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Abstract

Recent works in artificial intelligence fairness attempt to mit-
igate discrimination by proposing constrained optimization
programs that achieve parity for some fairness statistic. Most
assume availability of the class label, which is impractical in
many real-world applications such as precision medicine, ac-
tuarial analysis and recidivism prediction. Here we consider
fairness in longitudinal right-censored environments, where
the time to event might be unknown, resulting in censorship
of the class label and inapplicability of existing fairness stud-
ies. We devise applicable fairness measures, propose a debi-
asing algorithm, and provide necessary theoretical constructs
to bridge fairness with and without censorship for these im-
portant and socially-sensitive tasks. Our experiments on four
censored datasets confirm the utility of our approach.

Introduction
With the rise of big data, artificial intelligence (AI)-based
decision making systems are used in a growing number
of applications, including many high-impact areas such as
healthcare, employment, credit lending and criminal jus-
tice (Beutel et al. 2019; Meyer 2018; Liu et al. 2021). There
is concern that automated decisions made in this fashion en-
code and even exacerbate existing real-world disparities, in-
flicting harm to certain individuals or social groups (Vasude-
van and Kenthapadi 2020; Quy et al. 2022). This issue has
motivated a number of approaches to quantify and mitigate
algorithmic unfairness and has given rise to an active field
of research deemed AI fairness (Mehrabi et al. 2021). The
vast majority of existing studies tackle the problem by tak-
ing the existing notions of algorithmic fairness that focus
on either individual level fairness, e.g., disparate treatment,
to guarantee similar people are treated similarly (Dwork
et al. 2012), or group level fairness, e.g., disparate impact,
seeking approximate parity of some statistic across differ-
ent groups (Zhang and Ntoutsi 2019). Moreover, most of the
work in this literature studies how to make machine learn-
ing algorithms fair in the presence of a class label—where
the fairness notions are defined based on the class label, and
where the predictive model is trained contingent upon them.
Surprisingly, little attention has been given to censorship
settings in which the time to an event of interest could be
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inaccessible to the learner (Turner et al. 2022), thus mak-
ing existing fairness notions and approaches inapplicable.
In practice, e.g., evaluating the retention rates of each mar-
keting channel in marketing analytics, and judging defen-
dant’s criminal recidivism for bail and sentencing in recidi-
vism prediction instruments, the latter is often the case.

In this work, we consider such a censorship setting where
the true time to event might be unknown to the learner,
while fulfilling the requirements of fair and accurate pre-
dictions. Addressing unfairness and censorship simultane-
ously presents unique challenges, and transferring from re-
spective domains is not straightforward. In contrast to pre-
vious works (Verma and Rubin 2018), our goal here is to
prevent cases of unequal treatment according to their certain
characteristics or sensitive attributes (e.g., gender or race) at
the individual and group level. In addition, unlike previous
works limited to categorical sensitive attributes that are bi-
nary (Zhang and Weiss 2021), our goal also generalizes to an
k-way categorical and continuous variables. Our definitions
of fairness can therefore be thought of versatile notions fo-
cusing on individual and group levels, and inclusive of data
with censored individuals.

Our formulation of fairness is motivated by the follow-
ing observation: in healthcare, the impressive human-level
or even surpassing human-level performance of AI systems
is balanced against a plethora of observed discriminatory
incidents (Rajkomar et al. 2018). As an example, a Prop-
ublica report found that state-of-the-art clinical prediction
models underperformed on black patients even when a treat-
ment was aimed at a particular type of cancer that dispro-
portionately impacted them (Chen et al. 2020). Such obser-
vations also go beyond the medicinal domain with examples
in marketing analytics (Chang 2021), actuarial (Frezal and
Barry 2019) and recidivism prediction instruments (Angwin
et al. 2016), where the common challenge, other than ethi-
cal concerns, is the individual’s true time to event might be
unknown. We remark that thus far the fairness-in-AI com-
munity has primarily focused on no censorship settings with
clearly defined class labels of instances, despite these pre-
vailing censorship scenarios.

