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Abstract

The daily practice of sharing images on social media raises
a severe issue about privacy leakage. To address the issue,
privacy-leaking image detection is studied recently, with the
goal to automatically identify images that may leak privacy.
Recent advance on this task benefits from focusing on cru-
cial objects via pretrained object detectors and modeling their
correlation. However, these methods have two limitations: 1)
they neglect other important elements like scenes, textures,
and objects beyond the capacity of pretrained object detec-
tors; 2) the correlation among objects is fixed, but a fixed cor-
relation is not appropriate for all the images. To overcome the
limitations, we propose the Dynamic Region-Aware Graph
Convolutional Network (DRAG) that dynamically finds out
crucial regions including objects and other important ele-
ments, and models their correlation adaptively for each in-
put image. To find out crucial regions, we cluster spatially-
correlated feature channels into several region-aware fea-
ture maps. Further, we dynamically model the correlation
with the self-attention mechanism and explore the interaction
among the regions with a graph convolutional network. The
DRAG achieved an accuracy of 87% on the largest dataset
for privacy-leaking image detection, which is 10 percentage
points higher than the state of the art. The further case study
demonstrates that it found out crucial regions containing
not only objects but other important elements like textures.
The code and more details are in https://github.com/guang-
yanng/DRAG.

Introduction
Social media like Facebook has been part of our daily life.
People post a large number of images on social media to
record and share their lives. However, the convenience of on-
line image sharing brings about the risk of privacy leakage.
The shared images contain rich information like personal re-
lationships and physical disability (Orekondy, Schiele, and
Fritz 2017). Malicious use of such information has been
documented (Solsman 2020) causing dire consequences like
fraud and cyber violence (Equifax 2020). As a severe issue
that is close to our daily life, privacy-leaking image is at-
tracting increasing concerns.

Social media platforms allow users to set privacy prefer-
ences like the visibility of their content to protect privacy, but
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Figure 1: Example of images that people share online in the
Image Privacy dataset (Yang et al. 2020). (a) is a public im-
age that is safe for sharing, while (b) is a private image that
may leak sensitive information. Public and private images
contain many common elements as well as specific ones.
The co-occurrence and interaction of the elements provide
semantic clues of scenes, activities, etc., which is crucial
for privacy-leaking image detection. Therefore, methods for
this task need to find out the elements and take their co-
occurrence and interaction into consideration.

many users still unconsciously share images that may leak
privacy. Although people have common expectations about
the privacy setting of online images (Hoyle et al. 2020), they
often lack the awareness of the privacy risk of the shared
images (Tuunainen, Pitkänen, and Hovi 2009; Wang et al.
2011). Liu et al. (2011) proved that there is a gap between
users’ expectations and the reality of users’ privacy settings
of the shared images. The above phenomenon and the po-
tential harms make it urgent to help users reduce the privacy
risks during image sharing. Users may unintentionally share
images that leak privacy and the spread of the images is al-
most uncontrollable. Therefore, a feasible method to reduce
the privacy risks is to automatically identify images that may
leak privacy and give warnings to users before sharing.

We use private images to refer to images that may leak
privacy and public images to refer to images that are safe
for sharing. Researchers mainly consider non-personalized
consensus and build corresponding datasets, and several ex-
amples are presented in Fig. 1. Following Tran et al. (2016)
and Yang et al. (2020), we formulate privacy-leaking image
detection as a binary classification task (i.e., predict whether
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a given image is private or public). Fig. 1 demonstrates that
the interaction among the elements in the images provides
clues and helps distinguish between private and public im-
ages. Yang et al. focuses on objects and their correlation to
identify private images based on object detection. However,
they neglect other important elements like scenes (Tonge
and Caragea 2019), textures, and objects beyond the capac-
ity of pre-trained object detectors. Furthermore, the correla-
tion among objects is fixed, but the elements vary in different
images, making the fixed correlation inappropriate.

