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Abstract

Many present and future problems associated with artificial
intelligence are not due to its limitations, but to our poor as-
sessment of its behaviour. Current evaluation practices pro-
duce aggregated performance metrics that lack detail and
quantified uncertainty about the following question: how will
an AI system, with a particular profile π, behave for a new
problem, characterised by a particular situation µ? Instead
of just aggregating test results, we can use machine learning
methods to fully capitalise on this evaluation information. In
this paper, we introduce the concept of an assessor model,
R̂(r|π, µ), a conditional probability estimator trained on test
data. We discuss how these assessors can be built by using
information of the full system-problem space and illustrate a
broad range of applications that derive from varied inferences
and aggregations from R̂. Building good assessor models will
change the predictive and explanatory power of AI evaluation
and will lead to new research directions for building and using
them. We propose accompanying every deployed AI system
with its own assessor.

Introduction
We will argue that the primal goal of AI evaluation is to
predict the performance of an AI system π on a new prob-
lem situation µ. Since an evaluation function R(π, µ) can be
stochastic, its results r are measurements that follow a con-
ditional distribution R(r|π, µ). These measurements are as-
sembled from the evaluation of π (i.e., the test set), but they
can also serve as training data for a conditional probability
(or density) estimator,

R̂(r|π, µ) ≈ Pr(R(π, µ) = r).

Dubbed an “assessor model”, this estimator predicts distri-
butions for r given specific values or hypothesised distribu-
tions for π and µ. Its estimates are used to assess the system
before any inference or action takes place.

A reliable estimation of an AI system’s degree of suc-
cess is an essential element for trust and safety. This esti-
mate serves as an interpretive tool for humans, or as part
of a higher-level automated system. For instance, given an
autonomous delivery service we can use an assessor R̂ to
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Figure 1: An illustrative example of a delivery robot strug-
gling more in certain destinations than others (e.g., the city
centre). By knowing the (x, y) coordinates of the delivery,
we can assess in advance whether it is worth deploying the
system or not. Other example features making up µ could
be weather conditions or package size, while features of the
system profile π could be battery level or the exploration
criterion. The success or result r is then conditioned on
these features and, given a value for all of them, an asses-
sor will estimate a probability of success Pr(R(π, µ) = 1).
We could give distributions or fix values for some features
and see the probability map for the rest (x and y in the plot).

anticipate whether a particular robot π is likely to succeed
for a particular delivery µ, as shown in Fig. 1.

This already alleviates key issues in evaluation. First, ag-
gregate performance estimates (e.g., robots are 73.2% suc-
cessful overall) fail to capture that some situations might
just be easier than others. Second, aggregate metrics are not
representative when any form of distribution shift or out-of-
distribution (OOD) data is present (Quiñonero-Candela et al.
2009; Arjovsky 2020), an increasingly more common prob-
lem as systems and tasks become more general (Csordás,
Irie, and Schmidhuber 2021; Chen et al. 2020; Hsu et al.
2020; Mohseni et al. 2020; Bevandić et al. 2018; Hendrycks,
Mazeika, and Dietterich 2018; Lee et al. 2018). In contrast,
the surface in Fig. 1 is given by a model that can interpolate
in new areas. Finally, there is much lacking on the explain-
ability front as well; we would like to know where a system
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might fail (city centre in the example) leading to possibly
also knowing why (Bhatt et al. 2021).

The bottom line is that aggregate metrics underuse evalu-
ation data, which instead should be employed to train power-
ful models of AI system behaviour. Assessor models do just
that. Additionally, to fully explore the system-problem space
more generally, they should meet the desiderata in Table 1:

Anticipative
It is essential that an assessor is able to predict
performance before a system is dispatched, even
in areas it has never been used.

Standalone
An assessor must work independently from the
original system, not requiring access to the sys-
tem or its outputs.

Granular
An assessor must predict at instance granular-
ity, and reflect that some situations are easier
than others.

Behavioural
An assessor must learn representations of the
emergent behaviour of the system, without ac-
cess to system internals (black box approach).

Distributional
An assessor’s predictive power will come from
populations of (related) systems, but also aggre-
gating estimates conditioned to distributions.

Table 1: Desiderata for assessor models.

For all the desiderata above, it is crucial that π and µ
have properties, i.e., they are tuples π = ⟨θ1, θ2, ..., θi⟩
and µ = ⟨χ1, χ2, ..., χj⟩. For instance in Fig. 1 we had
π = ⟨battery, exploration⟩ and µ = ⟨weather, package size,
destination x, destination y⟩. These can be anything that is
known about the system or problem; e.g., for π other prop-
erties could be deployment conditions, resources available,
state, system architecture, or hyperparameters, while for µ
they could be the original problem features, goals, or oper-
ating conditions (e.g., weather, instance weights).

How to Build an Assessor
While no technique today integrates all the desiderata in Ta-
ble 1, there are numerous areas that meet some of them, and
serve as inspiration and support to generalise from:
• Any model with probabilistic outputs (e.g., class prob-

abilities) is doing a sort of self-assessment with a fixed
profile π. Uncertainty estimators can get really sophisti-
cated (Malinin and Gales 2018; Gawlikowski et al. 2021;
Gal 2016; Clements et al. 2019; Corbière et al. 2019)
while calibration is more lightweight (Song et al. 2019).
They are usually neither anticipative nor standalone.