Armed with this broader observation of AI unfairness,
care must be taken to ensure that an automated decision
making system is fair or independent of harmful and sen-
sitive attributes-based stereotypes in the presence of cen-
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sorship. This motivates the definitions of fairness involv-
ing censored individuals and a corresponding algorithm to
address discrimination with censorship that we propose in
this work. More specifically, the novelty of this research
comes from four aspects: i) We study a novel problem of
longitudinal fairness with censorship, which is commonly
rooted in socially sensitive applications but remains highly
under-explored. ii) Corresponding fairness notions explicitly
considering censorship are devised to measure bias in the
presence of censorship, as well as a respective fair learner
to ensure accurate predictions while also preserving a low
discrimination score in longitudinal censorship settings. iii)
We theoretically establish the connections of fairness in
censored and non-censored settings, offering greater under-
standing and explanation for AI fairness. iv) Detailed ex-
perimental evaluations validating our model with regards to
both fairness and accuracy on four real-world censored and
discriminated datasets.

Background and Related Work
Longitudinal Biased Data with Censorship
In the typical AI fairness settings, the biased data X nor-
mally consists of a sequence of feature represented instances
x1, x2, · · · , xn. Among the feature representation, a special
attribute G is referred as the sensitive attribute and its at-
tribute values distinguish the discriminated community, i.e.,
the deprived group, from the privileged community, i.e., the
favored group. In addition, instances are also described by
their corresponding class labels y1, y2, · · · , yn. However,
class labels can become inaccessible in the presence of cen-
sorship.

The discriminated and censored data, in contrast to the
typical data representation, therefore further contains the
survival time T and an event indicator δ in addition to the
observed features x, typically represented in the form of (x,
T , δ). If the event of interest has occurred, T is the actual
time from the individual entered the study till the time of the
event occurring, and δ becomes 1 indicating certainty on the
event observation; otherwise T corresponds to the elapsed
time between individual entered the study and last follow-
up with the individual, and the event indicator δ = 0, i.e., the
survival time is censored (Wang et al. 2021).

Compared with AI fairness in supervised settings, ad-
dressing discrimination bias in censoring settings leads to
censorship on y1, y2, · · · , yn which limits the applicability
of the existing fairness notions. In addition, the uncertainty
on y1, y2, · · · , yn could also further accompany and com-
plicate the biased decision regions. Given the discriminated
and censored data X , the aim of longitudinal AI fairness
with censorship is then to model a fair survival functionH(·)
which makes accurate predictions based on X but also does
not discriminate with respect to G for the discriminated and
censored datasets.

AI Fairness
While artificial intelligence is increasingly permeating
facets of life, significant concerns on the unfair and discrim-
inatory manner of AI-based systems have been voiced and

observed (Beutel et al. 2017). The AI community has re-
sponded by proposing a growing body of fairness notions
to measure the level of discrimination along with a number
of approaches to mitigate bias in order to provide fair de-
cision making systems (Hajian, Bonchi, and Castillo 2016;
Mehrabi et al. 2021; Zhang et al. 2022).

The broad set of existing mathematical formulations of
fairness can be typically divided into two main families, in-
dividual fairness and group fairness. The former aims to
ensure that similarly situated individuals are treated simi-
larly (Dwork et al. 2012) while the latter asks for group level
approximate parity of some statistic over class labels (Verma
and Rubin 2018). Although a vast of fairness notions exist,
most of them formulate fairness depend on class label thus
limiting their applicability in censorship settings. Kamrun et
al. (Keya et al. 2020) directly extend the existing fairness no-
tions to the application with censoring problems, and it is the
only relevant work to the best of our knowledge. However,
their definitions exclude the censorship information when
measuring discrimination which could introduce substantial
bias as censored information can be of importance and can-
not simply be ignored (Clark et al. 2003).

The aforementioned fairness definitions could be di-
rectly used or slightly modified as a constraint or a reg-
ularizer to enforce fairness, leading to three categories of
debiasing mechanisms: pre-processing approaches (Kami-
ran and Calders 2009; Žliobaitė 2017), in-processing solu-
tions (Zhang and Ntoutsi 2019; Babaioff, Ezra, and Feige
2021), and post-processing techniques (Hardt et al. 2016;
Fish, Kun, and Lelkes 2016). The critical limitation of these
methods as well as other existing fairness works is that they
are in need of class label for their unfairness formulations
and algorithmic solutions, and fairness when some class la-
bels are unknown has not been well explored (Keya et al.
2020). Our work seeks to alleviate such limitation by jointly
addressing bias reduction and censoring management.