To overcome the limitations, we propose Dynamic
Region-Aware Graph Convolutional Network (DRAG) to
dynamically find out regions of the crucial elements, and
model their correlation adaptively per image. The workflow
of DRAG is presented in Fig. 2, which contains two main
parts. In the first part (Fig. 2 (2)), the DRAG finds out N
crucial regions from the feature map without the reliance
on the object detectors. Specifically, based on the feature
map obtained from the backbone, the DRAG clusters the
spatially-correlated feature channels into N region-aware
feature maps. In the second part (Fig. 2 (3)), DRAG adopts
the graph convolutional network (GCN) to model the inter-
action among the N regions. The regions are obtained dy-
namically for each image, and thus the correlation among
the regions should be adaptive rather than predefined and
fixed. We dynamically model the correlation with the self-
attention mechanism to initialize the correlation matrix for
GCN. Then the interaction among the N crucial regions
is explored by propagating corresponding features through
GCN with the adaptive correlation matrix. Finally (Fig. 2
(4)), the propagated features are concatenated with a global
representation of the image to identify private images. Com-
pared with existing works, the dynamic nature of the DRAG
enables it to find out more diverse elements (not only ob-
jects) and model their correlations adaptively.

Our main contributions are summarized as follows:

(1) We proposed a novel framework DRAG for privacy-
leaking image detection. The DRAG dynamically finds
out crucial regions without the limitation of pretrained
object detectors and models the correlation among cru-
cial regions adaptively for each image.

(2) To explore the interaction among the crucial regions, we
proposed a region-aware method to initialize the graph
for GCN based on spatially-correlated channels cluster-
ing and self-attention mechanism.

(3) The experimental results prove the effectiveness of the
proposed framework for privacy-leaking image detec-
tion. The DRAG that only utilizes visual features out-
performed existing methods, including visual-based and
multi-modal ones.

Related Work
Privacy-Leaking Image in Online Image Sharing
Liu et al. (2020) concluded several privacy issues of online
image sharing. In this paper, we focus on the unawareness
of privacy during image sharing. There are two main types
of methods to deal with the risk of unawareness of privacy.

The first type of method mainly adopts classification mod-
els to identify private images. Zerr, Siersdorfer, and Hare
(2012) proposed a privacy-aware classifier based on vi-
sual features like face and color histograms. Buschek et al.
(2015) proposed a multi-modal method that assigns privacy
labels to the images based on visual features and meta-
data like location and publication time. Tonge, Caragea, and
Squicciarini (2018) utilized another kind of metadata, tag,
and Tonge and Caragea (2019) further derived features of
the object, scene, and tags for privacy-leaking image detec-
tion. Yang et al. (2020) extracted a knowledge graph from
the images and identified private images based on object de-
tection and graph neural networks.

The second type of method focuses on sensitive re-
gions in the images, including approaches like object de-
tection and semantic segmentation. Some detected private
attributes such as faces (Sun, Wu, and Hoi 2018), license
plates (Zhou et al. 2012), and social relationship (Li et al.
2017a). Orekondy, Schiele, and Fritz (2017) defined a list of
privacy attributes and detected them simultaneously. Some
works attempted to protect privacy-leaking image based on
blurring (Fan 2018), blocking (Li et al. 2017b), cartoon-
ing (Hasan et al. 2017), and perturbation (Oh, Fritz, and
Schiele 2017). Shetty, Fritz, and Schiele (2018) removed pri-
vate objects from the images based on a generative method.
However, a person may be recognized even his face is not
visible (Oh et al. 2016), and the redacted image may be re-
covered (Shen et al. 2019). As the usage of shared images is
almost uncontrollable, it is better to prevent the risk from the
beginning. Therefore, we follow the first type of method to
solve the issue of privacy-leaking images by classification.