• AutoML (Hutter, Kotthoff, and Vanschoren 2019) strives
to find the features of π that would maximise an aggre-
gate R. Meta-learning focuses on model selection given
meta features at the level of datasets (Vanschoren 2018).
Both are not applied at the instance level (granular) and
are rarely used in a distributional way.

• Capability-oriented evaluation, machine theory of mind,
and machine behaviour explicitly target behaviour, but
these areas rarely put the emphasis on being anticipative
and distributional (Rahwan et al. 2019; Rabinowitz et al.

2018; Hernández-Orallo et al. 2016; Hernández-Orallo
2017a,b; Martı́nez-Plumed et al. 2019; Liao, Zhang, and
Chen 2021)

• With quantification and non-additive aggregation, fine-
grained predictions can be aggregated by different prop-
erties (like a hierarchical roll-up). Quantification has al-
ways been applied to the original system (Forman 2008;
Bella et al. 2010, 2014; González et al. 2017), but not to
a standalone assessor model.

• Item Response Theory estimates expected correct re-
sponse for pairs of subjects and items (Embretson and
Reise 2013; Martı́nez-Plumed et al. 2016; Martı́nez-
Plumed et al. 2019). Because it does not use any property
of systems or problems, it is not anticipative.

By filling the gaps and connecting the strong points between
these areas, we can provide a general tool to unlock the util-
ity of a more widely explored system-problem space. We
emphasise this space by considering the data that is used
to train an assessor model: a set of empirical measurements
Ṙ = {r1, r2, ..., rn}, each with its associated system πi from
a population Π and associated instance µj from a problem
class M . An assessor must thus learn from examples of the
form ⟨πi, µj , rk⟩, belonging to an evaluation dataset E. To-
day, because of the existence of benchmarks, competitions
and AutoML scenarios, many problems have been addressed
by dozens or hundreds of approaches. Accordingly, evalua-
tion datasets should abound.

The global goal is to minimise the following error:∑
⟨π,µ⟩∈Π×M

D(R̂(·|π, µ), R(·|π, µ)), (1)

where, for a concrete π and µ, D computes a divergence or
loss between an assessor’s prediction (which is a distribu-
tion) and the true distribution. As we do not know R(·|π, µ),
in practice we must minimise the empirical error∑

⟨π,µ,r⟩∈E

S(R̂(·|π, µ), r) (2)

where S should be a strictly proper scoring rule.
The construction, interpretation and evaluation of an as-

sessor depends on the output space of the evaluation func-
tion. Let us consider the simplest case first, where the evalu-
ation function is binary, i.e., R(π, µ) ∈ {0, 1}. This happens
in problems where there is correct or incorrect output, or a
goal that might either be met or not (e.g., classification, theo-
rem proving, etc.). Then, given π and µ, the true distribution
R(·|π, µ) would be Bernoulli, defined by a single probability
p. For instance, in our delivery example (Fig. 1), a robot π
for an instance µ has a 87.2% probability of success. In this
case, R̂(·|π, µ) is a conditional probability function that will
return a probability p̂, which we would like to compare to the
true p with a simple D such as cross-entropy or squared loss.
However, as we do not know p, we would use Eq. 2, with S
being empirical counterparts: logloss or the Brier score.

The case is more complex when R(π, µ) ∈ R, since the
true distribution R(·|π, µ) can take the form of any contin-
uous distribution. An assessor model will be a conditional
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density function. We can build a parametric assessor model
that assumes that this distribution is Gaussian. Accordingly,
this assessor will return two values, a mean m and the vari-
ance s2 for each pair π, µ. Again, instead of calculating the
divergence to the true distribution, we use the empirical dis-
tribution, as per Eq. 2. Here, for S we could use the log like-
lihood, or some transformation, such as (1 + R̂(r|π, µ))−1

(Hernandez-Orallo 2014).
Assessors are trained from data using some S as loss func-

tion, and they may encounter the same issues as any predic-
tive model, including overfitting, calibration and OOD prob-
lems. However, we hope the corresponding challenges will
be less prominent due to a few reasons: (i) Assessors can
take advantage of patterns exclusive to the evaluation space,
and the output is less specific. For instance, assessing the
success of a system on a blurry image seems easier than
choosing one class among twenty. (ii) From an operational
perspective it is easier to focus on calibrating these models
well, as outputting an accurate distribution is their main util-
ity, not only an afterthought. (iii) They can also specialise
on the problem, as separate branches or heads of a neural
network can do (Voss et al. 2021; Corbière et al. 2019). (iv)
Finally, in many situations we have more features and data
than for the original problem, especially when data is avail-
able from competitions or AutoML sessions.

