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Abstract 
Waves in the oceans are one of the most significant renewa-
ble energy sources and are an excellent resource to tackle cli-
mate challenges through decarbonizing energy generation. 
Lowering the Levelized Cost of Energy (LCOE) for energy 
generation from ocean waves is critical for competitiveness 
with other forms of clean energy like wind and solar. It re-
quires complex controllers to maximize efficiency for state-
of-the-art multi-generator industrial Wave Energy Convert-
ers (WEC), which optimizes the reactive forces of the gener-
ators on multiple legs of WEC. This paper introduces Multi-
Agent Reinforcement Learning controller (MARL) architec-
tures that can handle these various objectives for LCOE. 
MARL can help increase energy capture efficiency to boost 
revenue, reduce structural stress to limit maintenance cost, 
and adaptively and proactively protect the wave energy con-
verter from catastrophic weather events preserving invest-
ments and lowering effective capital cost. These architectures 
include 2-agent and 3-agent MARL implementing proximal 
policy optimization (PPO) with various optimizations to help 
sustain the training convergence in the complex hyperplane 
without falling off the cliff. Also, the design for trust assures 
the operation of WEC within a safe zone of mechanical com-
pliance. As a part of this design, reward shaping for multiple 
objectives of energy capture and penalty for harmful motions 
minimizes stress and lowers the cost of maintenance. We 
achieved double-digit gains in energy capture efficiency 
across the waves of different principal frequencies over the 
baseline Spring Damper controller with the proposed MARL 
controllers. 

Introduction 
  

Alternate energy sources have been gaining much attention 
from researchers and governments worldwide. Many coun-
tries have pledged to have net-zero emissions by 2050 as 
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carbon dioxide emissions keep increasing year after year 
from fossil fuels. There is a need to decarbonize electricity 
generation, and some of the well-explored areas to achieve 
this is wind and solar energy. Similarly, waves in the ocean 
are considered one of the more consistent and predictable 
sources of renewable energy, specifically for countries with 
extensive coastlines. The worldwide resource of coastal 
wave energy is estimated to be over 2 TW, representing 
about 16% of the world energy consumption (Yusop et al. 
2020). Several works have been done in the recent past to 
design and build Wave Energy Converters (WEC) that con-
verts the kinetic and potential energy associated with mov-
ing ocean wave into electric energy. 

Deployment of WEC needs to achieve Levelized Cost of 
Energy (LCOE) consistent with other competing sources. 
The variable nature of the ocean waves poses a significant 

 

 
 

Figure 1:  CETO 6  Wave Energy Converter (Ceto Tech-
nology, 2020)  
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challenge at deployment. Waves vary in height and principal 
frequency, especially in offshore locations, leading to the 
complexity of capturing energy. Additionally, these devices 
must withstand extreme wave conditions that rarely occur 
but could significantly damage the capital investment. Some  
existing solutions include designing and implementing sin-
gle-legged to multi-legged WECs with Spring Damper and 
electronic controllers to tackle structural and deployment 
constraints.  

This work focuses on a state-of-the-art three-legged 
Wave Energy Converter system CETO 6 (Ceto Technology,  
2020), a successor of single-legged WEC for optimizing 
power generation, as represented in Figure 3. It is difficult 
for traditional engineering approaches to handle the control 
complexity, as it is hard to model the structural variabilities 
arising from the interaction with the waves and interaction 
between the legs and buoy, and so on. Recent advancement 
in AI has enabled controllers to model and learn complex  
movements with data collected from previous experiences. 
Such controllers should react appropriately even for unseen 
data that traditional learning techniques (supervised, self-su-
pervised) cannot solve. Hence, we propose Multi-Agent Re-
inforcement Learning Controllers (MARL) to optimally ap-
ply reactive forces that control the generator on the PTOs, 
maximizing the power generation while minimizing me-
chanical stress reducing the yaw motion. We improve the 
learning policy of MARL architecture by considering mul-
tiple rewards from environment interaction using Proximal 
Policy Optimization. This method further helps the training 
progression overcome the challenges of converging to a 
global optimum for all wave types. We show that our ap-
proach is robust against disaster events and extreme shifts 
of wave directionality while significantly improving the 
power generated over the baseline Spring Damper Model. 
The main contribution of the paper can be summarized as 
follows: 

1. A novel application of Multi-Agent Reinforcement 
learning in Wave Energy Converters 

2. A multi-objective function that can optimize en-
ergy efficiency while minimizing mechanical 
stress is critical for deployment. 