Graph-based Methods in Visual Tasks
Graph-based methods have shown great potential in many
vision tasks in recent years, including visual question an-
swering (Teney, Liu, and van den Hengel 2017), person re-
identification (Wu et al. 2019), multi-label image recogni-
tion (Marino, Salakhutdinov, and Gupta 2017), and relation-
ship recognition (Wang et al. 2018). Ye et al. (2020) uti-
lized GCN (Kipf and Welling 2017) for multi-label classifi-
cation. Yang et al. (2020) adopted graph neural networks for
privacy-leaking image detection and showed that modeling
the interaction among crucial elements is an effective way.
However, their framework only focuses on the objects that
the pretrained object detector can recognize. Inspired by Ye
et al. (2020) and Yang et al. (2020), we proposed DRAG
that can model the interaction among more crucial elements
dynamically with GCN. Furthermore, instead of a fixed cor-
relation matrix for all the images (Yang et al. 2020), we ex-
tract the correlation matrix for each input image adaptively
based on the self-attention mechanism.

Approach
Overview of DRAG
The DRAG dynamically finds out crucial regions and mod-
els their correlation adaptively for each input image. Then
the DRAG explores the interaction among the crucial re-
gions with GCN and identifies the private images.
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Figure 2: Workflow of the Dynamic Region-Aware GCN (DRAG) for privacy-leaking image detection. (1) DRAG first extracts
the feature Fb of the input image. (2) The channels of Fb are then clustered into N groups with Channel Grouping Layer
(CGL). According to the approximate clustering result cr′, Fb are aggregated into N feature maps Fw to represent N differ-
entiated regions (Examples are at the bottom). (3) DRAG formulates a graph with Fw as the N nodes and uses the self-attention
mechanism to obtain the correlation matrix A. Then a GCN is used for feature learning on this graph. (4) The learned feature
Fp is concatenated with a global representation of the image Fc to identify private images.

Specifically, the DRAG contains two main parts (see
Fig. 2). In the first part (Fig. 2 (2)), the DRAG extracts di-
verse and tiny clues and then clusters them to obtain region-
aware feature maps as the representation of crucial regions,
without the reliance on the object detectors. In the second
part (Fig. 2 (3)), the DRAG models the correlation among
the crucial regions based on the self-attention mechanism
and initializes the correlation matrix for GCN. Then the fea-
tures of crucial regions are propagated through GCN with
the adaptive correlation matrix to explore the interaction
among these regions. Finally (Fig. 2 (4)), the propagated
features are concatenated with a global representation of the
image to classify a given image as private or public.

Dynamic Crucial Regions Exploring
Tasks like object detection and fine-grained image recogni-
tion need to focus on objects for better performance. For
example, the Region Proposal Network (Ren et al. 2015) is
used to select regions that may contain objects, attention-
based methods (Fu, Zheng, and Mei 2017) are used to focus
on the details of objects for fine-grained image classification.
However, the clues for privacy-leaking image detection are
revealed not only by the objects but also by other elements
such as scenes and textures . To focus on these crucial ele-
ments, we find out differentiated regions in an image based
on the channel grouping mechanism (Zheng et al. 2017).

We first trained a backbone (here, ResNet (He et al.
2016)) and got the convolutional feature of the input im-
age Fb ∈ RC×H×W , where W , H , and C are the width,
height, and channel number of the feature. According to Si-
mon and Rodner (2015), the peak responses of the chan-
nels correspond to various visual patterns. Following Zheng
et al. (2017), we clustered the channels by K-means (Mac-

Queen et al. 1967) according to spatial correlation among
the corresponding peak responses and adopted the cluster
results as the representation of crucial regions. To combine
the clustering with neural networks, the clustering process
was approximated by several fully-connected layers (FCs),
and the details are as follows:

A group of channels whose peak responses appear in
neighboring locations were clustered together. For each
channel, we got the coordinates of the peak response [tx, ty]
of all training images and formulated them into a vector:[
t1x, t

1
y, t

2
x, t

2
y, . . . , t

Ω
x , t

Ω
y

]
, where tix and tiy are the coordi-

nates of peak response of the ith training image, and Ω
refers to the size of the training set. This vector was used
as the feature for clustering with K-means. The channels
were clustered into N groups to represent N differentiated
regions. The clustering results were formulated as a matrix
cr ∈ RN×C with crij = 1 or 0, which indicates that if the
jth channel belongs to the ith group (i.e., the ith region).