Survival Analysis
The critical challenge of the main outcome under assess-
ment could be unknown for a portion of the study group,
deemed censorship, hinders the use of many methods of
analysis. This motivates the study of survival analysis to
address the problems of partial survival information access
from the study cohort (Clark et al. 2003). The censored data,
also known as survival data, are generally considered and
modeled in terms of two quantitative terms, namely the haz-
ard function and the survival function. The former models
the instantaneous rate of event occurs at a specified time t
conditioned on surviving to t:

h(t|x) = lim
4t→0

Pr(t < T < t+4t|T ≥ t, x)

4t
(1)

The latter is the probability that the event does not occur up
to time t and can be determined from the hazard function
(and vice versa):

S(t|x) = exp(−H(t|x)), H(t|x) =

∫ t

0

h(t|x)dt (2)
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Given the ubiquity of censored data in real-world applica-
tions, survival analysis has gained its popularity in various
applications ranging from medicine to customer and actuar-
ial analytics to predictive maintenance in mechanical oper-
ations (De Angelis et al. 1999). Among the various meth-
ods proposed for modeling censored data, the Cox propor-
tional hazards model (CPH) (Cox 1972) is the most com-
monly used in which the multiplicative relation between the
risk, as expressed by the baseline hazard function, and co-
variates is described. More recently, deep neural network
structure has also been extended to model the feature inter-
actions of survival data. For example, DeepSurv (Katzman
et al. 2018) employs the loss function of CPH with L2 reg-
ularization to train the networks. Another line of effort is
the tree based methods (Bou-Hamad et al. 2011), particu-
larly random forests due to its superior capabilities in han-
dling nonlinear effect of variables and avoiding restrictive
assumptions such as that of proportional hazards (Ishwaran
et al. 2008). A comprehensive literature survey covering re-
cent censored data modeling effort is provided in (Wang, Li,
and Reddy 2019).

With the popularity of survival models, care must be taken
to ensure their fairness, the same as other AI approaches.
Our work situates in this under-explored research direc-
tion to tackle fairness in the presence of censorship. Our
in-processing approach incorporates a pairwise-comparison
fairness notion in the algorithm design to guide a accuracy-
driven as well as fairness-oriented learning procedure. Rel-
evantly, the survival model is modified to ensure fair risk
predictions as in (Keya et al. 2020). Three key differences
are that our model: i) does not necessitate a distance metric
to be specified, ii) explicitly considers survival information
to address discrimination in the presence of censorship, and
iii) enjoys the merit of free from hyperparameter tuning.

Our Approach
Defining Bias with Censorship
Concordance Imparity The presence of censorship in
data limits the applicability of commonly used fairness def-
initions introduced in the existing AI fairness studies. To fill
this gap, we introduce Concordance Imparity (CI) to specifi-
cally account for model unfairness in the presence of censor-
ship. Specifically, CI first considers individual level pairwise
comparison based on the consistency between model predic-
tion and true outcomes, then measures, at the group level,
whether the discriminative ability of the model is fairly dis-
tributed across different groups. Different from the previous
definitions (Keya et al. 2020), the survival time and survival
information are explicitly involved in CI to avoid important
information loss and introducing substantial bias. The sketch
of Concordance Imparity is shown in Algorithm 1.

The concordance imparity measurement starts with decid-
ing whether the sensitive attribute G is an continuous at-
tribute (line 1) and discretizes G according to the proposed
fair survival difference to be discussed in the following sec-
tion if so (line 2). Next, CI forms all possible pairs of com-
parison for each individual and omits those incomparable
pairs, i.e., the shorter time is censored, and both-censored

Algorithm 1: Concordance Imparity
Input: Censored and biased dataset D, risk scores r,

sensitive attribute G
Output: CI score

1: if G is continuous then
2: Discretize G according to Equation (6)
3: end if
4: for each instance di in D do
5: for each instance dj in D & dj 6= di do
6: if ti < tj & δi == 0 | tj < ti & δj == 0 |

(ti == tj & (δi == 0 & δj == 0)) then
7: continue
8: else
9: PG(di)==g = PG(di)==g+ 1