Wave Energy Converter Problem 
The WEC considered in this study is composed of a cylin-
drical Buoyant Actuator (BA), submerged approximately 2 
meters under the ocean surface, as shown in Figure 1. The 
three mooring legs secure the BA to the seabed, and each 
terminates on one of the three power take-offs (PTOs) lo-
cated within the BA. The PTOs act like winches - they can 
pay in and out to allow the mooring legs to vary in length 
(converting the chaotic motions of the BA into linear move-
ments) and also resist the extension of the mooring legs, 
thereby generating electrical power. Figure 2 shows the 
high-level structure of the WEC. Optimal timing of the PTO 
forces with the wave excitation force is key to maximizing 
WEC performance. Various control strategies exist, at-
tempting to get as close as possible to the optimal force func-
tion with different degrees of success. These include pure 
damping control, spring damper control, latching control, 
model predictive control, etc. 

Spring Damper Benchmark Controller 
The PTO is composed of a mechanical spring and an elec-
trical generator, as represented in Figure 2c. The PTO force 

 
 

Figure 3:  Increase in structural complexity of the 3-tether 
WEC to capture more power working against the different 
translational and rotational motions (Rijnsdorp et al. 
2018). 

 
Figure 2:  Geometry and parameters of wave energy con-
verter: (a) 3D view, (b) PTO and motion with 6 degrees of 
freedom, (c)  WEC spring. (Sergiienko et al. 2020) 

 

 
 

Figure 4:  3-tether WEC configuration with wave fronts  
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and its components are subject to various physical imple-
mentation constraints. The damping component is akin to a 
reactive braking torque reacting against the input shaft, 
driven by the wave energy source. The captured energy 
equals the mechanical braking work done by the generator 
minus losses. The spring component of the generator is 
tuned to induce resonance at the dominant wave frequency. 
This is analogous to impedance matching in the mechanical 
domain, where the impedance is effectively a measure of the 
opposition to motion when a potential force is applied. 
The average mechanical power (𝑃𝑃𝑚𝑚����) generated by each PTO 
is the average of the product of the generator force (𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔) 
and the leg extension/retraction velocity (𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃), as ex-
pressed in equation 1. 
 

𝑃𝑃𝑚𝑚���� = � 𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖 × 𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖
3

𝑖𝑖=1
                          (1) 

𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑔𝑔𝑔𝑔 + 𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔                            (2)  

Related Works 
Several applications have used reinforcement learning to 
solve continuous control tasks (Lillicrap et al. 2019) (Duan 
et al. 2016) (Kaiser et al., 2019) (Brockman et al. 2016). 
They have achieved better performance than humans in ap-
plications like Atari (Silver et al., 2016) and game of go 
(Mnih et al., 2015). Likewise, Energy systems (Wei et al., 
2015) (Mastronarde et al., 2011) have also applied Rein-
forcement learning for various purposes. Recent works have 
applied RL to control simple one-legged WECs in different 
academic settings. (Anderlini et al. 2016) uses RL to control 
the PTO damping and stiffness coefficients for discrete sea 
states. (Anderlini et al. 2017a) applies least-squares policy 
iteration for resistive control of a nonlinear model of a wave 
energy converter.  Anderlini et al. (Anderlini et al. 2018) 

uses RL to obtain optimal reactive force for a two-body 
heaving point absorber with one degree of freedom. (Ander-
lini et al. 2017b) has also proposed a non-RL technique that 
utilizes artificial neural networks to generate power through 
WECs. (Anderlini et al. 2020) makes use of Deep Reinforce-
ment Learning for real-time control of a WEC in continuous 
action space. Our previous work (Sarkar et al., 2021) intro-
duced reinforcement learning for multi-legged wave energy 
converters but was limited in scope. 

