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Abstract

Our research aims to reduce the cost of pressure sensor cali-
bration through machine learning. Pressure sensor calibration
is a standard process whereby freshly manufactured pressure
sensors are subjected to various controlled temperature and
pressure setpoints to compute a mapping between the sen-
sor’s output and true pressure. Traditionally this mapping is
calculated by fitting a polynomial with calibration data. Ob-
taining this data is costly since a large spectrum of tempera-
ture and pressure setpoints are required to model the sensor’s
behavior.

We present a machine learning approach to predict a pre-
defined calibration polynomial’s parameters while requiring
only one-third of the calibration data. Our method learns
a pattern from past calibration sessions to predict the cali-
bration polynomial’s parameters from partial calibration set-
points for any newly manufactured sensor. We design a novel
polynomial hypernetwork coupled with Fourier features and
a weighted loss to solve this problem. We perform exten-
sive evaluations and show that the current industry-standard
method fails under similar conditions. In contrast, our ap-
proach saves two-thirds of the calibration time and cost. Fur-
thermore, we conduct comprehensive ablations to study the
effect of Fourier mapping and weighted loss. Code and a
novel calibration dataset validated by calibration engineers
are also made public.

Introduction

The pressure sensor is the most prevalent sensor type in use.
These sensors are installed in a wide range of industries,
e.g., smartphones, medical, food, chemical, oil and gas, etc.
However, freshly manufactured sensors cannot be deployed
directly. The raw readings of these sensors do not corre-
spond to true pressure values due to uncontrollable variation
in the manufacturing process. Therefore, these sensors un-
dergo a calibration process. This ensures that the sensor’s
output agrees with the actual pressure.

The calibration process is a costly part of a production
pipeline. The is mainly because of the many pre-defined
temperature and pressure points required to approximate the
analytical relation between the sensor output and the actual
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Figure 1: Sensor Calibration Setpoints: The plot shows pres-
sure and temperature values that a sensor requires during the
calibration process. In total, there are 23 points comprising
of three temperature cycles i.e. 80°C , 25°C and -20°C hav-
ing 7 pressure points within each cycle. We aim to reduce
temperature cycles needed using machine learning.

pressure value. Energy-consuming industrial ovens are com-
monly used to subject uncalibrated sensors to these tem-
perature and pressure points with high precision (see Fig.
1). Minimizing the time and effort needed for this process
ensures significant energy savings and lower manufacturing
costs. Heating and cooling is not only time-consuming but
also creates a sizeable CO, footprint. It is therefore desir-
able to use the minimal number of temperature setpoints for
compensation.

Currently, the type of function approximator used for cap-
turing the analytical relation between sensor outputs and true
values is a polynomial. Polynomials are a good choice for
their low memory footprint on the sensor’s ASIC (Wikipedia
contributors 2021). Usually, a least-square algorithm is used
to calculate the coefficient of this polynomial. Ideally, this
method requires the acquisition of multiple setpoints at ex-
treme, mid, and low temperatures. These setpoints are se-
lected to encompass the operational range of the sensor for
calculating the coefficients of the polynomial. Skipping any
of these setpoints lead to poor polynomial performance at
those setpoints. This behavior is unacceptable for the indus-
try as sensors should correctly operate in the stated ranges
of temperature and pressure.

The process of manufacturing sensors and calibration



over many years has accumulated data in the industry. This
data presents an opportunity to apply data-driven methods
such as deep learning to skip a subset of critical temperature
setpoints from the operational range of the sensor. Neural
networks can learn the dynamics of the calibration process
from thousands of previously calibrated sensors. Therefore,
in this work we address the question; can the coefficients of
a calibration polynomial be predicted using only a subset of
calibration setpoints for newly manufactured sensors?

We develop a hypernetwork architecture that predicts co-
efficients of the calibration polynomial by utilizing only one-
third of the temperature setpoints !. In other words, any
costly temperature setpoint can be removed from the cali-
bration process thereby reducing the time and energy needed
for sensor calibration significantly. Calibration is also known
as ’compensation’ in the industry. We use these terms inter-
changeably. We experiment on two types of pressure sensors
measuring different pressure ranges (0-40 bar and 0-10 bar).
This encompasses a diverse range of pressure sensor types.
Our contributions are as follows:

e We present a novel data-driven approach for pressure
sensor compensation that reduces the cost significantly.