10: end if
11: if ti < tj then
12: if r(di) > r(dj) then
13: CG(di)==g = CG(di)==g+ 1
14: else if r(di) = r(dj) then
15: CG(di)==g = CG(di)==g+ 0.5
16: end if
17: else if ti > tj then
18: if r(di) < r(dj) then
19: CG(di)==g = CG(di)==g+ 1
20: else if r(di) = r(dj) then
21: CG(di)==g = CG(di)==g+ 0.5
22: end if
23: else if ti == tj then
24: if δi == 1 & δj == 1 then
25: if r(di) == r(dj) then
26: CG(di)==g = CG(di)==g+ 1
27: else
28: CG(di)==g = CG(di)==g+ 0.5
29: end if
30: else if δi == 0 & δj == 1 & r(di) < r(dj) then
31: CG(di)==g = CG(di)==g+ 1
32: else if δi == 1 & δj == 0 & r(di) > r(dj) then
33: CG(di)==g = CG(di)==g+ 1
34: else
35: CG(di)==g = CG(di)==g+ 0.5
36: end if
37: end if
38: end for
39: end for
40: CF(G=g) = Cg/Pg

41: return CI= maxg,g′∈G & g 6=g′ |CF(g) − CF(g′)|

pairs with identical survival time (line 4-7). The remain-
ing are the permissible pairs across different demographic
groups (line 8-9). Among them CI checks three possibilities:
1) if the individual under consideration, di, has a shorter sur-
vival time, ti, than the compared individual’s survival time
tj , then the concordance count of respective demographic
group, CG(di)==g , that di belongs to increments by 1 if the
model actually assigns a higher risk score to di and by 0.5
if predicted outcomes are tied (line 11-16). 2) Line 17-22
checks the opposite scenario that di’s survival time is longer
than dj’s and counts are incremented similarly. 3) When
identical survival times observed (line 23) and neither are
censored (line 24), di’s respective concordance count will be
added by 1 on the condition that the predicted outcomes are
tied, and by 0.5 otherwise (line 25-29); When the survival
times are still the same but not both are censored,CG(di)==g

increments by 1 if the non-censored individual has a higher
predicted risk score and by 0.5 otherwise (line 30-36). Line
40 then evaluates concordance fraction (CF), the group-wise
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correct pairwise ordering, and the final CI score is measured
as the largest deviation of discriminative abilities across dif-
ferent demographic groups of the model (line 41). The lower
the concordance imparity score the fairer the model.

Note that in comparison to existing fairness no-
tions mainly focus on binary protected categorical at-
tributes (Verma and Rubin 2018), other than the explicit
inclusion of censorship information, concordance imparity
also looks at the generalization of measuring the level of
discrimination to k-way categorical attributes. This is done
by reformulating the general discrimination measurement
to consider the largest difference among sub-community,
which is equivalent to the typical fairness definition when
k = 2. In addition, CI also considers the discrimination in
regards to continuous attribute domain. Specifically, the al-
lowing test (Han, Kamber, and Pei 2011) is first used to ex-
plore potential binary split candidates, then the allowed split
with the largest merit achieved is selected as the threshold
for splitting. The merit is gauged according to the proposed
fair survival difference to be discussed hereafter. The cal-
culation of CI can then proceed the way as the categorical
attribute after such a discretization. This gives us a gener-
alized definition extending CI to fair regression tasks, en-
abling an inclusive discrimination evaluation consisting of
censored individuals.

Fair Calibration To further exploit the semantic informa-
tion of survival probabilities produced by the model which
are also labels for individuals (Haider et al. 2020), we pro-
pose fair calibration (FC) to measure whether the model un-
der consideration creates probability value based disparity
systematically.

In summary, fair calibration of survival probabilities was
assessed by: i) plotting group-wise (i.e., ∀g ∈ G) observed
proportions versus predicted probabilities and ii) by calcu-
lating corresponding fair calibration validity. The first step
examines the agreement between the predicted probabili-
ties of the model with the observed outcome. To do so, FC
sorts and splits the predicted probabilities for a particular
time t for each demographic group into deciles, then checks
whether these probabilities are sufficiently close to the ob-
served proportions. Note that smaller subgroups will lead
to greater statistical uncertainty about within-group predic-
tive and fairness performance, but provide more similarity
of instances within subgroups. Fewer subgroups result in the
opposite. Convention is to use deciles, which is what we fol-
low. In addition, the observed proportions could be unknown
due to the censorship. To this end, the Kaplan-Meier (KM)
curve estimate (Ranstam and Cook 2017) is employed and
the significance of these group-wise results respect to these
bins are defined by the Hosmer-Lemeshow (HL) goodness-
of-fit test statistic (Hosmer and Lemesbow 1980):

HLg(S(t|x)) =
B∑
i=1

(KMig − p̄ig)2nig

p̄ig(1− p̄ig)
(3)

where B represents the number of bins, KMig is the KM
estimated probability in the ith decile at time t, p̄ig is the
predicted probability for individuals in the ith decile and nig

is the number of observations in decile i. Note that all of
them are group-wise, i.e., G = g.