The pretrained backbone initially focuses on the objects
and will be fine-tuned to adapt to privacy-leaking image de-
tection. To let the clustering results obtained from the back-
bone be optimized together, we adopted FCs to approx-
imate the clustering process, which is called the channel
grouping layer (CGL). CGL takes the feature map Fb as
input, then outputs the estimated result of clustering cr′ ∈
RN×C :

cr′ = CGL(Fb) = sigmoid(FCs(Fb)), (1)

We used the cr′ to get the feature of each region with an
averaged weighted sum mechanism. For the ith region, its
corresponding feature Fwi ∈ RH×W was obtained by :

Fwi =
1

C

∑
c

Fbc ∗ cr′ic, (2)
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where C is the number of channels in Fb, Fbc is the fea-
ture of the cth channel. cr′ic is the estimated indicator that
if the cth channel belongs to the ith region. By concatenat-
ing features of all regions, we finally obtained the Fw ∈
RN×H×W .
Initialization To obtain a proper initialization, CGL was
pretrained to let the cr′ be as close to cr as possible, and the
details are described in the Experiments section. During the
joint learning, we adopted two losses, Dis(·) and Div(·), to
force the CGL to learn differentiated regions as follows:

Dis(Fw)=
∑
i∈N

∑
(x,y)∈ri

Fwi(x,y)
2[∥x−tix∥2+∥y−tiy∥2

]
,

Div(Fw)=
∑
i∈N

∑
(x,y)∈ri

Fwi(x,y)
2

[
max
j ̸=i

Fwj(x,y)−mrg

]2

,

(3)

where i refers to the ith region, tix and tiy are the coordi-
nates of peak response in the ith region. mrg is the mean of
all the values in feature map Fw, which represents a margin
to make Div(·) less sensitive to noise. The Dis(·) encour-
ages a compact distribution in the feature of a region (i.e.,
similar visual patterns from a specific part to be grouped to-
gether), while the Div(·) forces the model to learn diverse
regions rather than similar ones. Such constraints make the
CGL learn differentiated regions for image privacy detec-
tion.

Dynamic Correlation Modeling
We obtained the feature of several crucial regions Fw based
on CGL. To explore the interaction among these crucial re-
gions for privacy-leaking image detection, we formulated a
graph with regions as nodes and correlation among the re-
gions as the edges to take the advantage of GCN. The re-
gions were obtained dynamically for each image, and thus
the correlation should be adaptive rather than predefined and
fixed. Inspired by Ye et al. (2020) and Vaswani et al. (2017),
we proposed a dynamic way to get an adaptive correlation
matrix for GCN.

To model the correlation among the N crucial regions,
we adopted the self-attention mechanism (Vaswani et al.
2017) which is widely used in NLP tasks to learn the cor-
relation among words. We first got three vectors query (q),
key (k), and value (v) from Fwi for each region ri with three
fully-connected layers. For all the N regions, the matrices
Q ∈ RN×dk , K ∈ RN×dk and V ∈ RN×N were calcu-
lated by:

Q=WqFw+bq,K =WkFw+bk,V=WvFw+bv,
(4)

where dk is the dimension of both q and k, and W and b
refer to the weights and biases in fully-connected layers, re-
spectively. The results of self-attention A was given by:

A = Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V. (5)

Each value in the matrix A ∈ RN×N is obtained by consid-
ering one region and all other ones. As a result, A is able to
represent the correlation among the N regions.