We develop a polynomial hypernetwork architecture to
predict the coefficients of the calibration polynomial.

We propose a Fourier mapping function and a
temperature-dependent weighted loss for improved train-
ing time and prediction accuracy.

We demonstrate our approach using a real-world com-
pensation dataset verified by calibration engineers. We
show that our method highly conforms to an existing in-
dustrial standard while requiring only one-third of the
compensation effort.

Related Works
Sensor Calibration

Conventional methods based on polynomial fitting consti-
tute most previous work. (Crary et al. 1990) utilise automatic
digital polynomial-based compensation of silicon pressure
transducers using step-wise regression. Lyahou et al. (Lya-
hou, van der Horn, and Huijsing 1997) use calibration values
in a series to gradually improve the sensor output. They use
a simple correction coefficient for every calibration value.
Horn et al.(Van Der Horn and Huijsing 1997) propose a
greedy method that aims to correct the output at each step
until the error is within the required bounds. Dickow et al.
(Dickow and Feiertag 2015) propose a polynomial approach
for micro-electromechanical systems (MEMS) sensor cali-
bration using only a few setpoints at the cost of lower accu-
racy.

Optimal selection of setpoints is critical for efficient cal-
ibration. Many works propose selection criteria for optimal
calibration (Pallas-Areny, Jordana, and Casas 2004; Jordana
and Pallas-Areny 2004; Rivera-Mejia, Carrillo-Romero, and
Herrera-Ruiz 2010). These include minimising integrals of
the square of errors or reducing errors at extremes of mea-
surement ranges and so on. Rivera et al. (Rivera, Herrera,

"https://github.com/iSarmad/Pressure- Sensor-Calibration-NN
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and Chacén 2009) cater to the effect of relative non-linearity
in the sensor’s output by using more setpoints at the cost of
increased complexity. Whereas, Rahili et al. (Rahili, Ghais-
ari, and Golfar 2012) propose to incorporate additional set-
points progressively to minimise time and cost. Pieniazeket
al. (Pieniazek and Ciecinski 2019) utilize similarities among
sensors to reduce individual calibration. However, this re-
quires an accurate sensor model which is time-consuming to
construct and often exhibits simplifying assumptions. We do
not rely on a physical sensor model and only utilise previous
data for capturing sensor dynamics. Neural networks have
been previously used to replace compensation polynomials
(Rivera et al. 2007). Patra et al.(Patra and Van den Bos 2000;
Patra et al. 2004, 2005) and Rath et al. (Rath, Patra, and Kot
2000) present individual MLPs instead of a simple polyno-
mial function for calibration of sensors. This adds complex-
ity as most sensor’s ASICs cannot accommodate MLPs on-
chip. None of the above-mentioned approaches completely
skips entire temperature cycles from the operational range.
We use a neural network approach to predict the coeffi-
cients of a polynomial in a hypernetwork formulation (Ha,
Dai, and Le 2016). Our method learns the behavior of sen-
sors at different temperature cycles using previous calibra-
tion data allowing for reduction of setpoints at test time.

Advances in Deep Learning

The convolutional neural networks (CNNs) have performed
well for multiple computer vision problems (Krizhevsky,
Sutskever, and Hinton 2012; LeCun et al. 1990; Canziani,
Paszke, and Culurciello 2016; He et al. 2015; Huang,
Liu, and Weinberger 2016). Applications of deep learn-
ing include classification, semantic segmentation, image in-
painting, shape completion etc. (Krizhevsky, Sutskever, and
Hinton 2012; LeCun et al. 1990; Canziani, Paszke, and Cu-
lurciello 2016; Long, Shelhamer, and Darrell 2015; Noh,
Hong, and Han 2015; Yeh et al. 2016; Dai, Qi, and Niefiner
2016; Dong et al. 2015; Goodfellow et al. 2014).

Unlike images, 3D point clouds are an irregular datatype
that requires a permutation invariant representation. There-
fore, image-based CNNs do not perform well on the point
cloud data. Accordingly, Qi et al. (Qi et al. 2016) proposes
PointNet to process point cloud data in a neural network
framework. Similarly, we utilise the PointNet backbone for
our polynomial hypernetwork without the batch normaliza-
tion layer (Ioffe and Szegedy 2015).