Reinforcement Learning Environment 
Figure 5 shows the environment to the left, which consists 
of the 3-legged wave energy convertor (WEC) and the wave 
sensors. The environment feeds the translational and rota-
tional motion of the buoy, along with its velocity and accel-
eration, into the RL controller and values related to the leg 
extension and tension. It also feeds the oceanic waves of dif-
ferent heights and principal frequencies. Based on these in-
puts, the RL controller directs actions using the reactive 
forces on the three generators for the wave energy converter 
legs. The projected power generated in the three legs of the 
WEC, along with the safety estimate, is fed back to the RL 
controller as rewards. This feedback helps the RL controller 
assess the effects of its action based on inputs from the en-
vironment to take further actions based on the altered state. 

Multi-Agent RL Design for WEC 
We have explored various Reinforcement Learning archi-
tectures, environment state design, and reward shaping. We 
limit the policy optimization algorithms to Proximal Policy 
Optimization (PPO) for this study. We empirically found 
that this algorithm performed better for our scenario than 
other RL algorithms that we tried, like the DQN, Soft Actor-
Critic, and Asynchronous Advantage Actor-Critic (A3C). 

 

 

Figure 5: Architecture of Multi-agent RL controlling the WEC 
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We made several modifications and tuning to the PPO im-
plementation to overcome the challenges for this sensitive 
multi-agent dynamic control task with partial observability, 
continuous action space, long-term dependence, preferred 
zones of operation, and equipment stress limitations. These 
PPO augmentations improved long-term training and stabil-
ity over A3C preventing policy degeneration and "falling off 
the cliff" during training, ensuring convergence to better op-
tima. The following analysis will demonstrate how this real-
life system differs in complexity from the Open AI proto-
type models and can still be controlled effectively by RL 
agents.  
Ocean waves have a complex spectrum but have a range of 
principal frequencies. We considered the standard wave pe-
riods from 6s to 16s, which resulted in variability in perfor-
mance as the mechanical structure of WEC is optimized for 
the middle of the frequency spectrum. 

Architecture Choices 
The heterogeneity and complexity of WEC require a versa-
tile controller like Multi-Agent Reinforcement Learning 
(MARL). The three legs and the generators mounted for 
each leg act differently. They tend to generate different 
amounts of energy based on the orientation of the mechani-
cal structure and wave directionality. Simpler one agent RL 
with multiple actions failed to control the WEC effectively, 
which resulted in poor performance. Hence, separate agents 
of MARL were used to control the reactive force of the gen-
erators on one of the legs to learn the environment and pol-
icy better. The three-agent MARL has each agent control-
ling one of the three generators on the three legs, as repre-
sented in Figure 5. However, for simpler frontal waves, a 
simpler two-agent MARL was leveraged for faster training 
and bootstrapping of 3 agents. In this case, we exploited the 
symmetry of the two back legs for frontal waves (Figure 4), 
which were each 60 degrees apart from the axis of symmetry 
and had one agent control both the back legs. A separate 
agent controlled the front leg, which is aligned to the axis of 
symmetry. However, the default 3-agent MARL was chosen 
for its versatility to handle wavefront at different angles, 
where such symmetries did not exist. This approach led to 
optimal energy capture, with the convergence challenge to 
better control policies. 
Environment State Design: We validated the inclusion of 
states in successive steps and evaluated the impact of the 
choices based on total rewards. The states included are rep-
resented in table 1, and equation 3 provides the state infor-
mation as a vector s.  

𝑠𝑠 =  [  𝑒𝑒  ė  ë  𝑔𝑔  ġ  𝑧𝑧  ż  ]𝑃𝑃                           (3) 
where e represents the buoy position, g represents the tether 
extension, and z represents wave excitation. All RL agents 
share the continuous observation space of position and 
wave. The reactive force 𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖) for the controlled generator,  

define the continuous action space for the individual RL 
agent, where “i” represents the index for the agent. 
 
Further, specifying an appropriate reward function is funda-
mental to have the agent learn the desired multi-objective 
behavior. Hence the reward is defined as, 

𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = 𝛼𝛼. (𝑃𝑃𝑜𝑜𝑜𝑜𝑔𝑔(𝑖𝑖) + 𝜂𝜂𝑖𝑖 .𝑃𝑃𝑜𝑜𝑜𝑜ℎ𝑔𝑔𝑠𝑠𝑠𝑠) + (1 − 𝛼𝛼) 𝑦𝑦𝑅𝑅𝑅𝑅          (4) 

Where P represents the generated power defined by, −𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔 ∗ ė.  
η is the hyperparameter for the team coefficient, and α is the 
hyperparameter for yaw minimization of individual legs. 
The following sections discuss the intuition behind formu-
lating the reward function. 

