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Abstract

Food waste and insecurity are two societal challenges that co-
exist in many parts of the world. A prominent force to com-
bat these issues, food rescue platforms match food donations
to organizations that serve underprivileged communities, and
then rely on external volunteers to transport the food. Previ-
ous work has developed machine learning models for food
rescue volunteer engagement. However, having long worked
with domain practitioners to deploy AI tools to help with food
rescues, we understand that there are four main pain points
that keep such a machine learning model from being actually
useful in practice: small data, data collected only under the
default intervention, unmodeled objectives due to communi-
cation gap, and unforeseen consequences of the intervention.
In this paper, we introduce bandit data-driven optimization
which not only helps address these pain points in food rescue,
but also is applicable to other nonprofit domains that share
similar challenges. Bandit data-driven optimization combines
the advantages of online bandit learning and offline predictive
analytics in an integrated framework. We propose PROOF, a
novel algorithm for this framework and formally prove that
it has no-regret. We show that PROOF performs better than
existing baseline on food rescue volunteer recommendation.

1 Introduction
Wasted food account for 25% of the US food consumption,
while 12% of the US population struggle with food insecu-
rity (Coleman-Jensen et al. 2020). With the end of COVID-
19 pandemic nowhere in sight, the problem is becoming
even more serious (Laborde et al. 2020). From New York to
Colorado, from San Francisco to Sydney, food rescue plat-
forms are fighting against food waste and insecurity in over
100 cities around the world. Their operation has proved to
be effective (Wolfson and Greeno 2018). These platforms
match food donations to low-resource communities. Volun-
teers transport the food from the donor to the recipient and
claim upcoming rescues in real time on a smart phone app.

Relying on external volunteers brings great uncertainty to
the food rescue operation, and previous works have tried to
use machine learning (ML) models to address this uncer-
tainty. For example, Shi, Lizarondo, and Fang (2021) use a
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recommender system to selectively send push notifications
to “most likely” volunteers for an upcoming rescue. Such
work shows promising metrics on historical data. However,
as we worked with our food rescue partners and discussed
with the domain experts, we realized that if one were to de-
ploy such model and replicate the model at other food rescue
organizations, a lot more challenges need to be addressed:

1. There may not be enough data to begin with. Food rescue
does not have the luxury of millions of training examples,
and many food rescues are relatively premature with data
initiatives. A small dataset at the beginning leads to inac-
curate predictions and hence suboptimal decisions, but
this could improve as we collect more data.

2. Too often the initial dataset has some default intervention
embedded, while the project aims to find the optimal in-
tervention. For example, Shi et al. (2020) designed a food
rescue notification scheme but existing data were all col-
lected under a default suboptimal scheme. If one expects
the data distribution to vary across interventions, one has
to try out some interventions and collect data under them.

3. We may not perfectly know the correct objective func-
tion to optimize for. This is especially true considering
the gap between AI researchers and domain practitioners.
For sending push notifications to food rescue volunteers,
one might obviously want to optimize for the hit rate, but
it is less obvious how to formulate each volunteer’s reac-
tion to push notifications into the objective.

4. Interventions may have unexpected consequences. Food
rescue is a growing domain where neither platforms nor
researchers could fully map out the consequences before-
hand, thus the inherent impossibility of fully modeling
the problem in one shot. However, it is imperative that
we proactively account for such limitations.

These challenges require us to handle prediction and opti-
mization in an iterative paradigm. We propose bandit data-
driven optimization as the first iterative prediction prescrip-
tion framework that addresses these challenges in a unified
and rigorous way. It combines the advantages of online ban-
dit learning and offline predictive analytics. We achieve this
with our algorithm PRedict-then-Optimize with Optimism
in Face of uncertainty (PROOF). PROOF is a modular al-
gorithm which can work with various ML models and opti-
mization problems. We analyze its regret convergence, and
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show that PROOF performs well in the food rescue problem.

1.1 Beyond Food Rescue
The four challenges listed above apply to a lot more non-
profit domains beyond food rescue. The canonical problem
setting is the scarce resource allocation in the non-profit con-
text. The canonical workflow is that we first train an ML
model, then take intervention based on some optimization
problem. Using the new data collected under the interven-
tion, we update the ML model and choose a new interven-
tion, so on and so forth, leading to an iterative process.