Feature Integration and Classification
We adopted GCN with the activation function of ReLU
to explore the interaction among the crucial regions, which
propagates features through the nodes as follows:

GCN(X) = ReLU(D̂−1/2ÂD̂−1/2XΘ), (6)

where I refers to an identical matrix, Â = A+I denotes the
adjacency matrix with inserted self-loops, D̂ii =

∑
j=0 Âij

is the diagonal degree matrix, and Θ is the learned weights.
To avoid over-smoothing of node features, we only adopted
two GCN layers and finally got the propagated feature Fp ∈
RN×H×W :

Fp = GCN(GCN(Fw)). (7)

To prevent that the learned regions neglect important
global information in the image, we got a compressed fea-
ture Fc ∈ R1×H×W from the original feature map Fb by
average Fb through the channels. At last, the Fc was con-
catenated with Fp for classification with a fully-connected
layer FC and the activation function of softmax:

ŷ = softmax(FC(Fc ⊕ Fp)), (8)

where ⊕ denotes the concatenating operation. The output ŷ
represents the probability that if the input image is private.

Experiments
Experimental Setup
Datasets

PicAlert PicAlert (Zerr et al. 2012) is the first dataset for
privacy-leaking image detection on social media, which was
built on an average community notion of privacy. They first
crawled images from image-sharing social media Flickr,
then asked external viewers to judge the privacy of the pho-
tos via a social annotation game. After removing invalid
annotations, they finally proposed a dataset of images with
user-classified privacy labels. The PicAlert we used contains
7,518 private images and 24,615 public images.

Image Privacy The PicAlert is somewhat biased as most
of the private images in PicAlert is person-containing. To di-
versify private images, Yang et al. (2020) extended PicAlert
to include more types of images reported in the previous
study (Tran et al. 2016), such as driver licenses, ID cards,
and legal documents. The Image Privacy dataset contains
13,910 private images and 24,615 public images.

Methods for Comparison We compared DRAG with
state-of-the-art methods, including Privacy-CNH (Tran et al.
2016) and GIP (Yang et al. 2020) that only utilize visual in-
formation obtained from the images, as well as Combina-
tion of Object, Scene, and User Tags (Tonge, Caragea, and
Squicciarini 2018) and DMFP (Tonge and Caragea 2019)
that utilize extra user tags.

https://www.flickr.com/
Tags that users annotate when sharing images, often contain infor-
mation that cannot be obtained from the image.
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Privacy-CNH (Hereafter, PCNH) (Tran et al. 2016) pro-
posed a framework that utilized both object and convolu-
tional features for privacy-leaking image detection. The fea-
tures are finally concatenated for classification.

GIP (Yang et al. 2020) is the first to adopt graph neu-
ral networks for privacy-leaking image detection. The GIP
first detects objects in an image based on Faster-RCNN (Ren
et al. 2015), and propagates the object features through a
predefined graph which is extracted from the training set.

Combination of Object, Scene, and User Tags (Here-
after, Combination) (Tonge, Caragea, and Squicciarini 2018)
combines object tags, scene tags, and user tags for privacy-
leaking image detection, which is a basic multi-modal
method. The object tags and scene tags are extracted from
the visual features, while the user tags are extra collected.

DMFP (Tonge and Caragea 2019) is also a multi-modal
method that utilizes object features, scene features, and tag
features instead of the tags. The DMFP estimates the compe-
tence of the modalities and fuses the decisions dynamically.
DMFP-O and DMFP-S denote DMFP that only utilize ob-
ject features and scene features, respectively.

Implementation We conducted experiments on the two
datasets to compare with state-of-the-art methods for
privacy-leaking image detection. To make a fair compari-
son, we adopted the same experiment settings as Tonge and
Caragea (2019) and Yang et al. (2020). The ratio of train,
val, and test set is 15:7:10 in both datasets. The public and
private images are in the ratio of about 3:1 in PicAlert and
about 7:4 in Image Privacy.