Cooperation vs. Competition for Agents 
As the wave energy converter has a generator on each of the 
three-leg extensions and different RL agents controlling in-
dividual generators, it is essential to include the power con-
tribution from all the generators in the reward. Though it 
looks like a cooperative MARL problem on the surface, the 
disparity in the power generated by individual legs and the 
makes the solution a combination of cooperation and com-
petition. So, we need flexibility in determining the extent to 

 
 

Figure 6: Team coefficient hyperparameter optimization for 
the front and back legs.  The brighter region indicates opti-
mal team coefficients. Bayesian optimization helps faster 
convergence. 

 
position position of the buoy with velocity and ac-

celeration for the translational and rota-
tional motion  

yaw rotational yaw motion to monitor stress 
tether extension and velocity of tether 
wave wave elevation and rate of change for pre-

sent and 10s ahead in time from sensors 

Table 1: Environment states for RL. 
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which we add the power generated by the other legs to re-
wards of individual legs. Also, we needed an option for ad-
versarial contributions of power from the other legs in the 
trade-off by one leg to get additional power in other legs  
where positive value adds power generated by the other legs  
reward. We termed this multiplier team coefficient “η”, in 
the reward and vice versa, represented in equation 5. 

𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑃𝑃𝑜𝑜𝑜𝑜𝑔𝑔 + 𝜂𝜂 .𝑃𝑃𝑜𝑜𝑜𝑜ℎ𝑔𝑔𝑠𝑠𝑠𝑠                        (5) 

Here, η = team coefficient, Pown is controlled generator's 
power, and Pother is power from other generators. We imple-
mented a combined Bayesian hyperparameter search of the 
optimum 'team coefficient' of the individual agents for the 
back and front legs. We achieved the best performance with 
'team coefficient' of +0.8 for the agent for the back legs and 
-0.6 for the agent for the front leg, as shown in Figure 6. 

Refinements to PPO for Training Stability and 
Optimization 
This subsection describes the implementation details of re-
finements, effect of those refinements and the intuition be-
hind the results. 
One major challenge for effective multi-agent reinforcement 
learning is training stability and difficulty in convergence 
(Yu et al. 2021). Additionally, the design of the neural net-
work architecture for policy and critic networks accurately 
model the dynamics of the system. A primary symptom of 
this instability during our initial experiments on the WEC 
environment was the inability to sustain good performance 
after achieving an initial peak. The average reward over ep-
isodes rapidly deteriorated as training progressed. We miti-
gated this "falling off the cliff" with effective design 
choices, data transformation, and tuning as described below, 
which will also help tackle similar control problems for 
other use cases. 
• Clipped Surrogate Objective Function: Proximal Pol-

icy Optimization (PPO) uses a clipped surrogate loss 
function to prevent the policy from taking large steps dur-
ing training, avoiding "falling off the cliff" (Schulman et 
al. 2017). The following expression gives the ratio be-
tween the update policy output and the old policy output: 

𝑅𝑅𝑜𝑜(θ) =
π𝜃𝜃(𝑅𝑅𝑜𝑜|𝑠𝑠𝑜𝑜)
π𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜(𝑅𝑅𝑜𝑜|𝑠𝑠𝑜𝑜)

                            (6) 