For example, in game-theoretic anti-poaching, one trains
an ML model using geospatial features to predict poacher
activity, and then solves an optimization problem to find a
patrol strategy (Nguyen et al. 2016; Fang et al. 2016). The
patrol finds more poaching data points so we go back to
update the ML model, starting another iteration of trial. In
education programs, one trains an ML model to predict stu-
dents’ risk of dropping out, and then solves an optimization
problem to allocate education resources to the students un-
der budget and fairness constraints (Lakkaraju et al. 2015).
After one round, one observes the students’ performance and
starts the next iteration of the program.

While this iterative workflow is not new, there lacks a rig-
orous framework to guide this procedure. Since the princi-
ples of the various steps are often not aligned, not having
such a rigorous framework could lead to operation ineffi-
ciency, missed expectations, dampened initiatives, and bar-
riers of mistrust. Bandit data-driven optimization is our first
attempt to fill this gap. In this paper, we introduce the model
and algorithm in an application-agnostic manner, and then
explain how food rescue problems fit into this framework.

2 Related Work
2.1 Food Rescue
Food rescue has received attention from the AI commu-
nity in recent years. Some well-studied aspects include
matching donors and recipients (Aleksandrov et al. 2015;
Prendergast 2016; Lundy et al. 2019), planning delivery
routes (Nair et al. 2016), and forecasting food demand and
supply (Phillips, Hoenigman, and Higbee 2011).

Among the few papers that study the volunteer engage-
ment of food rescue operations, the most relevant to our
work is (Shi, Lizarondo, and Fang 2021). They developed a
recommender system to select a subset of volunteers to send
push notifications to for each rescue trip. Our work builds on
top of theirs by considering an iterative process. Manshadi
and Rodilitz (2020) study volunteer notification in a similar
setting and prove theoretical guarantees. However, we base
our work on the former because it scales to real-world food
rescue instances whereas the prediction model of the latter
is more of a toy example. Furthermore, the former makes no
modeling assumptions about volunteer behavior, hence eas-
ier to deploy and replicate to other food rescue platforms.

2.2 Bandit Data-driven Optimization
We propose bandit data-driven optimization to address the
challenges we encountered in food rescue, because we found

surprisingly no existing work that rigorously studies the it-
erative prediction-prescription procedure. We explain below
how several lines of work with similar goals fail to address
the challenges we face, and summarize them in Table ??.

First, (one-shot) data-driven optimization aims to find
the action w∗ that maximizes the expected value of ob-
jective function p(c, w) given some feature x, i.e. w∗ =
argmaxw Ec|x[p(c, w)] (Bertsimas and Kallus 2020; Ban
and Rudin 2019). A popular approach is referred to as the
predict-then-optimize framework (Elmachtoub and Grigas
2017; Kao, Roy, and Yan 2009). There, one learns an ML
predictor f from data and then optimize p(c, w) with the
predicted label c = f(x). This entire literature assumes that
the optimization objective is known a priori, which is of-
ten too good to be true. It also does not consider sequential
settings and hence cannot adapt to new data. Meanwhile, in-
verse optimization (Esfahani et al. 2018; Dong, Chen, and
Zeng 2018) also does not apply to our problem, for the ac-
tions taken obviously have no definite relationship with the
optimal action. Our work touches on optimization under un-
certainty (Zheng et al. 2018; Chen et al. 2017; Balkanski,
Rubinstein, and Singer 2016). They learn the parameters of
an optimization problem. However, they do not learn the
data distribution or use the feature/label dataset that is so
common in real-world applications like food rescue.

Contextual bandit is a proper setting for sequential deci-
sion making (Lai and Robbins 1985), and algorithms like
LinUCB (Dani, Hayes, and Kakade 2008; Chu et al. 2011)
play a central role in designing PROOF. Recent advances
further improve the convergence rate under specific set-
tings (Bastani and Bayati 2020; Mintz et al. 2020). Ban-
dit data-driven optimization reduces to contextual bandit
if we skip training an ML model and directly pick an ac-
tion. However, by doing so, we would effectively give up
all the valuable historical data. Furthermore, although ban-
dit algorithms have succeeded in millisecond-level decision-
making (Li et al. 2010), they are impractical in applications
like food rescue where one time step represents a week, if
not a month. The resulting long convergence time would
hardly be acceptable to any stakeholders. We prove the same
regret bound as previous work in our more realistic setting,
with the regret decreasing much faster empirically.