NeRF (Mildenhall et al. 2020) synthesizes novel views
from sparse views. They introduce a positional encoding
module inspired by Rahaman et al.(Rahaman et al. 2019).
Similarly, Tancik et al. (Tancik et al. 2020) use Fourier fea-
tures to map input coordinates to higher dimensions before
passing it to an MLP. This mapping helps the neural network
learn high-frequency variations easily. We also incorporate
this module and demonstrate improved convergence.

Method
Background

The conventional compensation method comprises of two
steps: prescaling and calibration. The prescaling step is a
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Figure 2: Training: The steps in training are pressure and temperature prescaling followed by the main calibration. Note that
the input of NN€ are setpoints at two temperature cycles (blue, red) to predict coefficients of the calibration polynomial. This is
used to compute compensated pressure p.. However, the weighted MSE loss also receives the third cycle (yellow) to ensure that
NNF€ indirectly learns the entire temperature spectrum from training data. We also use the min-max normalization and Fourier

mapping to aid in training and convergence.

linear mapping of the input values. This mapping provides
a prior for the main calibration to successfully discover a
more complex and complete function. The main calibra-
tion step involves fitting a high-order polynomial function
to the prescaled pressure and temperature values, such that
the output values approximate predetermined ground-truth
setpoints. Sensors are placed in industrial ovens, which are
heated/cooled to these setpoints. Then a least-square al-
gorithm is used to find the coefficients of the calibration
polynomial. Each sensor’s raw pressure reading is passed
through its calibration polynomial during real-world opera-
tion to obtain compensated pressure outputs.

Approach Overview

The number of pressure and temperature setpoints used to
fit the polynomial determine each sensor’s calibration cost.
One way to reduce this cost is by decreasing the number
of pressure and temperature values used for fitting. Typical
temperature and pressure compensation setpoints are shown
in Fig. 1. Achieving temperature setpoints through heating/-
cooling is significantly more energy consuming than pres-
sure setpoints. Therefore, in this work, we focus on remov-
ing complete temperature cycles to reduce the energy and
time costs. A temperature cycle is defined as all setpoints
corresponding to a single temperature. Next we detail our
approach by removing 1 of 3 cycles for simplicity.
Consider a calibration process comprising of n setpoints.
A sensor then produces n measurements corresponding to
each setpoint. This results in a measurement set N
{(tr.pp), (82, 07), ., (87, P}')} where t, and p,. are raw tem-
perature and pressure respectively. ¢,. and p,. are vectors of
the respective quantities in N. We aim to reduce setpoints
to create a subset M by removing an entire temperature cy-
cle «. Formally, M is described as {M C N|t, # a}. We
then train our machine learning algorithm to only require M
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setpoints for compensation. We also utilise the ground-truth
setpoints pgr corresponding to p,.. Our approach can be di-
vided into training and inference phases. During training, a
neural network is trained to predict coefficients of the com-
pensation polynomial using only M points. However, our
approach exposes the network to also learn the skipped tem-
perature cycle/s by employing a loss function that uses all N
points. In this way, during inference, the neural network de-
termines the compensation polynomial coefficients of a new
sensor with only M input setpoints.

Training

The training process is detailed in Fig. 2. The goal is to train
the polynomial hypernetwork NN° to predict coefficients of
the compensation polynomial. The output of this polynomial
is the compensated pressure p.. The polynomial’s structure
is determined as most suitable after years of manual engi-
neering and empirical analysis. Therefore, it is considered as
a prior to aid the learning process. A common pre-step in the
compensation process is prescaling, see Fig. 3. The prescal-
ing stage is used to provide a simple prior (linear mapping)
before main compensation to discover higher accuracy poly-
nomial coefficients. This step is detailed next.

Pressure Prescaling: The pressure prescaling step, as
shown in Fig. 3, uses only M setpoints. The ground truth
pressure pgr is mapped linearly from analog to digital do-
main using the line equation m, X pgr + ¢p, to obtain a
normalised pressure value pg. Parameters m, and c, are
determined using the two point line equation. We then use
least-squares to fit raw pressure p,. and linearly mapped GT
pressure pgy to determine the coefficients a,; and ay; of the
pressure prescaling equation 1. This is then used to convert
raw pressure p,. to prescaled pressure p.



