trajectory are set, or (2) some via points are de-
termined based on the problem constrains. Computing the
via/start/goal points based on visual sensory information of
robot’s workspace needs hand-designed and task- or robot’s
workspace-specific features. This is effective and handy in
some robotic tasks like simple pick-and-place, but it is too
complex for breast palpation, e.g., in which the task trajec-
tory and the geometry of the breast are related. Two follow-
ing deep-MP models learn the relation between visual sen-
sory information and joint trajectories.

(deep-MP): Instead of learning the weights of the ProMP,
a deep model– that can be a CNN, FC or PointNet model–
captures the correlation between the visual sensory infor-
mation and ProMP weights as per eq. (8). The algorithm is
described in Alg. 1. Moreover, a schematic of the algorithm
is shown in Fig. 2 in the green block at top right).

For a neural network similar to Fig. 2, network’s be-
haviour can be described by the following:

Θk = hk(Wk, Ik, σk) + vk (8)
Equation (8), known as observation equation, shows that

the network’s target vector Θk is equivalent to a nonlinear

Algorithm 1: Deep MP

Input: NN architecture h, ProMP basis functions Φ,
image I, training set trajectories q, activation function σ
Output: NN weights W, predicted trajectory q̂
Note: This pseudo code is for single joint trajectory q̂.
Generalising it for all joints Q̂ is straightforward.

———————————
1: Dataset : T ← {q, I}1,...,Ntr

2: InitialiseDeepModel : Θ̂← h(W, I, σ) eq. (8)
as per Fig. 4: either CNN (2-D) or FCN (1-D);

3: InitialiseProMP : q̂← ΦT Θ̂ (eq. (4))
4: RMSE ← e = ‖q̂− q‖
5: while (e > ε) do
6: for all {q, I} ∈ T do
7: FORWARDPROPAGATION: Θ̂k = h(Wk, Ik, σ)

8: FORWARDPROMP: q̂k = ΦT Θ̂k (eq. (4))
9: RMSEJOINTLOSS: ek = ek−1 + ‖q̂k − qk‖

10: end for
11: BACKPROPAGATION: Wk+1 ← {Wk,

∂ek
∂Wk
}

12: end while
13: deep-MP: q̂ = h(Φ,W, I, σ)
14: end
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Figure 2: The blue box contains three NN models learning the weight of ProMP. RGB data is passed through an autoencoder,
producing a bottleneck representation of the inputZ, which is then fed into a CNN (a) or flattened and fed into a Fully Connected
network (b). Alternatively, the depth data from the image, in the form of vector of (x, y, z) coordinates of the pointcloud, is fed
to a PointNet network (c) and the resulting feature vector is passed through a dense network. All models are used to predict the
full ProMP weights (green box - Alg. 1) or just the residual with respect to the mean (yellow box - Alg. 2). Backpropagation
paths are shown with double line arrows.

function hk of the input image Ik, the weight parameter Wk,
the node activation σk and the observation/measurement
noise vk. We consider the measurement noise to be a zero-
mean white noise with covariance given by E[vkv

T
l ] = Rk.

where hk is a nonlinear deep model mapping the image Ik
taken by robot’s camera at a home position (see Fig. 1b) to
the ProMP weights. The weights then generate the corre-
sponding trajectories using eq. (4).

(Residual deep-MP): usually a set of demonstrated tra-
jectories convey information about the presented behaviour
regardless of the scene. GMM, GP and ProMP have been
used to encode such information in a probabilistic model
that can be expressed as a mean and distribution (see Fig. 3).
In order to improve the performance of the deep-MP, we
propose a deep model which learns the correlation between
the input image and residual trajectories, i.e. difference be-
tween the mean and demonstrated trajectories. Hence, the
deep model is required to learn a much simpler mapping
since part of the complexities are captured by the mean tra-
jectory (see the yellow block at bottom right in Fig. 2). First,
we learn to fit a ProMP trajectory Q̂ to the demonstrated
trajectories using least squares optimisation.

Hence, we can compute the mean weights Θ̄ and mean
joint space trajectories q (see Fig. 3) by maximising the like-
lihood as per eq. (9).

Θn = (λI + ΦTΦ)−1ΦTqn, ∀n = 1, . . . , Ntr

Θ̄ = E([Θ1, ...,ΘNtr ])
(9)

where qn := (q1, . . . , qT ) ∈ RT×1 is the vectorized form
of single-joint values in trajectory n, and λ is a regularising
term used to avoid over-fitting in the original optimisation

objective. Then the deep-MP model learns the correlation
between the residuals of the trajectories and the visual sen-
sory information.