Also related is offline policy learning (Swaminathan and
Joachims 2015; Dudı́k, Langford, and Li 2011; Athey and
Wager 2017). It does not need any online trials, and hence is
much easier to convince the stakeholder to adopt. However,
it assumes the historical data has various actions attempted,
which fails to hold in most public sector applications.

3 Bandit Data-driven Optimization
We describe the formal setup of bandit data-driven optimiza-
tion in Procedure 1. On Line 1, we receive an initial dataset
D of size n0, with features x0i and label c0i for data point
i, and intervention in-place w0

i when the data point is col-
lected. Each feature vector x0i is drawn i.i.d. from an un-
known distribution Dx. Each label c0i ∈ C is independently
drawn from an unknown conditional distributionD(w0

i )c|x0
i
,

which is parameterized by the intervention w0
i , as different
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Desired properties in
food rescue applications

Bandit data-driven
optimization

Data-driven
optimization

Contextual
bandit

Offline
policy learning

No diverse past data needed Yes No Yes No

Explicit learning and optimization Yes Yes No No

No assumption on
policy objective Yes No Yes (but ignores

domain knowledge)
Yes (but ignores
domain knowledge)

Allows for iterative process Yes No Yes Yes

Finds optimal policy quickly Yes (compared
to bandit)

Yes (if diverse
data available) No Yes (if diverse

data available)

Table 1: A comparison of different models with respect to the desired properties in food rescue.

interventions could lead to different data distributions. In re-
ality, w0

i is often identical across all i. On Line 3, we use all
the data collected so far to train an ML model ft, which is
a mapping from features X to labels C. On Line 4, we get
a new set of feature samples xt = {xti}ni=1. Then, we select
an intervention wti ∈ W for each individual i. On Line 5,
we commit to interventions wt = {wti} and receive the la-
bels ct = {cti}. Each label is independently drawn from the
distribution D(wti)c|xt

i
. Then, on Line 6, we incur a cost ut.

We assume that the cost ut is determined by a partially
known function u(ct,wt). The function consists of three
terms. The first term

∑
i p(c

t
i, w

t
i) is the known loss. p(c, w)

is a fully known function capturing the loss for choosing in-
tervention w and getting label c. It represents our modeling
effort and domain knowledge. The second term

∑
i q(w

t
i) is

the unknown loss. q(w) is an unknown function represent-
ing all the unmodeled objectives and the unintended conse-
quences of using the intervention w. The third term is ran-
dom noise η. This form of loss – a known part p(·) and an
unknown part q(·) – is a realistic compromise of two ex-
tremes. We spend a lot of time communicating with food
rescue practitioners to understand the problem. It would go
against this honest effort to eliminate p(·) and model the pro-
cess as a pure bandit problem. On the other hand, there will
be unmodeled objectives, however hard we try. It would be
too arrogant to eliminate q(·) and pretend that anything not
going according to the plan is noise. The unknown q(·) is
our acknowledgement that any intervention may have unin-
tended consequences.

Hence, the question is how to select the intervention wt.
As is typical in the bandit literature, we define the optimal
policy to be that given feature x, pick action π(x) such that

π(x) = argmin
w

Ec,η|x[u(c,w)],

where the expectation is taken over labels c and noise η con-
ditioned on the features x. The goal is to devise an algorithm
to select interventions wt to minimize the regret

RT = Ex,c,η

[
T∑
t=1

(
u(ct,wt)− u(ct, π(xt))

)]
.

The label c can be a scalar or a vector. For the rest of the
paper, we assume C ∈ Rd and W ∈ Rd. W may be discrete
or continuous but it is assumed to be bounded.

Procedure 1: BANDIT DATA-DRIVEN OPTIMIZATION

1 Receive initial dataset D = {(x0i , c0i ;w0
i )i=1,...,n0

} from
distribution D on (X,C).