Hence, the central objective function of PPO with clip-
ping is defined as,  

𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃(𝜃𝜃)
= 𝐸𝐸[𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅𝑜𝑜(𝜃𝜃)�̂�𝐴𝑜𝑜 , 𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐(𝑅𝑅𝑜𝑜(𝜃𝜃), 1 −  𝜀𝜀, 1 + 𝜀𝜀)�̂�𝐴𝑜𝑜)]             (7) 

where the second term 𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐(𝑅𝑅𝑜𝑜(𝜃𝜃), 1 −  𝜀𝜀, 1 + 𝜀𝜀)�̂�𝐴𝑜𝑜 clips 
the default policy gradient 𝑅𝑅𝑜𝑜(𝜃𝜃)�̂�𝐴𝑜𝑜 to the range [1 −
 𝜀𝜀, 1 + 𝜀𝜀]. Clipping serves as a regularizer by limiting the  
policy to change dramatically. The hyperparameter ε  

corresponds to how far the new policy can go from the 
old while still leveraging the objective.   
This approach effectively stabilizes multi-agent rein-
forcement learning and improves maximal performance 
on various tasks (Yu et al. 2021; Brockman et al. 2016; 
Vinyals et al. 2017). We explore the effect of this clipping 
parameter on the WEC environment in Figure 7. We find 
that smaller clipping values helped stabilize training sig-
nificantly, unlike the suggested ε=0.2, allowing for more 
monotonic performance improvement. This is because, 
for WEC, the action is highly sensitive to future rewards 
causing the probability density function (pdf) of actions 
to be dense. In addition to this aggressive clipping, we 
stabilize RL training with several other modifications to 
PPO. 

• Recurrent Neural Network: As our observation for the 
environment state primarily includes information about 
the current state of the buoy and wave, we needed to use 
recurrent networks to estimate the time series of the in-
coming wave and adjust accordingly. Usage of recurrent 
network architectures in reinforcement learning enables 
estimation of the hidden state of a partially observable en-
vironment. We built and tuned a Long Short-Term 
Memory (LSTM) (Hochreiter and Schmidhuber 1997) 
network instead of a basic fully connected neural network 
for both the policy and critic (larger network) to leverage 
the hidden temporal states for more robust policy. These 
LSTMs also had access to partial future wave elevation 
data from the wave sensors placed further into the ocean 
with a 10s anticipation time. 

• Adaptive Normalization: Due to the interacting reward 
terms, the value and policy loss may vary wildly with dif-
ferent parameters and configurations. To accommodate 
the variability in the reward term, we use an exponential 
moving average to normalize the reward from the envi-
ronment by dividing by the standard deviation of the dis-
count return (Andrychowicz et al. 2020). We also normal-
ize the critic's outputs during training with the mean and 
standard deviation of the value function targets (Andry-
chowicz et al. 2020). 

 
Figure 7: A comparison of power production with re-
spect to the choice of PPO clipping parameter (ϵ) 
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• Finite Horizon Fix: To accommodate different progres-
sions of complex ocean waves with various principal fre-
quencies, wave spreads, and heights, we train on many 
initial wave configurations. This approach necessitates 
limiting the episodes to a finite horizon and shorter 
lengths to limit computational cost. However, as the ter-
minal state is artificially chosen to optimize memory us-
age, this creates a discontinuity. To prevent introducing 

time-dependence to the return due to this finite horizon, 
we use the critic to estimate the future return of the termi-
nal states instead of assuming the return will always be 
zero. This approach is essential since the RL controller 
requires a very long rollout length. At 0.1 second resolu-
tion, the simulator needs 160 timesteps to cover one 
power cycle with a principal wave frequency of 16s. 

• Rollout Length: Due to the periodic nature of the enviro- 
nment, the current action tends to affect states and rewards 
far into the future significantly. We find that longer rollout 
lengths and smaller discount factors improved power gener-
ation, necessitating accurate, critical estimates at the termi-
nal state. 

 Design for Trust 
The target wave energy converter is adversely affected by 
the rotational yaw motion. This spinning motion of the vo-
luminous buoy causes the tether connections to wear out 
faster and has potential maintenance implications. The yaw 
motion is most significant when wavefronts hit the WEC at 
angles away from the axis of symmetry of the WEC, with 
30 degrees presenting an extreme case based on deploy-
ments in various oceans. We account for this yaw movement 
using three independent agents of MARL, one for each 
tether, and by including an additional term in the reward pro-
portional to the instantaneous yaw movement of the buoy. 
The total reward is a weighted mixture of the power and yaw 
reward terms: 

𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = (𝛼𝛼) 𝑐𝑐𝑝𝑝𝑅𝑅𝑒𝑒𝑅𝑅 + (1 − 𝛼𝛼) 𝑦𝑦𝑅𝑅𝑅𝑅            (8)   
power = 𝑃𝑃𝑜𝑜𝑜𝑜𝑔𝑔(𝑖𝑖) + 𝜂𝜂𝑖𝑖 .𝑃𝑃𝑜𝑜𝑜𝑜ℎ𝑔𝑔𝑠𝑠𝑠𝑠                      (9)    

where 𝛼𝛼 is a tunable yaw penalty hyper-parameter (lower 
the stronger), “i” represents the agent instance. This led to 
significant improvements in yaw reduction resulting in 

Algorithm 1: Reinforcement Learning Training 
Input:  
Env. state: buoy position (6 degrees of freedom), tether 
extension + preprocessing for 1st and 2nd derivates 
Excitation: ocean wave episodes from JonSwap spec-
trum  
PPO Parameters: clipping parameter ε, rollout 
Reward Parameters: yaw penalty α, team coefficient 
η 

𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝛼𝛼 ∗  𝑐𝑐𝑝𝑝𝑅𝑅𝑒𝑒𝑅𝑅 + (1 − 𝛼𝛼) ∗  𝑦𝑦𝑅𝑅𝑅𝑅 
Initialization: policy parameter θ0, value parameter ϕ0 
Excitation parameters: wave height, freq, direction  
Output: Optimized Policy and value DNNs 
Let K= 0… N 
• Collect set of trajectories (state, action) by running 

policy πk= π(θk) in the environment     
• Calculate reward Rt and advantage �̂�𝐴𝑜𝑜 based on cur-

rent value function. Calculate 𝑅𝑅𝑜𝑜(𝜃𝜃), which is the 
ratio between the updated policy and old policy 
output 

• Update the PPO policy with clipping 
𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃(𝜃𝜃)
= 𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚�𝑅𝑅𝑜𝑜(𝜃𝜃)�̂�𝐴𝑜𝑜 , 𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐(𝑅𝑅𝑜𝑜(𝜃𝜃), 1 − 𝜀𝜀, 1 + 𝜀𝜀)�̂�𝐴𝑜𝑜�� 

• Exponential moving average to normalize the re-
ward 

• Critic to estimate the future return of the terminal 
state to accommodate finite horizon 

• Calculate Critic Loss and update value function 
• Action clipping for preferred operational limits 
end 

 
 

Figure 9:  Yaw for RL as a percentage of  Spring Damper’s 
yaw (SD) for normal (2m median height) and survival con-
dition (7m height) waves at 30°  

 

 
Figure 8: Comparison of Yaw movement between RL and 
the spring damper (SD) controllers for an episode with wave 
height of 2m and principal wave period of 12s. Values are 
relative to maximum SD yaw. 
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much less displacement than what is produced by the cur-
rently deployed spring damper controller, as shown in Fig-
ure 8 and Figure 9.   
 
Although we expected the power generation to decrease 
with yaw control, adding the penalty for yaw in the reward 
function improved power generation, as observed from Fig-
ure 10. We hypothesize that yaw control is generally an eas-
ier task to perform in isolation. This allows the RL agent to 
quickly enter a stable regime, from which it can focus on 
improving power generation. A comparison of different val-
ues for 𝛼𝛼 is presented in Figure 10. This combined reward 
serves the dual purpose of energy capture maximization 
while limiting the stress on the WEC to avoid costly mainte-
nance in the open sea with these submerged structures. Also, 
Figure 11 shows that minimizing yaw with RL reduces the 
tether extension relative to SD, adding to the stability. This 
also impacts design, and minimizing mechanical stress can 

lower manufacturing costs, as in the case of wind energy, 
where lowering stress on blades has a similar effect on cap-
ital cost.  
Assured ML: The target wave energy converter has limita-
tions on the maximum tension in the spring extensions of 
the three legs anchored to the ocean bed. Also, there are lim-
its placed on the maximum reactive force on the generator, 
based on the generator ratings. There are other limitations 
like the minimum allowed tension in the mooring tethers to 
ensure mechanical integrity. In this design, as we explored 
the maximization of the energy capture, we made RL adapt 
to the hard limits by implementing clipping on the RL ac-
tion, which is the reactive force of the generator, as a safe-
guard guaranteeing stable operation of the WEC. 
 