Ps = Ap1 X Pr + Gp2 (1)

The ranges of pgr are set as [-1,40] or [-1,10] bar

depending on the sensor family, whereas pg is set as [-

0.35,0.35]. This is chosen according to the conventional

compensation process. The ranges of pgr and pg are used
to find m,, and ¢, in pressure prescaling normalization.

Temperature Prescaling: Temperature prescaling, as
shown in Fig. 3, uses all IV setpoints for training and M
setpoints as input. We normalize raw temperature ¢,., using
local min-max normalization to obtain normalized raw tem-
perature t,.,,. This normalisation scheme uses raw temper-
ature points ¢, from each sensor in the training dataset to
calculate the minimum and maximum value of the respec-
tive quantity. These values are then used to normalize £, to
obtain t,.,, for each sensor.

Only M points from raw temperature ¢, are processed
in the forward pass by the prescaling hypernetwork NN? to
predict the prescaling polynomial coefficients by;; and bys.
The temperature prescaling polynomial in equation 2 is pro-
vided with all N points of raw temperature ¢, to obtain
prescaled temperature £ :

ts = by Xty + byo 2

This polynomial hypernetwork NNP is trained using an o
loss, L, = ||ts — tyn |3, using all N points from ¢5 and .,
The range of %,.,, is set as [-0.35, 0.35] according to industry
convention.

Pressure Calibration: To train the polynomial hypernet-
work NN€, the raw pressure p,. and temperature t, pairs
in M are passed to the respective prescaling polynomials
given in equation 1 and 2. The resulting prescaled pressure
ps and temperature t5 are normalized using a global min-
max normalization scheme. In this scheme, min-max val-
ues across the entire training dataset are utilized for normal-
ization. Next, a Fourier mapping is applied to learn high-
frequency details, which allows for faster convergence. We
use Gaussian mapping for this, as suggested by (Tancik et al.
2020), shown in equation 3.

v(v) = [cos(2nBv), sin(2rBv)]T 3)

Where v is a concatenation of ps and t. B is sampled from
a normal distribution N'(0,02). We assume an isotropic
Gaussian distribution. The output of this Fourier mapping
is passed through the NN¢ hypernetwork to determines the
final polynomial coefficient.

Next, we compute the loss L., as shown in equation 4,
using all N points. The raw pressure p, and temperature
t, are first prescaled using equation 1 and 2 to obtain pg
and ts respectively (grey dotted block in Fig. 2). We nor-
malize ps and ts, using global min-max norm, and obtain
N points of compensated pressure p. using the compen-
sation polynomial. For a sensor having three temperature
cycles at 80°C, 25°C, -20°C, compensated pressure p. ex-
pands to (p8°, p25, p29). p,. for each temperature cycle is
then compared to the corresponding ground-truth pgr using
a weighted [, loss as shown in equation 4:
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Note that due to this modified loss, we influence training
by controlling the weights A8°, A?®> and A~2° of each tem-
perature cycle. We use this to place more focus on skipped
temperature cycles by assigning higher weights. This im-
proves the performance of sensors for that particular tem-
perature cycle. The phenomenon is explained further in the
experiment section.

4)

Inference The inference method is presented in Fig. 4.
Pressure compensation is performed at the factory floor by
inferring polynomial coefficients. During this stage, pres-
sure prescaling, see Fig. 3, provides the coefficients of the
polynomial in the equation 1. The prescaling polynomial
hypernetwork NN? provides temperature prescaling coeffi-
cients for equation 2. The output of these prescaling poly-
nomials is then passed through global min-max norm and
Fourier mapping. Our polynomial hypernetwork NN€ then
predicts the coefficients of the compensation polynomial,
which is deployed on the sensor along with the two prescal-
ing polynomials. Note that the global min-max normaliza-
tion uses the min and max statistics from the training set.

During real-world use, sensors readings of raw pressure
P, and temperature £, are prescaled to form p, and £ using
the deployed prescaling polynomials. Prescaled values are
normalized and passed to the deployed calibration polyno-
mial to obtain the final compensated pressure p.