2 for t = 1, 2, . . . , T do
3 Using all the available data D, train ML prediction

model ft : X → C.
4 Given n feature samples {xti} ∼ Dx, choose

interventions {wti} for each individual i.
5 Receive n labels {cti} ∼ D(wti)c|xt

i
. Add

{(xti, cti;wti)i=1,...,n} to the dataset D.
6 Get cost ut = u(ct,wt) =

∑
i p(c

t
i, w

t
i)

+
∑
i q(w

t
i) + η, where η ∼ N(0, σ2).

3.1 Food Rescue Volunteer Recommendation as
Bandit Data-driven Optimization

A food rescue organization receives food donations from
restaurants and grocery stores and matches them to low-
resource community organizations. Once this matching is
done, the food rescue dispatcher would post the donor and
recipient information on their mobile app. The volunteers
will then receive push notifications about the rescue. They
could then claim it on the app and then complete the rescue.

Apparently, this is an ideal workflow. Yet occasionally,
some rescue trips would stay unclaimed for a long time.
Since unclaimed rescues would seriously discourage the
donors and recipients from further participation, food res-
cue dispatchers want to prevent this as much as possible.
The dispatcher may recommend each rescue to a subset of
volunteers through push notifications, The selection of vol-
unteers to notify is the intervention w ∈ {0, 1}d (with the
jth dimension representing whether to send notification to
the jth volunteer). This decision is dependent on how likely
a rescue will be claimed by each volunteer. Thus, we develop
a ML-based recommender system which uses the features
of a rescue and the volunteers, e.g. donor/recipient location,
weather, the volunteer’s historical activities, etc. (feature x),
to predict the probabilities that each volunteer will claim the
rescue. After we selectw for a rescue, we observe which vol-
unteer actually claim the rescue, that is, the label c (with the
jth dimension representing whether the jth volunteer claims
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the rescue). This data point will be added to our dataset and
used for training later. The optimization objective p(c, w)
is that we want to send notifications to the volunteers who
will claim it, while not sending too many notifications. Ob-
viously, whether or not the rescue gets claimed after these
push notifications matter to the food rescue organization.
Yet, there is more to the cost to the food rescue, e.g. how
each volunteer reacts to push notifications (will they get an-
noyed and leave?). The q(·) cost could capture such factors.

4 Algorithms and Regret Analysis
We propose a flexible algorithm for bandit data-driven opti-
mization and establish a formal regret analysis.

The data points are drawn fromX×C ⊆ Rm×Rd. We as-
sume all x ∈ X has l2-norm bounded by constant KX , and
the label space C has l1-diameter KC . The action space W
could be either discrete or continuous, but is bounded inside
the unit l2-ball in Rd. We specify the data distribution by an
arbitrary marginal distribution Dx on X and a conditional
distribution such that c = f(x)+εwhere ε ∼ N (0, σ2I), for
some unknown function f . To begin with, we assume f ∈ F
comes from the class of all linear functions with f(x) = Fx,
and we use ordinary least squares regression as the learning
algorithm. We will relax this assumption towards the end
of Section 4.2. The known cost p(c, w) = c†w is the in-
ner product of label c and action w.1 The unknown cost is
q(w) = µ†w, where µ is an unknown but fixed vector. Fur-
thermore, for exposition purpose we will start by assuming
that the intervention w does not affect the data distribution.
In Section 4.3, we will remove this assumption.

4.1 With Exactly Known Objectives
As a primer to our main results to be introduced in the fol-
lowing section, we first look into a special case where we
know the optimization objective. That is, our cost only con-
sists of p(·), with q(·) = 0. This is not very realistic, but by
studying it we will gain intuition for the general case.

At each iteration, this setting resembles the predict-then-
optimize framework studied by Elmachtoub and Grigas
(2017). Given a sample feature x, we need to solve the linear
program with a known feasible region W ⊆ Rd:

min
w

Ec∼Dc|x [p(c, w)|x] = Ec∼Dc|x [c|x]
†w

s.t. w ∈W

We hope to learn a predictor f̂ : X → C from the given
dataset, so that we can solve the following problem instead.

w∗(ĉ) := argmin
w

ĉ†w where ĉ = f̂(x)

s.t. w ∈W
In this paper we assume that the problem has a unique opti-
mal solution. Since the total cost is the same as the known
optimization objective, intuitively we should simply commit
to the action w∗(ĉ). By doing so, the expected regret we in-
cur on this data point is Ex[r(x)], where

r(x) = Ec|x[c]†(w∗(ĉ)− w∗(Ec|x[c])).
1We use superscript † to denote matrix and vector transpose.