The models were implemented with python 3.6.8, Py-
Torch 1.4.0 (Paszke et al. 2019), torchvision 0.5.0 (Marcel
and Rodriguez 2010), and torch-geometric 1.6.1 (Fey and
Lenssen 2019). We first pretrained a ResNet as the back-
bone model. We extracted the feature outputted by the last
convolutional layer and obtained Fb ∈ R2048×14×14. We
clustered the channels into different regions following the
process described in the Approach section and got the clus-
tering result cr ∈ RN×2048. We experimented with several
region numbers N , including 4, 6, 8, 10, and 12, to explore
the influence of different region numbers. The clustering re-
sult cr was used to pretrain the CGL to let the cr′ be as
close to cr as possible, to enable the CGL to learn differ-
entiated regions. We calculated the cross-entropy loss of all
the N regions and 2048 channels to optimize the CGL:
LCGL=−

∑
i∈N

∑
j∈C

[yij log (ŷij)+(1− yij) log (1− ŷij)] , (9)

where yij is the true label of the jth channel in the ith group,
and ŷij is the corresponding predicted probability.

The correlation matrix A used for GCN was learned dur-
ing training with the self-attention mechanism. For the self-
attention module, the dimension of q and k was 64, while the
dimension of v was N . For the GCN , the number of nodes
was the same as the number of regions N . Feature of each
region was used to initialize the corresponding node, and
thus the feature of each node i was Fwi ∈ R14×14. After
exploring the interaction among nodes, the GCN outputted
Fp ∈ RN×14×14. Finally, by concatenating the global fea-
ture Fc ∈ R1×14×14, (Fc ⊕ Fp) ∈ R(N+1)×14×14 was

used for classification. For the binary classification task, we
adopted cross-entropy loss function:

Lcls = −
∑
i

[yi log (ŷi) + (1− yi) log (1− ŷi)] , (10)

where yi is the true label of the ith sample, and ŷi is the
corresponding predicted probability given by the model. The
final loss function was:

L = Lcls +Dis(·) +Div(·). (11)

We adopted Adam (Kingma and Ba 2015) as the optimizer
with the weight decay of 1e − 7. The Lcls and (Dis(·) +
Div(·)) were optimized alternately. The learning rate was
set to be 1e − 3 for CGL, 1e − 3 for GCN and 1e − 5
for backbone during initialization. The models were trained
with the same strategy: pretrain the backbone; pretrain the
CGL; optimize the CGL; optimize the GCN for several
epochs; optimize the GCN and the backbone; optimize the
CGL again if necessary; fine-tune the backbone and the
GCN for several epochs until convergence. Please refer to
the source code for more details.

Experimental Results
Comparison with the State of the Art Following previ-
ous works, we compared DRAG with state-of-the-art meth-
ods on PicAlert and present the precision, recall, and F1
score of each class to validate the effectiveness. We se-
lect the models with the best performances on the valida-
tion set and report their performances on the test set. The
comparisons between the DRAG and the state of the art
are presented in Table 1. Note that Combination (Tonge,
Caragea, and Squicciarini 2018) and DMFP (Tonge and
Caragea 2019) are multi-modal methods that utilize extra
user tags, while other methods only utilize the visual infor-
mation obtained from the images. As the DRAG only uti-
lizes visual information, we further compare with the state-
of-the-art visual-based method (i.e., GIP) on the more chal-
lenging Image Privacy dataset.

We get several observations from the results. The DRAG
outperforms other methods in most metrics on both datasets,
which proves the effectiveness of the proposed framework.
The accuracy and F-1 score of the DRAG is higher than
all other methods, including visual-based and multi-modal
ones. Specifically, the performances in the public class are
similar for all methods, and the main difference lies in the
private class, which is also the class that we need to pay more
attention to. The DRAG achieved the highest F-1 score and
also the highest recall in the private class, which means that
the DRAG will significantly reduce the false-negative rate.
Considering the practical task of privacy-leaking image de-
tection, this phenomenon means that fewer private images
will be classified as public incorrectly, and thus the DRAG
will better help reduce the unintentional sharing of private
images compared with other methods.