RL Control During Survival Conditions 
In addition to reducing typical maintenance, we find that the 
attributes of long episode horizons, a low discount factor, 
and the effective long-term planning empowered by the 
LSTM model significantly improved the RL controller in 
extreme and potentially dangerous conditions. We evaluated 
the controller’s behavior for the extreme wave height of 7m 
to analyze disaster events. Figure 12 shows that for 7m 
waves with a median time period of 12 seconds, the RL con-
troller minimizes the yaw and reduces yaw to a level much 
lower than even the yaw for a 2m high wave with spring 
damper control. Additionally, we notice that the RL control-
ler can better react to changing conditions within a wave ep-
isode and correct the yaw displacement, as seen in Figure 
12, between times of 500 and 700 seconds into the episode 
(of similar nature). We notice that both for heights 7m and 
2m, the spring damper was unable to successfully correct 
the yaw displacement because it was already in a suboptimal 
position from handling several previous wave peaks. But RL  
was able to successfully mitigate the yaw build-up. Addi-
tionally, the RL controller can perform these corrective ma-
neuvers while maintaining positive power production and 

 
Figure 10: Tradeoff between Yaw and Power improvement 
for various values of the yaw penalty hyperparameter α 
(lower α puts higher emphasis on correction). 
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Figure 12: A comparison of Yaw  for the RL and spring 
damper controllers on an extreme wave height of 7m and pe-
riod 12s. The SD yaw for a wave of height 2m is also in-
cluded as a reference. 

 

 
 

Figure 11: Tether extension across an episode of wave 
height 2m and wave period 12s after minimizing. Values are 
relative to maximum tether extension of the SD for the epi-
sode. 
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avoiding sudden spikes in power consumption (motor 
mode) like the spring damper at height 7, further reducing 
strain on the system during these storm-like conditions. 
The analysis also showed that compared to the default spring 
damper controller, the RL controller tends to influence the 
reactive force of the generator to pull in the tether extensions 
in extreme wave conditions. We notice an average pull on 
the tether extension of 0.379 meters compared to the spring-
damper for 7m high waves. However, the RMS of the tether 
extension with respect to this mean remains consistent with 
the spring damper values. 

Results 
The CETO 6 wave energy converter (WEC) platform simu-
lator was used for this work, which accurately models the 
mechanical structure, the mechanical response, the electro-
mechanical conversion efficiency with losses for generator 
and motor modes, and the fluid dynamical elements of the 
wave excitation.  
Wave data such as the distribution of principal time periods, 
height, and spectrum were collected from Albany in West-
ern Australia, Armintza in Spain (Biscay Marine Energy 
Platform: BiMEP), and Wave Hub on the north coast of 
Cornwall in the United Kingdom. The wave generator 
model used in simulation uses a well-established ocean 
wave spectrum like Jonswap, which accurately models the 
heterogeneous components in ocean waves, letting the sim-
ulator sample the waves for training and evaluation. For 
evaluation, we used 1000 episodes for each principal wave 
period and height, where each episode covers 2000 sec of 
continuous wave data in steps of 0.2 sec for Reinforcement 
Learning (RL) loop and 0.05 sec (4x) for simulation re-
sponse. For each training run, there are roughly 50 million 
steps for convergence, with 2 thousand such training runs 
required for hyper-parameter optimization and model search 
with early stops. For regular operation, we show results of 
median wave height of 2m for the entire wave frequency 
spectrum spanning time periods of 6s to 16s. 
The power generated by the baseline spring damper control-
ler with resonant spring constant and damping constant for 
a wave time period and height is used as a reference for eval-
uation to estimate the gain of energy capture by RL control-
lers as a percentage improvement. A direction of 0° indi-
cates frontal waves with the wavefront aligned with the front 

leg, as shown in Figure 4. For evaluation, we used the same 
seed for sampling waves for episodes between RL and SD. 
Table 2 and Figure 13 shows a significant improvement in 
captured power with RL controller over baseline spring 
damper (SD) controller for the entire frequency spectrum of 
ocean waves. The MARL performs better for frontal waves 
at (0°) than the waves at an angle of 30°. However, the 3-
agent RL performs better than the spring damper controller 
for all angled waves, including an extreme angle of 30°. We 
also observed that there were variations in gains by the RL 
controller with different time periods when compared to the 
spring-damper model that is resonantly tuned to the mechan-
ical structure of the WEC for a certain frequency band. 
 