Algorithm 2: PROOF: PREDICT-THEN-OPTIMIZE WITH
OPTIMISM IN FACE OF UNCERTAINTY

1 Initialize:
2 Find a barycentric spanner b1, . . . , bd for W
3 Set A1

i =
∑d
j=1 bjb

†
j and µ̂1

i = 0 for i = 1, 2, . . . , n.

4 Receive initial dataset D = {(x0i , c0i ;w0
i )i=1,...,n0} from

distribution D on (X,C).
5 for t = 1, 2, . . . , T do
6 Using all data in D, train ML model ft : X → C.
7 Given n feature samples {xti} ∼ Dx, get predictions

ĉti = ft(x
t
i).

8 Set βt = max

(
128d log t log nt2

γ ,
(

8
3 log

nt2

γ

)2)
9 for i = 1, 2, . . . , n do

10 Conf. ball Bti = {ν : ||ν − µ̂ti||2,At
i
≤
√
βt}.

11 Choose intervention
wti = argminw∈W minν∈Bt

i
(ĉti + ν)†w.

12 Receive label cti ∼ Dc|xt
i
. Add (xti, c

t
i;w

t
i) to D.

13 Get cost uti = u(xti, c
t
i, w

t
i) = (cti)

†wti +µ
†wti+

14 ηi, where ηi ∼ N(0, σ2). Let utoi be the 1st term
and let utbi be the sum of the 2nd and 3rd term.

15 Update At+1
i = Ati + wti(w

t
i)
†

16 Update µ̂t+1
i = (At+1

i )−1
∑t
τ=1 u

t
biw

t
i

Theorem 1 establishes that, indeed, this strategy leads to no-
regret. This is not entirely trivial, because the optimization
is based on the learned predictor yet the cost is based on the
true distribution. The proof is instrumental to the subsequent
results. All the proofs are in the full version on arXiv.
Theorem 1. When the total cost is fully modeled, i.e. q(·) =
0, simply following the predict-then-optimize optimal solu-
tion leads to regret O(

√
ndmT ).

4.2 PROOF: Predict-then-Optimize with
Optimism in Face of Uncertainty

When there is no bandit uncertainty, as we showed just now
one can simply follow the predict-then-optimize framework
and no-regret is guaranteed. However, the unknown bandit
cost is crucial to real-world food rescue and similar appli-
cations. We now describe the first algorithm for bandit data-
driven optimization, PRedict-then-Optimize with Optimism
in Face of uncertainty (PROOF), shown in Algorithm 2.

PROOF is an integration of the celebrated Optimism in
Face of Uncertainty (OFU) framework and the predict-then-
optimize framework. It is clear that the unknown cost com-
ponent q(·) + η forms a linear bandit. For this bandit com-
ponent, we run an OFU algorithm for each individual i with
the same unknown loss vector µ. The OFU component for
each individual imaintains a confidence ballBti which is in-
dependent of the predict-optimize framework. The predict-
then-optimize framework produces an estimated optimiza-
tion objective ĉt independent of OFU. The two components
are integrated together on Line 11 of Algorithm 2, where we

12157



compute the intervention for the current round taking into
consideration the essence of both frameworks.

Below, we justify why this algorithm achieves no-regret.
First, we state a theorem by Dani, Hayes, and Kakade
(2008), which states that the confidence ball captures the
true loss vector µ with high probability. The result was
proved for the original OFU algorithm. However, since the
result itself does not depend on the way we choose wt, it
still holds in bandit data-driven optimization. We adapt it by
adding a union bound so that the result holds for all the n
bandits simultaneously.
Lemma 2 (Adapted from Theorem 5 by Dani, Hayes, and
Kakade (2008)). Let γ > 0, then P(∀t, ∀i, µ ∈ Bti ) ≥ 1−γ.

The following key lemma decomposes the regret into two
components: one involving the online bandit loss, the other
concerning the offline supervised learning loss.
Lemma 3. With probability 1− δ, Algorithm 2 has regret

O

(
n
√
8mTβT log T +

T∑
t=1

n∑
i=1

E
[∥∥∥Ecti|xt

i
[cti]− ĉti

∥∥∥
2

])
.