Based on the group-wise examined level of agreements,
the second step of FC evaluates consistency across differ-
ent demographic groups as shown in Equation (4), involv-
ing the first two fair calibrated scenarios and the third bi-
ased calibrated scenario otherwise: i) representation consis-
tency: the predicted probabilities are representative of the
actual probabilities; the p-value of each group’s HL statistic
passes the test with a value not smaller than 0.05, ii) dif-
ference consistency: representation inconsistent but the dif-
ference between predicted probabilities and actual probabil-
ities (i.e., 4pg/4pg′ ) is accordant across subgroups; the p-
value of each difference test among subgroups evaluated by
Wilcoxon signed-rank test (Woolson 2007) is greater than
0.5, iii) Neither representation nor difference is consistent.

FC =



fair calibrated, p(HLg(S(t|x))) ≥ 0.05

∀g ∈ G
fair calibrated, wilcoxon(4pg,4pg′) > 0.5

∀g, g′ ∈ G
biased calibrated, otherwise

(4)

Mitigating Bias with Censorship
Armed with the afore established fairness statistics, measur-
ing unfairness in the presence of censorship becomes fea-
sible. This section then serves to fulfill the subsequent bias
mitigation amidst censorship.

The proposed approach follows the general idea of ran-
dom forests (RF) by constructing an array of base learners
to improve the predictive ability. In particular to censored
data, RF is also nonparametric while enjoying the merits
of nonlinear interactions modeling (Wang, Li, and Reddy
2019). However, such ensemble methods aim to optimize
for data encoding for predictive performance, and fairness,
which we desired to add, is imperceptible (Ishwaran et al.
2008). In this work, to jointly optimizing for censored data
encoding and debiasing, we propose Fair Survival Random
Forests (FSRF) which extends the RF model in two ways: i)
by introducing a new splitting criterion that jointly consid-
ers the reduction of an attribute split w.r.t. impurity and also
w.r.t. discrimination, ii) by illustrating the way to provide
fair risk predictions amidst censorship.

The information gain and Gini impurity, when censorship
is absent, are commonly used splitting criteria to guide the
induction of the tree for classification performance (Han,
Kamber, and Pei 2011). However, the presence of censorship
leads to inaccessibility of class label thus making their com-
putation impractical. The survival difference can be instead
used to measure the impurity reduction for candidate split-
ting evaluation. In FSRF, such survival difference between
different groups are evaluated by the logrank test (Bland and
Altman 2004):

SD =

∑k
j=1(Oj − Ej)√∑k

j=1 Vj

∼ N(0, 1) (5)
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where Oj and Ej represent the observed number of events
and the expected number of events, respectively with Vj be-
ing the variance of Oj . The candidate with a larger logrank
test therefore leads to more similarity within child nodes but
also more dissimilarity among child nodes if it is being se-
lected for splitting.

We then combine concordance imparity and survival dif-
ference as a conjunctive criterion that takes both predictive
performance and fairness into consideration. We define the
conjunctive criterion fair survival difference (FSD) as:

FSD =

{
logSD − logCI if CI 6= 0
+∞ otherwise

(6)

Intuitively, FSD closely ties SD and CI. When the candi-
date attributes that are free of discrimination, i.e., CI equals
0, FSD becomes positive infinite to prioritize fair splitting.