Algorithm 2: Residual deep MP

Input: NN architecture h, ProMP basis functions Φ,
image I, training set trajectories q, activation function σ
Output: NN weights W, predicted trajectory q̂
Note: This pseudo code is for single joint trajectory q̂.
Generalising it for all joints Q̂ is straightforward.

——————————–
1: Dataset : T ← {q, I}1,...,Ntr

2: InitWeights : {Θ1, ...,ΘNtr
} ← Φ · {q1, ...,qNtr

}
3: InitAverages : Θ̄← mean(Θ1, ...,ΘNtr

) (eq. (9))
4: InitDeepModel : Θ̂res ← h(W, I, σ) eq. (8)

as per Fig. 4: either CNN (2-D) or FCN (1-D);
5: InitFullWeights : Θ̂ = Θ̂res + Θ̄ (eq. (10))
6: InitProMP : q̂← ΦΘ̂ (eq. (4))
7: RMSE ← e = ‖q̂− q‖
8: while (e > ε) do
9: for all {q, I} ∈ T do

10: FORWARDPROPAGATION: Θ̂res
k = h(Wk, Ik, σ)

11: FULLWEIGHTS: Θ̂ = Θ̂res + Θ̄ (eq. (10))
12: FORWARDPROMP: q̂k = ΦT Θ̂k (eq. (4))
13: RMSEJOINTLOSS: ek = ek−1 + ‖q̂k − qk‖
14: end for
15: BACKPROPAGATION:Wk+1 ← {Wk,

∂ek
∂Wk
}

16: end while
17: deep-MP residual: q̂ = h(Φ,W, I, σ)
18: end
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(a) Joint Space trajectory

(b) Reproduction mean trajectory and corresponding variance

Figure 3: (a) Samples of RTP-RGBD demonstrated trajecto-
ries from left/joint 1 to right/joint 4 – trajectories of joint 5,
6 and 7 are not shown here; (b) the computed mean (solid
blue lines)– used for the residual deep-MP implementation–
and representative variations of the distribution (shaded grey
areas).

Θn = Θres,n + Θ̄ (10)

where Θn and Θres,n are, respectively, the full and residual
weights of the ProMP model for Ntr demonstrated trajec-
tories. We can use the deep-MP model presented in eq. (8)
to learn Θres,n which will be added to the Θ̄ to form the
ProMP corresponding with {Qn, In}, as per eq. (4).

Hardware Setup and Data Collection
Our experimental setup consists of a 7-DoF Panda robotic
arm manufactured by Franka Emika. An Intel RealSense
D435i RGB-D camera is mounted on the wrist of the arm.
We also use a tactile finger consisting of a 6x4 uSkin Xela
magnetic-based tactile sensor for RTP-RGBD and WPP data
collection. This sensor is firmly connected to the left finger
link of the gripper using a 3D printed mount. Although the
reading of the tactile sensing is not used in this study, we
will use it for future study of palpation motion control.

We have obtained three data sets: (1) we collected reach-
to-palpate (RTP) dataset, called RTP-RGB, in a mock study;
(2) Reach-to-palpate dataset 2 called RTP-RGBD, and (3)
Wedged-palpation-path dataset called WPP.

Reach-to-palpate (RTP) (i) RTP-RGB: Our mock study
includes the RTP-RGB data collection. For each sample in
this dataset, the robotic arm starts from a fixed home pose
as shown in Fig. 1b. At this home pose, the camera takes
an RGB image of the breast phantom; and then the robot
is manually moved to the corner of the breast phantom in
kinesthetic teaching mode as shown in Fig. 4. This dataset
contains 500 samples, i.e. the robot at home configuration
takes RGB images of breast phantom at a random position

Figure 4: RTP-RGB: CNN–deep-MP tested on unseen Phan-
tom configurations. (a) shows precise task execution that is
touching the corner of phantom; (b) and (c) have larger er-
rors as they belong to regions with different sample densities
(a, b and c belong to region 1, 2 and 4, respectively in Fig. 6).
This shows the magnitude of error is proportional to sample
density in regions.