We observe that the DRAG achieved much better perfor-
mance compared with GIP, especially on the harder Image
Privacy dataset. We analyzed the rationality as follows, and
we provide the corresponding Precision-Recall Curve in the

12221



Dataset Model Source Accuracy
Private Public

Precision Recall F-1 Precision Recall F-1

PicAlert

PCNH AAAI (2016) 83.15% 0.689 0.514 0.589 0.862 0.929 0.894
GIP PR (2020) 83.49% 0.552 0.684 0.610 0.922 0.871 0.895
*Combination AAAI (2018) 83.09% 0.671 0.551 0.605 0.869 0.912 0.892
*DMFP WWW (2019) 86.36% 0.752 0.627 0.684 0.891 0.936 0.913
DRAG Ours 86.84% 0.719 0.719 0.719 0.914 0.914 0.914

Image GIP PR (2020) 77.09% 0.812 0.751 0.780 0.730 0.795 0.761
Privacy DRAG Ours 87.68% 0.811 0.842 0.826 0.914 0.895 0.905

Table 1: Comparison with the state of the art. The best and second-best results in each column are boldfaced and underlined,
respectively. “*” indicates multi-modal methods that utilize extra user tags, while other methods only utilize the visual infor-
mation obtained from the images.

supplementary. First, as described in the Dataset section, the
public images are the same in the two datasets, while Image
Privacy contains more images in the private class. There-
fore, Image Privacy is more balanced than PicAlert, and the
performances in the public class of both methods dropped
on Image Privacy. Second, objects are important clues for
privacy-leaking image detection, and thus GIP that relies on
the object detector performed well on PicAlert. But when
dealing with a more complex dataset, the pretrained object
detector limits the ability to focus on other crucial elements
like unseen objects, scenes, and textures. Compared with
GIP, the DRAG dynamically focus on regions of the cru-
cial elements and thus achieved better performances in both
classes. Our ablation studies in the next subsection also sug-
gest that the model needs to pay more attention to differen-
tiated regions for privacy-leaking image detection on Image
Privacy than on PicAlert.

Ablation Study
Effectiveness of Dynamic Crucial Regions Exploring

To obtain a variant without the ability to dynamically ex-
plore crucial regions, we fixed the CGL with its initial fea-
tures that mainly focus on objects, because the used back-
bone was pretrained on the object-focused task. The results
are presented in cyan in Fig. 3 (“w/o CGL fine-tuned”). The
performances drop on both datasets, especially on the more
complex Image Privacy. This phenomenon proves that the
model needs to explore more elements besides objects, es-
pecially for a more complex task.

Effectiveness of Dynamic Correlation Modeling To ob-
tain a variant without the ability to dynamically model the
correlation among crucial regions, we adopted a graph that
all nodes in the graph are connected with each other (i.e. a
graph with a fixed all-ones correlation matrix). The perfor-
mances are presented in green in Fig. 3 (“with fixed corre-
lation”), which are worse than those of DRAG in general.
We further proposed a variant that completely disregards the
correlation, which is implemented by removing GCN from
DRAG and directly adopts the region features Fw for clas-
sification. Similar to Eq. 8, we concatenate the features with
a global feature, and feed them into a fully connected layer
for final prediction: ŷ = FC(Fc ⊕ Fw). The results are
presented in orange in Fig. 3 (“w/o GCN”), and the perfor-

(a) PicAlert (b) Image Privacy

Figure 3: Ablation study and hyperparameter sensitivity. The
baseline refers to ResNet pretrained on the corresponding
dataset (presented in red). The performances drop when re-
moving components from the DRAG, proving the effective-
ness of these components. The DRAG is relatively robust
for region number N , while N = 8 achieved slightly better
performance than other N on both datasets.

mances further degrade. These results prove that considering
the correlation among the crucial elements is essential, while
a dynamic correlation is better than a fixed one.

Discussion For DRAG, the performance is better on Im-
age Privacy than on PicAlert, but for the baseline is the op-
posite. As described before, Image Privacy is an extension
of PicAlert with challenging samples, which makes the ba-
sic model perform worse. The DRAG benefits from the abil-
ity to dynamically find out crucial regions and model their
correlation, and still achieve remarkable performance.