In practice, the calculation of CI depends on the distribu-
tion that a potential splitting could lead to and the associated
risk predictions based on the distribution. FSRF employs the
cumulative hazard functionH(t|x) to predict such risk score
for the sake of having a direct interpretation of the expected
number of events, as well as serving the intermediate func-
tion between hazard and survival functions for direct deriva-
tion when needed. Formally, the risk score is estimated by
the Nelson-Aalen estimator (Borgan 2014) as:

H(t|x) =
∑
j≤t

dj
nj

(7)

where dj and nj represent the number of individuals expe-
riencing events and have not experienced the event at time j
respectively, and t is evaluated as the last event time. Sim-
ilar to the same node sharing identical class label in non-
censoring trees, all individuals within the node of FSRF
share an identical risk score when evaluating splitting but
also predicting final risk.

Bridging Fairness in the Presence and Absence of
Censorship
The previously proposed fairness definitions and debiasing
algorithm explicitly consider the indispensable survival in-
formation and lay the groundwork for AI fairness in the pres-
ence of censorship. In addition, it is also desire to understand
the connections of AI fairness in the presence and absence of
censorship to build fundamental theoretical frameworks for
AI fairness. So are of practitioners and policy makers’ inter-
ests to help them have an additional layer of understanding
of AI fairness for fair decision making navigation and cus-
tomization. This section serves to fill this gap.

As previously discussed, the standard AI fairness tech-
niques, such as the most widely used statistical parity, are
not suitable in the presence of censoring in the data (Verma
and Rubin 2018). Here, we take the devised concordance
imparity as the illustrative example to connect AI fairness
in the presence and absence of censorship, so as to facili-
tate the study of fairness with censorship. Recall that CI first
measures subgroup-wise fraction of concordant pairs, then
gauges concordance difference between different subgroups
defined by the sensitive attributes. The first part of CI can

therefore be thought of as an extension of the standard con-
cordance index (C-index) (Li et al. 2016) in subgroup-wise
and then along with the second part as the weighted sub-
group based area under the receiver operating curve (AUC)
difference in no censoring settings. We will next elaborate
this connection.

Charac. SUPPORT ROSSI COMPAS KKBOX

Sample # 8,873 432 10,325 2,814,735
Censored% 0.320 0.736 0.732 0.347
Feature # 14 9 14 18
Sensitive
Attribute gender race race gender

Sensitive
Value female African

American
African

American female

Table 1: An overview of the datasets.

Starting from the standard C-index, it is a “global” index
for validating the predictive ability of the model. Specif-
ically, it is the fraction of pairs within the whole group,
where the observation experienced the event of interest had
a higher risk score than an observation who experienced the
event later or had not experienced the event, representing the
global assessment of the model’s discrimination power. By
definition, the C-index is a generalization of the Wilcoxon-
Mann-Whitney statistics (Austin and Steyerberg 2012) and
thus of the AUC with equivalence in binary classification in
the absence of censorship. The difference between the con-
cordance part of CI and C-index is that the concordance of
CI measures subgroup-wise fraction of concordant pairs in
comparison to the whole group-wise concordant probabil-
ity of C-index. Note that the subgroup-wise concordance
calculation of CI compares an observation with both intra
group and inter group observations, i.e., with all remaining
observations other than itself. The concordance of CI can
therefore be regarded as a subgroup based AUC, abbrevi-
ated as sAUC, in contract to the standard global AUC of
C-index. Next, based on the obtained sAUC from different
subgroups, the imparity part of CI gauges concordance dif-
ference among them. Finally, CI can be interpreted as the
largest deviation among weighted sAUC, and CI’s counter-
part of the original formulation (e.g., line 41 in Algorithm 1)
in the absence of censorship is:

CI = max
g,g′∈G & g 6=g′

|sAUC(g) − sAUC(g′)| (8)

where sAUC(G=g) is the weighted subgroup based AUC
from subgroup that defined by g and is mathematically rep-
resented as:

sAUC(g) =
ngsAUCg +

∑|{G−g}|
j=1 ng′sAUCg′∑|G|
j=1 nj

(9)

where sAUCg and sAUCg′ are AUC values when compar-
ing with intra- and inter-subgroup observations, respectively,
and nj represents respective number of comparable pairs of
each subgroup.
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Datasets Method
Metrics CI% Fair Calibration C-index% Brier Score% Time-dependent AUC%

SUPPORT

IDCPH 19.12 Not fair calibrated 69.08 31.16 76.17
GDCPH 13.12 Fair calibrated 75.12 24.46 78.21

CPH 17.45 Not fair calibrated 74.11 21.21 80.02
RSF 20.11 Not fair calibrated 75.18 16.64 81.01