Network Architecture We use an architecture shown in
Table 1 for both prescaling NN and compensation poly-
nomial NN? hypernetworks. This form was popularized by
PointNet (Qi et al. 2016) for processing point clouds. A sim-
ilarity to our data is that M points in p,. and ¢,. can be con-
sidered as a point set or nodes in a graph with no edges. To-
gether they form a signature for each sensor. Therefore, un-
like a 2D image where neighboring pixels are co-related, all
points in our architecture are independent and form a global
feature vector which is then max-pooled. The last layer out-
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Name Kernel Ch1/O Input Res  Out Res Input
conviDI 1 Cin /64 I I Sensor values
convlD2 1 64/128 I, I convlD1
convlD3 1 128/1024 I I convlD2
Maxpool I 1024/1 — — convlD3
Linearl - 1024/512 - - Maxpool
Linear2 - 1025/256 - - Linearl
Linear3 256/Coout - — Linear2

Table 1: Neural Network (NN) architecture: conviDI to
conviD3 are 1D convolution layers. The dimensions of the
input to conviD] i.e., C;;, are either 2 with no mapping and
32 if Fourier features mapping is used. The output of Lin-
ear3 i.e., Cyy; is either 10 for compensation neural network
and or 2 for the prescaling neural net. The filter of the Max-
pool layer is adaptable to input size 5. I, can be either be 7
for single-cycle removal or 16 for two-cycle removal.

puts the coefficient of a polynomial, thus making this con-
figuration a hypernetwork.

Experiments

Dataset Our dataset is collected from real-world compen-
sation processes and verified by calibration engineers. It
contains compensation data for two sensor families measur-
ing different pressure ranges (40 and 10 bar). The 40 bar and
10 bar sensor data contains 3094 and 3805 files respectively.
Each sensor file in the dataset comprises of an entire com-
pensation sequence as shown in Fig 1. This entails pressure
measurement taken at three temperature cycles i.e. 80°C,
25°C, and -20°C. Each cycles has 7 setpoints and an addi-
tional 2 points at 25°C, making a total of 23 points of raw
pressure p,. and temperature readings t,.. The corresponding
ground truth pressure value pgr is also provided. Training
and test splits are done such that the latest 100 sensors from
both families are left out for testing and all older sensors are
used as training data. This scheme reflects a freshly manu-
factured batch of sensors undergoing calibration.
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Computational Resource We use Pytorch for all our ex-
periments (Paszke et al. 2019). Training takes almost 48
hours and is done on a single Nvidia RTX 8000.

Evaluation Metrics As mentioned, our dataset comprises
of sensors that have been calibrated on three temperature cy-
cles. We remove one or two of these temperature cycles and
compute an accurate compensation polynomial. In experi-
ments, we evaluate the quality of this compensation polyno-
mial on all temperature cycles. This is done using two met-
rics: mean square error (MSE) and the number of sensors
out of bounds (#OB).

MSE: MSE is calculated between the final calibrated
pressure and GT pressure for every sensor at every setpoint.
Then the mean is calculated across the entire test set.

#OB: We also evaluate the proposed method according to
current industry standards. This is done by using pre-defined
error bounds specific to every setpoint. These error bounds
define the tolerance range of the absolute error between cal-
ibrated pressure and ground truth. They are specified by cal-
ibration engineers having years of domain knowledge. The
error bound is violated if the difference between a sensor’s
output and the ground truth pressure on any temperature and
pressure setpoint is greater than the threshold. We track all
test sensors that violate error bounds and report this number
#OB as a measure of our algorithm’s performance. For both
40 bar and 10 bar sensor, the allowed error bounds corre-
sponding to each temperature cycles in Fig. 1 are {80 °C:
0.2%}, {25 °C: 0.15%}, {-20 °C: 0.2%}.

Industry Standard Baseline: For comparison, we em-
ploy a current industry standard algorithm for compensation
(PolyReg) as a baseline. This method uses polynomial re-
gression to find coefficients of the polynomial using avail-
able calibration data.

Hyperparameters We use a learning rate of 0.0085, batch
size of 32, and Adam optimizer for all our experiments. We
train our networks up to 260k epochs. We use Fourier map-
ping with a size of 32. The weights (A\39,A2°,\=29) for the
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Figure 5: Envelop Curve: This diagram shows results of six experiments where each graph displays the error pgr — p. at all
setpoints (x-axis) for all 40 bar test sensors. Each subfigure is an experiment with either one or two out of three temp. cycles
as input with the unused temp. cycle shown in red. The black lines indicate acceptable error margin as provided by industrial

standards. Temperature cycles are segregated by dotted lines.