The dynamic crucial regions exploring and the dynamic
correlation modeling complement each other, but the impor-
tance of them is different for the two datasets. The dynamic
correlation modeling affects the performances more for Pi-
cAlert, while the dynamic crucial regions exploring affects
the performances more for Image Privacy. We speculate that
for a simpler dataset, the pretrained CGL is good enough to
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(a) Region features of a private image

(b) Region features of a public image

Figure 4: Two examples of the learned region feature ob-
tained from CGL. In the private image (a), the CGL focuses
on the lamp, the window, the person, the doll on the chair,
and the wall. In the public image (b), the CGL focuses on
the plant, the people, the doors, and the railing. The results
show that the CGL can capture regions of crucial elements
to differentiate private and public images.

find out crucial regions, and the model should pay more at-
tention to the interaction among the regions. But for a more
complex dataset, the model needs to make more effort to fo-
cus on the crucial regions that reflect subtle differences. This
may also explain why GIP that relies on the object detector
and GNN performed well on PicAlert, but the performances
dropped a lot on Image Privacy.

Hyperparameter Sensitivity To validate the robustness
of the model under parameter variations, we investigated the
sensitivity of the hyperparameter N , which determines the
number of regions during channel grouping, and also the
number of nodes in the GCN. The results are presented in
Fig. 3. We explore the influence of N with the complete
model as well as the models in the ablation studies. The ten-
dencies are consistent for all models, and we can get sev-
eral conclusions. First, for most models, the variances of the
performances between different N are not very significant,
suggesting that the DRAG is relatively robust. Second, com-
paring the subtle differences , we found that the region num-
ber of 8 is most suitable for our experimental setups on both
datasets. During our experiments, we infer that the best se-
lection of N may depend on the size of the feature map Fb

used for clustering. A larger N may be more appropriate for
a larger feature map. We will explain this inference based on
the following case study.

(a) Public images that are mis-
classified into private.

(b) Private images that are mis-
classified into public.

Figure 5: Cases of misclassified images.

Case study
Qualitative Analyses of the Region Features We visual-
ized the original image and corresponding features of the
crucial regions obtained from CGL to illustrate the capabil-
ity of CGL. From Fig. 4, we observe that the CGL learned
differentiated regions of crucial elements as we expected.
We also notice that there exist overlaps between the peak
responses in the feature maps, and several feature maps are
not very compact. During the training stage, we combined
the losses to ensure the classification performance and did
not make a quite strict constraint on the Dis(·) and Div(·),
and thus the results are reasonable. This may also explain
why the region number N of 8 is the most suitable one in
our experiments — too small N may neglect important re-
gion features, while too large N may result in overlaps.
Limitation of DRAG We conduct this study to learn what
kind of images are more likely to be misclassified. Fig. 5
(a) shows public images that were misclassified into private.
Although group photos are often related to private occa-
sions like family gatherings, the images here are actually art
photography and photos of public events. In Fig. 5 (b), the
misclassified private images contain elements such as ticket,
medicine, age, and credit card number. The examples indi-
cate that the model may fail to understand the given images
when the external social context of sharing motivation and
textual privacy is necessary. Therefore, we argue that future
works may obtain a deeper understanding of the images by
introducing social context. For example, techniques of text
recognition and natural language understanding can be used
to understand the specific types of card-like elements.

Conclusion
In this paper, we proposed the DRAG for privacy-leaking
image detection. The DRAG dynamically finds out crucial
regions and models their correlation adaptively for each in-
put image without the limitation of pretrained object detec-
tors. The experimental results show that the DRAG that only
utilizes visual features outperformed existing methods, in-
cluding visual-based and multi-modal ones. Further works
may consider introducing external social context to obtain
a deeper understanding of the images. The code will be re-
leased to facilitate further research.
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