DeepSurv 18.65 Not fair calibrated 75.65 16.11 80.68
FSRF 9.21 Fair calibrated 76.17 13.23 82.86

ROSSI

IDCPH 15.31 Not fair calibrated 52.28 18.73 77.32
GDCPH 9.32 Fair calibrated 59.34 22.87 78.51

CPH 11.43 Not fair calibrated 64.24 17.67 77.12
RSF 16.53 Not fair calibrated 65.56 15.12 79.32

DeepSurv 12.32 Not fair calibrated 66.67 14.71 77.17
FSRF 8.92 Fair calibrated 69.02 12.69 79.65

COMPAS

IDCPH 25.18 Not fair calibrated 62.16 25.03 63.78
GDCPH 11.77 Fair calibrated 72.16 16.32 66.21

CPH 22.43 Not fair calibrated 69.24 20.35 65.15
RSF 25.32 Not fair calibrated 72.61 15.62 71.76

DeepSurv 16.72 Not fair calibrated 75.12 13.42 71.83
FSRF 9.63 Fair calibrated 76.24 13.81 72.33

KKBOX

IDCPH 17.79 Not fair calibrated 72.61 21.23 69.73
GDCPH 14.98 Fair calibrated 79.45 19.92 73.03

CPH 18.91 Not fair calibrated 80.02 18.17 72.95
RSF 21.14 Not fair calibrated 82.32 14.24 78.18

DeepSurv 20.66 Not fair calibrated 83.01 14.33 80.71
FSRF 14.42 Fair calibrated 82.43 13.13 82.16

Table 2: Performance comparison of all methods on various datasets. The best results are marked in bold.

Experimental Results
Dataset Description
We validate our model on four real-world censored datasets
with socially sensitive concerns: i) The SUPPORT dataset is
from a large study to understand prognoses preferences out-
comes and risks of treatment by analyzing the survival time
of inpatients (Knaus et al. 1995). ii) The ROSSI dataset per-
tains to predict the reoffending risk score of convicted crimi-
nals from Maryland state prisons, who were followed up for
one year after release (Fox, Carvalho et al. 2012). iii) The
landmark algorithmic unfairness COMPAS dataset to predict
recidivism from Broward County (Angwin et al. 2016). iv)
The KKBOX dataset from the WSDM-KKBox’s Churn Pre-
diction Challenge (Kvamme, Borgan, and Scheel 2019) to
study users’ risk scores of canceling their subscription from
KKBOX. Table 1 is a summary description of them. Note
that survival time and censoring information are explicitly
included in our study to specifically account for censorship.

Comparison Methods
We compare FSRF against five baselines to evaluate its the-
oretical design: i) two recent proposed fair survival mod-
els IDCPH and GDCPH (Keya et al. 2020), which are the
most competitive approaches among several variants pro-
posed therein, and are the only works for fair survival anal-
ysis problem to the best of our knowledge, ii) along with
the baseline therein, the most commonly used survival anal-
ysis tool CPH (Cox 1972), iii) the state of the art random

forests based non-linear survival model RSF (Ishwaran et al.
2008), and iv) the most recent deep model on survival anal-
ysis DeepSurv (Katzman et al. 2018). We do not compare
with other fairness baselines due to their inapplicability in
the presence of censorship.

Performance Comparison
Due to the presence of censoring in the data, the stan-
dard evaluation metrics of AI fairness such as accuracy and
statistical parity are not suitable for measuring the perfor-
mance in AI fairness with censorship (Verma and Rubin
2018). Instead, in addition to the previously tailored fair-
ness measures considering censorship, the typical survival
accuracy metrics, including the C-index, Brier score and
Time-dependent AUC, are utilized to evaluate the predic-
tive performance of our model and other baselines. The C-
index (Harrell et al. 1982) evaluates a model’s discrimination
power in terms of correct pairwise ordering, and is a gener-
alization of the area under ROC curve (AUC) in the pres-
ence of censorship. The Brier score (Brier and Allen 1951)
is roughly the mean squared difference of the probability es-
timations assigned to possible outcomes and the actual out-
come. Different from C-index, the lower the Brier score the
merrier. Finally, the Time-dependent AUC (Chambless and
Diao 2006) tests how well a model can distinguish individu-
als who experienced the event of interest from those have not
prior to or at time t, and thus the model with a higher Time-
dependent AUC score is desired. Table 2 provides detailed
5-fold cross validation results of all methods on various lon-
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Datasets
C-index%