40 bar sensors 10 bar sensors
Method Metric 25°C, 80°C, 80°C, o o N 25°C, 80°C, 80°C, B o N
20°C | 200C | 25°c | 80°C | 25°C | -20°C | p0c | 20°C | 25°C | 80°C | 25°C | -20°C
PolyReg MSE 0.0025 | 0.1973 0.0013 - - - 0.0033 | 0.0311 | 0.0016 - - -
#0OB 100 100 100 - - - 100 100 100 - - -
Ours w/o F MSE 3.34e-7 | 2.11e-7 | 2.63e-7 | 5.12e-7 | 2.67e-7 | 3.08¢e-7 1.78e-7 | 1.18e-7 | 1.25e-7 | 4.23e-7 | 2.28e-7 | 2.86e-7
#0OB 3 3 11 24 3 10 3 0 0 15 3 5
Ours w/ F MSE 1.34e-7 | 1.27e-7 | 1.03e-07 | 2.29¢-7 | 1.44e-7 | 3.09¢-07 | 1.61e-7 | 8.84e-8 | 8.27e-8 | 3.26e-7 | 1.55e-7 | 2.18e-7
#OB 0 2 2 2 2 2 0 0 0 6 1 4

Table 2: This table shows the performance of our method for two sensor types, i.e., 40 bars and 10 bars. For each type, we
indicate the temperature cycle/s needed for the calibration process. Note that PolyReg can not be evaluated for SCS experiments
since the number of coefficients of the calibration polynomial (10) is higher than the calibration setpoints (7).

removed cycles are set to 10 while for the input cycles are
kept at 1 in equation 4.

Results & Discussions

We perform an extensive evaluation of our approach for
pressure sensor calibration using two sensor families (40 bar
and 10 bar). Recall that these two types of sensors are cal-
ibrated using three temperature cycles i.e. 80°C, 25°C, and
-20°C. We present an overview of our experiments below:

* Double Cycle Selection (DCS): In these experiments,
two out of the three temperature cycles are required as in-
put, while one temperature cycle is removed. This is done
for all combinations of temperatures resulting in three
settings i.e. {80°C, 25°C}, {25°C,-20°C} and {80°C, -
20°C} as inputs.

* Single Cycle Selection (SCS): To further stress test the
proposed approach, we experiment with only one of the
three temperature cycles as input while removing two
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temperature cycles. This is also done for all combinations
resulting in another three settings i.e. {80°C}, {25°C}
and {-20°C} as inputs.

The summary of the results is presented in Table. 2. We
report the #OB and MSE metrics for evaluation and com-
pare them against polynomial regression (PolyReg), the cur-
rent standard in the industry. We also report the effect of
Fourier mapping for all experiments. It can be seen that our
approach outperforms the PolyReg baseline by a large mar-
gin in all experiments for both sensor families. Significantly
lower MSE and #0OB are reported in each column, indicating
that our approach successfully learns the dynamics of sensor
behavior, especially in removed temperature cycles.

In the SCS experiments, PolyReg cannot be evaluated
since this becomes an underdetermined system. On the other
hand, our approach only consumes one temperature cycle,
i.e., 7 setpoints, and provides excellent results. This is less
number of datapoints than the coefficients of the polynomial



that we predict. Moreover, Table. 2 further highlights the ex-
ceptional improvement in quality achieved with employing
Fourier features within our framework.

Fig. 5 shows the envelope curves which represent a de-
tailed error plot of each test sensor’s performance at all set-
points. The red lines show the error in outputs of our hy-
pernetwork compensated sensors. Six experiments are dis-
played here for brevity, 3 SCS, and 3 DCS. More examples
are included in the supplementary. Note that the vast ma-
jority of sensors remain within the allowed error bounds of
0.15%-0.2%. This validates that the predictions of our net-
work architecture remain within such a strict error margin.
Moreover, note that one or two complete temperature cy-
cles have been removed for the network in each experiment
(specified in the plot title). Yet, the network generates valid
predictions within those removed temperature cycles.