Clearly, to characterize the regret, we need to bound
E
[∥∥∥Ecti|xt

i
[cti]− ĉti

∥∥∥
2

]
. In the case of linear regression, we

have the following theorem.
Theorem 4. Assuming we use ordinary least squares re-
gression as the ML algorithm, Algorithm 2 has regret
Õ
(
n
√
dmT

)
with probability 1− δ.

Theorem 4 assumes a linear regression problem with a
specific learning algorithm – ordinary least squares linear
regression. If our intent is for Algorithm 2 to be modular
where one can use any learning algorithm, we could resort to
sample complexity bounds. In the full version of the paper,
we include a derivation of the regret bound from the sample
complexity perspective. This approach allows us to extend
the result in Theorem 4 to a more general setting.

4.3 When Interventions Affect Label Distribution
So far in this section, we have had the assumption that the
action w does not affect the distribution D from which as
sample (X,C). In many real-world scenarios this is not the
case. For example, if the wildlife patrollers change their pa-
trol routes, the poachers’ poaching location would change
accordingly and hence its distribution would be very differ-
ent. Thus, it is valuable to study this more general setting
where the intervention could affect the label distribution.

First, let us make the assumption that there are finitely
many possible actions. We will consider the continuous ac-
tion space later. Since there are finitely many actions, an in-
tuitive idea is to train an ML predictor for each action sep-
arately. Because we do not impose any assumption on our
initial dataset, which might only have a single action em-
bedded, we clearly need to use exploration in the bandit
algorithm and use the data points gathered along the way
to train the predictor. It might seem very natural to fit this
directly into the framework of PROOF as shown in Algo-
rithm 2: simply maintain several predictors instead of one,

and still choose the best action on Line 11. However, to train
the predictor corresponding to each action, we need at least
a certain number of data points to bound the prediction er-
ror. Yet, PROOF, and UCB-type algorithms in general, do
not give a lower bound on how many times each action is
tried. For example, Algorithm 2 might never try some ac-
tion at all, and we would not be able to train a predictor for
that action. To resolve this philosophical contradiction, we
add a uniform exploration phase of length T̃ at the begin-
ning, where at each round 1, 2, . . . , T̃ , each action is taken
on some examples. Other than this, we inherit all the setup
for the analysis in Section 4.2. We describe the detailed pro-
cedure as Algorithm 3 in the full version of the paper.

We establish the following lemma which decomposes the
regret into 3 parts: regret during uniform exploration, regret
in UCB bandit, and regret through supervised learning.
Lemma 5. With probability 1− δ, Algorithm 3 has regret

O

(
nT̃ + n

√
8mTβT log T

+
T∑

t=T̃+1

n∑
i=1

E
[∥∥∥Ecti|xt

i,w
t
i
[cti(w

t
i)]− ĉti(wti)

∥∥∥
2

])
.

By combining Lemma 5 with previous results, we arrive
at the regret of PROOF in this more general setting.
Theorem 6. With finitely many actions and OLS
as the ML algorithm, Algorithm 3 has regret
Õ
(
n(d|W |)1/3m1/2T 2/3

)
.

We now move on to the scenario where the action space
W is continuous. In this case, we assume the true label of
feature x under action w is c = Fx + Gw + ε where
ε ∼ N (0, σ2I). A small modification of Algorithm 3 will
work in this scenario: instead of rotating over each action
in the uniform exploration phase, we simply pick action w
uniformly at random for each individual. Then, the regret of
the algorithm is as follows.
Theorem 7. Suppose the action space is continuous and the
label can be modeled as a linear function of the feature and
action. Assuming OLS as the ML algorithm, Algorithm 3 has
regret Õ

(
m1/3d2/3nT 2/3

)
.