Table 3 shows that 3-agent MARL almost eliminated the 
yaw, which causes mechanical stress, while still making sig-
nificant energy capture gains over baseline spring damper, 
as shown in Table 2. Table 3 also shows that for natural dis-
asters with surging waves of 7m height, the 3-agent MARL 
can almost eliminate yaw, just like it did for waves of nor-
mal height. 

Ablation Study 
Table 4 compares the results of different RL algorithms 
(SAC, A3C) with PPO for frontal waves. As DQN has issues  

Yaw (RMS) for wave height of 2m 
WTP(s) 10 12 14 16 Avg 

Normal wave height of 2m (maintenance focus) 
RL (% of sd) 6.3 1.2 1.3 1.6 2.6 

Extreme wave height of 7m (survival conditions) 
RL(% of sd) 5.9 3 2.4 2.7 3.5 

Table 3: Results of Yaw minimization for RL over Spring 
Damper (sd) 

 

Figure 13:  Percentage power gain for RL controller over 
spring damper for 2m high waves of different time periods.  
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WTP(s) 6 8 10 12 14 16 Avg 

0 °  41.4 26.9 16.9 13.4 11.7 9.2 19.9 
30 °  15 19.8 9.3 11.8 16.5 11.1 13.9 

Table 2: Percentage gain in energy capture of MARL con-
troller for various Wave Time periods (WTP) over Spring 
Damper 
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with using continuous action space, it was not suitable for 
this environment setting.  
One of the main observed drawbacks of SAC and A3C was 
the “falling off cliff” problem. During training, the power 
gains for the RL controller for different wave periods peaked 
at different points for SAC and A3C and eventually fell off 
the cliff, making them hard for deployment. On the other 
hand, for PPO, with the clipped surrogate objective function 
as highlighted in the paper, the training stability was main-
tained for all wave time periods, which led to better conver-
gence and one single deployable checkpoint. Finally, PPO 
has good convergence for all angled waves, while A3C 
failed to have uniform convergence. 

The Intuition Behind Performance Improvement 
for RL  
The usual intuition is that the reactive forces for the genera-
tor on the legs will be proportional to the velocity of the 
tether as energy is captured working against this motion. 
However, the RL controller is fuzzier about it, as shown in 
Figure 14 and Figure 15, implying that it takes a long-term 
view and compromises short-term objectives for greater 
gains on energy capture at the more opportune segments of 
the wave cycles. 

Computation Complexity 
The RL inference model accelerated with Intel Math Kernel  
Library and Streaming SIMD Extensions takes 100% of one 
hyperthreaded core of Xeon Gold 6246R at 3.4GHz to run  
which has 32 hyperthreaded cores and comes to 2.2 GOps 
for floating-point math. For deployment, the targeted em-
bedded platforms will require a rating of around 1.8x  
 

2.2GOps, given the slimmed-down features of the CPU. 
Each full training takes about 1-3 days on a server with 2x 
Xeon Gold 6246R at 3.4GHz (2x71.5GOps) with 8x Nvidia 
Volta 100 GPUs. 

Conclusions 
The proposed MARL controller yielded double-digit gains 
over the entire spectrum of waves boosting higher energy 
production. At the same time, it helped reduce mechanical 
stress, which impacts maintenance and operating costs and 
actively mitigated adverse effects of high waves character-
istic of disaster events, helping to preserve capital invest-
ment and cost of manufacturing.   
This RL controller can be extended in its scope from an in-
dividual wave energy converter to a cluster of wave energy 
converters to address the “cross-talk” issue that is a well-
established problem in wind farms. MARL architectures, re-
finements, and optimizations described in this paper, with 
multiple objectives mentioned above, are applicable to 
many other clean energy problems like wind energy.  
Further, the proposed MARL architecture and the PPO re-
finements to stabilize training for global optima described in 
this paper can be used in many other complex control appli-
cations with multiple actors or entities to control. 
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