We further highlight that energy consumption is maximal
when achieving extreme temperatures, i.e., 80 °C and -20
°C. Therefore, it is desirable to compensate sensors using
only 25 °C, which is close to room temperature. However,
using only 25 °C is challenging as the network lacks any
information of the sensor behavior at extreme temperature
setpoints and thus relies only on one temperature setpoint to
approximate the complete operational range. Our approach
overcomes these challenges and performs extremely well
with an accuracy of 98% in such scenarios with only 25 °C
as input, see (Fig. 5 bottom center sub-figure and Table. 2).
Only two test sensors are out of bounds in this experiment;
this could be due to variability in the manufacturing process
or outliers in the data. In terms of energy consumption, this
approach reduces energy usage by 72% compared to the ex-
isting method, which requires all three cycles. Our proposed
system is deployment-ready, and since pressure sensors are
commonly used in multiple industries, the benefits of the
proposed method extend to all related sectors.

Temp°C Train (#OB / Acc %) \ Test (#OB / Acc % )

Fourier Features Evaluation (F)

w/ F w/o F w/ F w/o F

25,-20°C | 7/99.76 71/97.6 0/100 3/97

80,-20°C 8/99.73 24/99.2 2/98 3/97

80,25°C 7799.76 172/942 | 2/98 11/89

80°C 94/96.86 611/79.5 2/98 24176

25°C 29/99.03 108 /96.3 2/98 3/97

-20°C 105/96.49 | 214/92.8 2/98 10790
Weighted Loss Evaluation ( W)

w/ W w/o W w/ W wlo W

25,-20°C | 11/99.63 71799.76 2/98 0/100

80,-20°C 5/99.83 8/99.73 1/99 2/98

80,25°C 5/99.83 71799.76 2/98 2/98

80°C 60/97.99 | 94/96.86 2/98 2/98

25°C 35798.83 29/99.03 2/98 2/98

-20°C 68/97.72 | 105/96.49 | 2/98 2/98

Table 3: Ablation Study: We compare the effect of Fourier
mapping F and Weighted loss WV for a fixed set of 260k iter-
ation for 40 bar sensor. Acc % is found by dividing #OB by
the total number of sensors in the respective dataset. Temp°C
indicates the temperature cycles needed for compensation.
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No. of out-of-bound testing sensors (Total sensors 100)
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Figure 6: Convergence Speed: The error plots (#OB) for the
40 bar sensor with Fourier mapping as training progresses.

Effect of Fourier Mapping We investigate the effect of
Fourier feature mapping within our architecture. Our input
signals contain high-frequency information reminiscent of a
step function and a sawtooth wave. Our assertion is similar
to past work (Tancik et al. 2020) that, with Fourier mapping,
the network well captures such high-frequency features of
the input signals. Table. 3 demonstrates significant improve-
ment in accuracy on all temperature cycles, while Fig. 6 dis-
plays that the use of Fourier mapping leads to faster conver-
gence. This trend holds for all DCS and SCS experiments.

Effect of Weighted loss Recall that during training, our
polynomial hypernetwork takes in one or two temperature
cycles while the loss is computed on all cycles. Removed
cycles are weighted higher than input cycles to emphasize
the learning of sensor behavior across the entire temper-
ature range. Table. 3 displays improved performance with
weighted loss. We find that a higher weight for the loss term
corresponding to a given temperature cycle improves perfor-
mance on that temperature cycle. All weighted loss experi-
ments are done with Fourier mapping. Utilizing a weighted
loss within our architecture provides significant improve-
ment. Note the improvement in SCS experiments with 80
°C and -20 °C compared to without weighted loss.

Conclusion

The use of machine learning for pressure sensor compensa-
tion has been scarcely explored. Current methods for cal-
ibrating pressure sensors are energy and time-consuming
since they require expensive ovens to achieve temperatures
and pressures across a broad spectrum. We have presented
a polynomial hypernetwork that saves the time and energy
needed for this process by two-thirds. Our method lever-
ages past data to learn the characteristics of a sensor’s be-
havior at different temperature setpoints. Using this method,
most temperature setpoints can be skipped for compensating
new sensors. In addition, we propose using Fourier mapping
for fast convergence and a weighted loss function for higher
performance. We demonstrate the integrity of our approach
compared to strict industry standards and existing methods.
We further present a real-world dataset of pressure sensor
compensation which has been certified by professional cali-
bration engineers.
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