Config. I Config. II Config. III Config. IV

Figure 5: Samples of WPP data set: the brown disk on im-
ages show the desired end-points of palpation path 5, 1, 4
and 3 at configuration I, II, III and IV, respectively. The start-
ing point for each demonstrated palpation is the nipple.

on the table. We have trained the CNN and FC deep-MP
model, where they yield 0.0108 and 0.0118 [Radian2] errors
in joint space and 39.7 mm and 46.8 mm errors in task space.

Full details of the RTP-RGB dataset and the obtained re-
sults are described in Appendix. The results obtained by this
dataset suggest (1) we need a more structured dataset to bet-
ter understand the impact of samples density on the results;
(2) the depth data may be relevant; (3) a more challenging
task is needed to showcase the effectiveness of the approach.

(ii) RTP-RGBD: the setup for the following data collec-
tion is the same as the one in RTP-RGB dataset. Nonethe-
less, we collected RGB and depth data for each sample and
the robot is moved by joint space motion planning to the
nipple of the breast phantom. We consider 4 regions for data
collection as shown in Fig. 6: Region A, B, C and D. Af-
ter each sample collection, the breast phantom was moved
to a new location within the region boundary to create uni-
form distribution for each region with different densities as
shown in Fig. 6. A total of 545 samples were collected with
292, 128, 73 and 52 samples in region A, B, C, and D re-
spectively.

Wedges Palpation Path (WPP) After moving the robot
tactile finger to the nipple of the breast phantom, the robot
needs to follow the palpation path. The robot is moved us-
ing kinesthetic-teaching-mode from nipple along to the edge
of the phantom similar to WPP shown in Fig. 1c. Synchro-
nised robot full state, tactile sensor readings, and joint tra-
jectory are recorded. 31 palpation trials for every 7 WPPs
(Fig. 1c) and four different phantom configurations (Fig. 5)
are recorded. A total of 868 palpation samples were col-
lected in WPP dataset.
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Figure 6: XY coordinates of EE when the robot reaches the
start point of the palpation in RTP-RGBD dataset.

Experiments and Results
To validate our hypothesis, i.e. deep-MP can produce accu-
rate trajectory/path for breast palpation, we performed dif-
ferent experiments using the collected dataset RTP-RGBD
and WPP in this proof-of-concept study. Although we only
have one breast model and we cannot claim the generali-
sation across different breast geometry, the palpation paths
varies across different palpation experiments in WPP exper-
iments due to variations in the palpation terminal points.

Autoencoder as feature extractor: Using the RGB images,
we trained an autoencoder on the 500 images for feature ex-
traction, by using the bottleneck layer of the trained autoen-
coder. We then trained two models that use the learned fea-
tures from the bottleneck layer to predict the joint weights
that takes the robot to the palpation starting point (see
Fig. 2).

Convolutional Neural Network (CNN) for mapping from
features to ProMP weights Model: The bottleneck layer was
an image of 32x32x3 which was passed through a CNN ar-
chitecture to predict the joint weights. We implemented two
versions of this model, one using Alg. 1 that predicts the full
ProMP weights and one using Alg. 2 that predicts the resid-
ual ProMP weights with respect to the mean trajectory for
any given region.

Fully Connected (FC) Model for mapping from features
to ProMP weights: The bottleneck layer was flattened to a
1-D vector and then fed into stack of dense layers to predict
the joint weights at the last layer.

PointNet for mapping the pointcloud coordinates to
ProMP weights: In addition to the CNN and FC models
described above, we also trained deep models using the
pointcloud coordinates. The vector of Cartesian coordinates
was fed into a pre-trained PointNet network (Qi et al. 2017),
from which the global feature vector was extracted and fed
into a smaller Fully Connected network to predict the joint
weights (Blue block in Fig. 2).

For all models, the dataset is split into 85% and 15% for
training and testing, respectively, and 25% of training data
are used for cross-validation. We use Tensorflow framework

for training with Adam optimiser using a learning rate of
0.001 and a batch size of 32. Our models were trained using
150 epochs with a callback function to terminate training
when over-fitting.

Loss function We have implemented our custom loss
function using the deep-MP model. We denote the ground
truth of our joints weights as Θgt ∈ RNbas×1 and the corre-
sponding predicted ones as Θps ∈ RNbas×1. Our loss func-
tion is the root mean squared error between the trajectories
generated by Θgt and Θps. The loss of a predicted vector
Θps is then given by:

L(Θps,Θgt) :=

√√√√( 1

T

) T∑
t=1

(qgt,t − qps,t)2 (11)

where qgt,t = ΦT
t Θgt and qps,t = ΦT

t Θps.
For our experiments, the number of samples was T =

150.