discriminated
C-index%
privileged

Brier Score%
discriminated

Brier Score%
privileged

Time-dependent%
AUC discriminated

Time-dependent %
AUC privileged

FSRF- FSRF FSRF- FSRF FSRF- FSRF FSRF- FSRF FSRF- FSRF FSRF- FSRF

SUPPORT 60.05 69.64 80.16 78.85 25.54 17.65 8.87 10.14 73.45 79.67 87.52 85.92
ROSSI 57.71 63.78 74.24 72.7 21.03 16.36 9.87 10.22 69.98 73.77 84.87 82.21

COMPAS 54.82 68.88 80.14 78.51 18.76 16.71 7.66 11.67 62.81 65.65 77.62 75.31
KKBOX 64.53 70.22 85.67 84.64 18.87 14.97 7.16 9.12 72.31 78.03 85.87 84.52

Table 3: Prediction performance confusion matrix for FSRF.

gitudinal biased data with censorship.

(a) SUPPORT (b) ROSSI

(c) COMPAS (d) KKBOX

Figure 1: The fair calibration plots of the discriminated com-
munity. The color and height of the bar represent different
methods and corresponding probabilities. The true probabil-
ity observed by KM is marked in red while FSRF’s is in
dark.

The results in Table 2 show that the proposed model wins
almost every metric across all of the datasets. This demon-
strates that our proposed method has a superior debiasing
capability while maintaining competence in predictive per-
formance in the presence of censorship. Specifically, our
new FSRF dominates all other methods when diminishing
discrimination with censorship. This result is especially im-
portant when we contrast to other fair models proposed for
censoring settings, which verifies the necessity of includ-
ing survival information and survival time to mitigate bias
with censorship as well as the drawback of involving task-
specific similarity metric. In addition, our model, on all
datasets tested, does not suffer from performance instabil-
ity as other methods do, indicating FSRF is a more robust
approach to building fair model with censorship. In terms

of prediction performance, FSRF outperforms other models
on almost all metrics in all of the datasets. This reflects that
FSRF is able to handle and utilize both censored and uncen-
sored instances when building fair model with censorship.
What’s more, FSRF, in contrast to other fair survival base-
lines, performs no parameter tuning, thus benefiting end user
with simplicity while making fair decisions in the presence
of censorship.

From Table 2 we also note that our fairness regularizer
is able to actually improve predictive performance. To have
a better understanding of this phenomena, we further ana-
lyze the predictive performance confusion matrix of FSRF,
according to the sensitive attribute that defines the discrimi-
nated community and privileged community as well as with
and without our fairness constraints, represented by FSRF
and FSRF-. Table 3 summarizes the results. As one can see,
improvement on the characterization of discriminated com-
munity is indeed achieved by including fairness attention in
our method. What’s more, the improved overall prediction
performance also demonstrates the potential additional re-
wards of the debiasing design of FSRF.

Table 2 additionally shows the risk prediction of FSRF is
fairly calibrated as each demographic group’s p-value passes
its significance test, suggesting FSRF’s predicted probabil-
ities are representative of corresponding community’s true
probabilities. To see the full picture behind the unrankable p-
values, Figure 1 graphs the predicted probabilities by FSRF
in comparison to the true probabilities observed by KM (fair
calibration plots of privileged community are omitted due to
space constraints). In the visualization, the heights of dark
bars are always close to the red bars’ while bars in other col-
ors do not follow this pattern which conclusively match with
the results of fair calibration, suggesting FSRF is indeed an
effective fair risk predictor.

Conclusion
Despite the increasing attention on AI fairness, existing
studies have mainly focused on no censorship settings. This
paper tackles fairness with censorship which is particu-
larly prevalent in many real-world socially sensitive appli-
cations. To accomplish this objective, we devised general-
ized censored-specific fairness notions to quantify unfair-
ness along with a unified debiasing algorithm to mitigate
discrimination in the presence of censorship. The results on
real biased datasets with censorship show our propose tech-
niques are versatile in censoring settings. This work studies
a new research problem and opens possibilities for future
work on AI fairness with a broader applicability to practical
scenarios concerning fairness.
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