4.4 PROOF Is a Modular Algorithm
In practice, PROOF can be applied beyond the setting under
which we proved the previous results. Rather than a fixed
algorithm, it is designed to be modular so that we can plug
in different learning algorithms and optimization problems.
First, instead of linear regression, PROOF can accommodate
any predictive model such as tree-based models and neural
networks. Second, The nominal optimization problem need
not be a linear optimization problem. The optimization prob-
lem may be continuous or discrete, convex or non-convex, as
we do not concern ourselves with computational complexity
in this paper. In Section 5.2, we demonstrate that even when
we insert complex algorithms into the PROOF framework,
thereby going beyond the setting where we established for-
mal regret guarantees, PROOF still works well.
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(a) Small scale base case (b) Data per step increased from 20 to 40 (c) Linear mapping norm multiplied by 10.

(d) Large scale base case. (e) Linear mapping norm divided by 10. (f) Data noise multiplied by 5.

Figure 1: Numerical simulation results of PROOF compared against vanilla linear bandit. All results are averaged over 10 runs
with shaded areas representing the standard deviation.

5 Experimental Results
5.1 Numerical Simulations
As the first step of validation, we implement PROOF in the
setting described in Section 4.2 on a simulated dataset. We
start with a small-scale experiment. Recall that we train an
ML predictor f̂ : X → C where X ⊆ Rm and C ⊆ Rd.
We take feature dimension m = 20 and label dimension
d = 5. At every round we get n = 20 data points. As is
typical, we assume the bandit reward is bounded in [−1, 1]
and the feasible region W is the unit l2-ball. For the true
linear map F where c = Fx+ ε, we upper bound its l1 ma-
trix norm at 10. We sample the noise ε ∼ N (0, σ2Id) from
a normal distribution where σ2 = 0.1. We take the bandit
noise η ∼ N(0, 10−4). We use OLS at each time step. We
solve the non-convex program on Line 11 in Algorithm 2
with IPOPT. We find the best action given the true reward
parameters using Gurobi. We set βt = 1 so that the algo-
rithm can quickly concentrate on the region of interest.

The expected cost for a fixed action w is Ec,η[(c+µ)†w+
η] = E[x†F †w] + µ†w = µ†w, because when we generated
x, the distribution has zero mean. This problem in theory
might be solved as a linear bandit by feeding the total cost to
OFU. Since the regret bound of OFU is the same as PROOF
in the order of T , this brings back the point that we have been
emphasizing since the beginning: if linear bandit is a more
general model whose algorithms already solve our problem,
why would we care about bandit data-driven optimization?

In Sections 1 through 3, we answered this question with
the characteristics of the food rescue. Here, we answer this
question using experiments. We show the average regret of

PROOF as the orange curve in Figure 1, and that of OFU in
red. We can decompose the average regret of PROOF into
the regret of the optimization component and the regret of
the bandit component. The former is simply the algorithm’s
optimization (known) cost minus the best intervention’s op-
timization cost. The latter is defined similarly. Neither needs
to be positive. Figure 1a shows that PROOF quickly reduces
the regret in both components, while the performance of
vanilla OFU is much more underwhelming. This difference
is because an offline predictive model captures the large vari-
ance in the implicit context x and c much better. In fact,
PROOF consistently has much smaller variance than OFU.

We now tweak the parameters a bit. When we increase the
number of data points per iteration from n = 20 to 40, Fig-
ure 1b shows that the regret of the optimization component
becomes very small to start with, because we have more data
to learn from. When we increase ||F || from 10 to 100, Fig-
ure 1c shows that the optimization regret dominates the total
regret, as the optimization cost is now much larger than the
bandit cost. Here, vanilla OFU suffers even more, because
now its cost signal has even larger magnitude and variance.

We then scale up the experiments and show that PROOF
still outperforms OFU even when the problem parameters
are not as friendly. Suppose we get n = 500 data points ev-
ery time and each data point has m = 50 features. Keeping
all other parameters unchanged, Fig. 1d shows that PROOF
still outperforms OFU by a lot. In Fig. 1e, we change ||F ||
from 10 to 1, making the optimization cost less important.
This reduces the variance of OFU and it is doing better than
previously. However, our PROOF still outperforms OFU. In
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(a) Base case (b) Known cost p(·) multiplied by 4 (c) Initial dataset size decreased to 20

Figure 2: The experiment results on the real-world food rescue data of PROOF compared against vanilla linear bandit. All
results are averaged over 10 runs with shaded areas representing the standard deviation.