Metrics To measure the performance of the approach,
Ntest test samples are evaluated. Let Θn

ps ∈ RNbas×1 be
the predicted weights of test sample n. We consider the fol-
lowing two metrics.
(i) Average Mean Squared Error (AveMSE) between the tra-
jectories generated from the predicted weights and ground
truth.

AveMSE :=
1

Ntest

Ntest∑
n=1

[
L(Θn

ps,Θ
n
gt)
]2

(12)

where Ntest is the number of samples in the test set.
(ii) Average Euclidean Distance (AveED) between the po-
sition of the end-effector at the last configuration, t = T
generated by deep-MP model and the ground truth.

AveED :=
1

Ntest

Ntest∑
n=1

∣∣rnee,ps − rnee,gt
∣∣ (13)

where, rnee,gt, rnee,ps ∈ R3×1 are, respectively, the ground
truth and predicted position vectors of the end-effector for
sample n, at t = T .

The CNN network architectures and the loss function for
the WPP and RTP are the same, except the last units of the
dense layer in CNN-RTP is replaced with 70 units in CNN-
WPP. Moreover, the images input to autoencoder are marked
with the target point as shown in Fig. 5. The training param-
eters for WPP and RTP experiments are the same. However,
200 epochs was used in WPP.

d-DMP (Ridge et al. 2020) recently proposed deep DMP.
We also implemented d-DMP both for RTP and WPP tasks
with our best CNN (see Appendix for implementation de-
tails). The results obtained by d-DMP and deep-MP are
shown in Table 2 for WPP experiments illustrating our deep-
MP models performance is much better than the d-DMP
ones in all the cases.

While the CNN deep-MP outperforms the FC, d-DMP
and PointNet deep-MP model in RTP-RGBD dataset in RTP
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Model
MSE∗ Absolute Error∗∗

Reg. A (292 samples) B (128) C (73) D (52) A (292) B (128) C (73) D (52)

CNN residual deep-MP 0.0009 0.0030 0.0051 0.0047 24.6 41.7 72.1 72.5
CNN deep-MP 0.0016 0.0031 0.0037 0.0041 41.1 48.0 55.2 58.5
FC deep-MP 0.0047 0.0051 0.0058 0.0082 47.2 63.3 69.5 83.8

PointNet deep-MP 0.0095 0.0169 0.0233 0.0191 75.8 192.3 226.8 167.7
d-DMP 0.0117 0.0109 0.0172 0.0226 84.8 66.5 113.8 132.6

∗ MSE in rad2; ∗∗ Absolute error in mm;

Table 1: Evaluation of RTP models with Average MSE (AveMSE) of the joint trajectory in each region of RTP-RGBD data
set (columns at left); Evaluation of RTP models with Average Euclidean Distance (AveED) in cartesian coordinates of the end
effector position at the end of the trajectory in each region of RTP-RGBD data set (columns at right).

Model
MSE∗ Absolute Error∗∗

Config.I Config.II Config.III Config.IV Config.I Config.II Config.III Config.IV

CNN deep-MP 0.0373 0.0245 0.0072 0.0420 67.4 57.6 53.9 63.1
CNN residual deep-MP 0.0380 0.0763 0.0662 0.0465 61.3 58.2 89.3 83.6

d-DMP 1.0541 1.4307 1.7214 1.7013 487.0 499.9 399.8 407.9

WPP4 CNN deep-MP 0.0340 0.0617 0.0441 0.0756 63.8 112.9 113.5 61.4
∗ MSE in rad2; ∗∗ Absolute error in mm.

Table 2: Evaluation of CNN deep-MP and CNN residual deep-MP Model with AveMSE and Absolute Error at each configura-
tion for WPP9 data set (middle row). Evaluation of CNN deep-MP for WPP4 dataset (bottom row).

experiments (Table 1), the performance of d-DMP is better
than just some cases of PointNet deep-MP. CNN can cap-
ture more complex mapping than FC model and PointNet
deep-MP; hence, it is by far better than others (the trajecto-
ries generated by the CNN models are shown in Fig. A.5 and
A.6 of Appendix).

We considered different configurations of training and
test set for WPP task conducting a series of experiments –
{WPP1, . . . , WPP10} (see Appendix for details). Two ex-
periments with interesting results are presented in Table 2.
Our results (see Table A.4 in Appendix) show the best model
performance is obtained when including all the palpation
path, as it was done in WPP9 experiment. The results of
WPP9 are also presented in the middle row of Table 2 show-
ing all deep-MP models outperforming d-DMP by a large
margin. Another interesting observation is presented in the
bottom row of Table 2 for WPP4 where – similarly to WPP1-
3 – only palpation 1,4,5 are seen in training and 2,3 used for
testing. The results indicate that our model is able to gen-
eralise to unseen geometry of breast palpation. Other eight
ablation studies also suggest the effectiveness of our deep-
MP model for complex palpation tasks.

The results in Table 1 and 2 show that residual version
of deep-MP outperforms the standard one in RTP but not
quite well in WPP. We learned that RTP trajectories are more
uniform than WPP ones. Moreover, the RTP has travelling
distance longer than WPP with much more non-linearity.
Hence, the mean trajectory across different RTP demonstra-
tions is more informative than the WPP. i.e. the mean trajec-
tory captures large non-linearity across the RTP trajectories,
hence the CNN model requires to learn much simpler map-

ping.
In spite of WPP results (in Table 2), the MSE and Abso-

lute Error of d-DMP and the variations of deep-MP reported
in RTP cases (in Table 1) are very close. Hence, the com-
bined results in Table 1 and Table 2 suggest that d-DMP can
perform relatively well in simple tasks such as RTP– where,
in contrast to WPP, RTP tasks depend only on a target point,
i.e. the nipple– whereas it yields a very poor performance
in complex tasks such as WPP. The video attachment shows
deep-MP successfully outputting the joints weights for pal-
pation paths from the nipple to a terminal point that is set
manually – demonstrating the generalisation of our model –
or autonomously.

Conclusion
Autonomous robots for breast palpation can have significant
impact on the societies health sector. One of the challenges
for such technologies is robot programming which forms
a very interesting scientific problem. We proposed a novel
learning from demonstration method, called deep movement
primitives, that maps visual information to palpation trajec-
tories and is useful for programming a robot for autonomous
palpation. We show the effectiveness of our approach in a
series of real-robot breast phantom palpation experiments.
While state-of-the-art approach fails to learn palpation due
to the variations in the start, terminal points and the interme-
diate points, our results shows deep-MP is a suitable method
for learning complex tasks, such as palpation. Our future
works include use of the sensor data and creating demon-
strations across different breast models that helps deep-MP
generalise even better.
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Cancer Research UK has funded a project in 2020 to shape
new technology for breast health called ARTEMIS 2. This
proof of concept project aims to develop a breast cancer ex-
amination robot in collaboration with clinicians and with Pa-
tient and Public Involvement (PPI) (Houghton et al. 2021).
The consortium consists of University of Lincoln, Univer-
sity of Bristol and Imperial College London. Our partners
are developing a soft robot tool and soft sensors for safe,
non-invasive and comfortable use, building Breast phantoms
based on real subjects’ breasts that can give clinicians a feel
of real breasts during palpation, collecting data of clinicians
performing palpation, with active PPI in design and devel-
opment of the technology.

The autonomous Breast Palpation Robot (ABPR) will
have a chair where patients can incline/bend forward 45 de-
grees and lie on the top of the robot housing and breasts go
into designated holes allowing the soft sensors to touch the
breast and perform the palpation. A survey of 155 women in
the United Kingdom was conducted, showing them schemat-
ics of different designs of ABPR. Results indicated enthu-
siasm for ABPR with 92% of respondents indicating they
would use ABPR. 83% would be willing to be examined for
up to 15 minutes. GP surgery is the most popular location
for ABPR. Thematic analysis of free-text responses identi-
fied the following: a) Subjects perceived ABPR has the po-
tential to address limitations in current screening services;
b) ABPR facilitates increased user choice and autonomy; c)
there are ethical motivations for supporting ABPR develop-
ment; d) accuracy is essential; e) integration with health ser-
vices is important. The above results are included in a paper
(Houghton et al. 2021) under revision for final publication.

ABPR collects data for clinician references and poten-
tially reduces the number of (true negative) visits to hospitals
for breast cancer examination. It is no replacement for hos-
pital examinations. We aim to develop a cheap device safe,
comfortable, reliable and accessible–especially in poor com-
munities/countries that lack hospitals or expert clinicians.

ABPR allows recording the history of the palpation data
for individuals helping patients and clinicians with precise
information about any changes observed during palpation to
be judged by clinicians or AI whereas judgement based on
human palpation can be subjective.
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