Fig. 1f, we increase the label noise from ε ∼ N (0, 0.1Id)
to N (0, 0.5Id). This poses more challenge to PROOF. But
still, PROOF manages to keep its regret below OFU.

5.2 Food Rescue Volunteer Recommendation
Bandit data-driven optimization is motivated by the practical
challenges in food rescue volunteer recommendation. After
abstracting these challenges to a theoretical model, we now
return to the food rescue problem. We have introduced the
details of food rescue operations at the end of Section 3.

There are 100 volunteers. At each time step, we get a new
rescue and decide a subset of 10 volunteers to whom we
send push notifications. We represent this action with a bi-
nary vector w ∈ {0, 1}100 such that wi = 1 if volunteer i is
notified and 0 otherwise. Thus, the feasible action space W
is {0, 1}100 with the constraint of

∑100
i=1 wi ≤ 10. The action

w we take at each time step is backed by a content-based ML
recommender system. The ML model receives a feature vec-
tor x which describes a particular rescue-volunteer pair, and
outputs a label prediction ĉ as the likelihood of this volunteer
claiming this rescue.2 We adapt this ML component from
the one studied in (Shi, Lizarondo, and Fang 2021). Its fea-
ture selection, model architecture, and training techniques,
are not trivial at all. Yet, since they are not the focus of this
paper, we include all these details in Appendix D in the full
version. The actual label c is a one-hot vector in {0, 1}100
indicating which volunteer actually claimed the rescue. The
known cost p(c, w) = c†w is 1 if we notify a volunteer who
eventually claimed a rescue and 0 otherwise. To minimize it,
we could negate the label c (and its prediction ĉ). The bandit
cost q(·) is the same as before. We solve the optimization at
each time step of PROOF with Gurobi after applying a stan-
dard linearization trick (Liberti, Cafieri, and Tarissan 2009).
We also gradually decrease the confidence radius β.

Unlike the case in Section 5.1, OFU algorithm does not
work here in principle. This is because, working with real-

2Here the label is 1-dimensional while our action space is 100-
dimensional. This is easy to resolve. Each rescue-volunteer pair
has m′ features. While in practice we have f̂ ′ : Rm′

→ R and
pass 100 feature vectors to it serially, one could think of a product
model f̂ =

∏100
i=1 f̂

′ which takes the concatenation of 100 feature
vectors and outputs a 100-dimensional vector.

world data, we do not know the data distribution and it is
almost certainly not zero-mean. In fact, this experiment has
also gone beyond the setting for which we proved formal
regret bound for PROOF, yet we would like to see how these
two algorithms perform in such a real-world use case.

We assume an initial dataset of 300 rescues and run the
algorithms for 50 time steps, each time step corresponding
to one new rescue. As shown in Figure 2a, PROOF outper-
forms vanilla OFU by roughly 15%. The performance gain
by PROOF can be contributed to its effective use of the avail-
able data, as the progress on bandit made by PROOF and
vanilla OFU are quite similar. In Figure 2b, we scale up the
known part of the cost by a factor of 4. Because the optimiza-
tion is more emphasized, it is unsurprising to see that most
of PROOF’s progress depends on the recommender system
itself. In this case, it has a larger performance margin over
vanilla OFU. Finally, in Figure 2c we decrease the size of
the initial dataset from 300 rescues to 20 rescues. We ob-
serve that PROOF still has an edge over vanilla OFU. The
margin is minimal at the initial time steps, because we have
much less initial information here. Yet still, as time goes
by PROOF picks up more information in the feature/label
dataset to expand its margin. In actual food rescue projects,
the amount of initial data is typically more than this, more
resembling Figure 2a, but Figure 2c assures us that PROOF
still works in this more extreme case.

6 Conclusion

Volunteer engagement in food rescue is a challenging and
impactful problem. Motivated by four practical pain points
in food rescue, we proposed bandit data-driven optimization,
designed the PROOF algorithm, and showed that it has no-
regret. Finally, we show its better performance over bandit
algorithm in simulations and the food rescue context. Our
technological intervention only amplifies the existing initia-
tive rather than create a new one, thus more likely to achieve
deployment and sustainable impact (Toyama 2015).

This work has many potential applications beyond food
rescue. We view it as our first attempt to bridge the last-mile
gap between static ML models and their actual deployment
in the real-world public-sector context.
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