In order to illustrate how assessor models can be built, we
choose a very simple example with the classification prob-
lem segment (Brodley 1990), containing 2310 outdoor im-
ages, with 19 attributes each and a class indicating 7 possible
types of images. A measurement R(π, µ) = 1 if the classifi-
cation is correct, and 0 otherwise. Through cross-validation,
we train a population Π of four neural networks {π1, ..., π4}
with identical architecture and hyperparameters: one dense
hidden layer with size 10 and ReLu activation, softmax ac-
tivation for the output layer, trained for 15 epochs. We con-
struct a combined evaluation dataset Ṙ from the cross val-
idation test folds (4 × 25%), which we split 75%-25% for
training and testing the assessor. The assessor architecture
is identical to the systems in the population, but it has the
id θ ∈ {1, ..., 4} of the system as an extra input feature and
only a single output representing the estimated probability
of success, i.e. R̂(1|θ, µ). We also set higher weights for in-
stances with θ = 1, to specialise the assessor for π1. Fig. 2
reports the aggregated performance (actual and estimated as
a quantification task). The Brier Score for R̂ and π1 against
the overlapping part of Ṙ is 0.086 and 0.085 respectively,
where a constant baseline always estimating the average ac-
curacy would score 0.124.

Using Assessor Models
Once R̂ is built and shown to be an accurate estimator, we
can use it to make varied inferences. In Fig. 2 we show an
aggregation over instances, but we can just as well use the
assessor with a fixed example and average on a distribution
of models. For instance, for µ82 we get Eπ∈ΠR̂(0|π, µ82) =
0.29, while µ1015 gets 0.89, meaning the former is more dif-
ficult for the population Π according to the assessor.

Figure 2: Aggregated estimated results for an assessor model
built on the results of four neural networks π1, ..., π4 trained
on the segment dataset. We show the original accuracy of
system π1, i.e., the average of R(π1, µ), compared to its
self-predicted accuracy, i.e., the average of maxπ1(µ) with
π1 returning a vector with the predicted probabilities of all
classes, and the accuracy predicted by the assessor as the av-
erage of R̂(1|π1, µ).

In general, the explanatory and predictive power of an
assessor paves the way for a range of applications, some
partially covered by more specific solutions, but some com-
pletely new. Let us briefly describe some of them:

Predicting instance performance The first use of an as-
sessor is its application to our opening question: how π is
going to behave for µ. For a binary evaluation function, an
assessor is a conditional probability estimator, and trained to
predict the probability of success for each instance, R̂(r =
1|π, µ), since the probability of failure is simply 1 − r. For
continuous evaluation functions, an assessor is a conditional
density function, and we should ask slightly different ques-
tions; for instance, what is the probability that r ≤ ra, or
what is the probability that r ∈ [ra, rb]? If an assessor is
parametric, e.g., assuming a normal distribution, then these
questions are trivial from the mean and variance returned by
an assessor for each pair of π and µ. Equally straightforward
is the calculation of confidence intervals.

Predicting populational performance Assessors can
range between any extreme of aggregation: measuring a sys-
tem’s average performance R̂(1|π, ·), which is the common
practice in AI evaluation, or measuring an instance’s fail-
ure rate R̂(0|·, µ) (i.e., its difficulty). We can estimate at any
level of aggregation and for any distribution. For instance,
in Fig. 1, we can estimate the distribution of results when
x ∼ N (400, 10) and y ∼ U(180, 120). If an assessor is
well calibrated at the granular level, these aggregations will
work well, as we have seen in Fig. 2. However, if an assessor
is not well calibrated we may need quantification methods.
Selections can also be used for different purposes, to cover
dataset shift or specific operating conditions.

Assessors for selecting and combining systems For each
new situation, an assessor can be used to make a selection of
the system best fit for the job. For instance, given two robots,
we can estimate their expected success when µ ∼ F , with
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F being a new distribution. Or in supervised problems, an
assessor could be used to give weights to models in an en-
semble (Dietterich 2000; Zhou 2019). Unlike many of these
approaches, we do not need to run the systems to have their
weights. An assessor works standalone, like a conditional
computation method where (parts of) systems are also se-
lected in advance (Shazeer et al. 2016; Cheng et al. 2020;
Zhang, Chen, and Zhong 2021).

Assessors for anomaly and perturbation detection In
other cases, it is interesting to run the system and see how
its results Ṙ compare with what R̂ predicted. For instance, a
system failing on a batch of instances while R̂ predicted dif-
ferently might be a sign that something strange is happening.
This could be an adversarial attack or any other applied dis-
tortion which is modifying the original instances (e.g., us-
ing different degrees of blur, including adversarial patches
or watermarks, adding errors in the direction of the gradi-
ent, etc.). Note that adversarial attacks may have little effect
on R̂, even though the system fails for the given instance.
The adversarial attack usually targets the latent features and
gradients of the system, but it is not (yet) designed to fool
an assessor. Assessors are also useful to understand pockets
of instances for which the model works suspiciously well,
such as Clever Hans phenomena (Lapuschkin et al. 2019;
Hernández-Orallo 2019).

Assessors for explaining failures or fixing them When
a system fails, an assessor can be used to identify the fea-
tures of µ or even of π that likely caused the system to fail.
An assessor can be interrogated to determine variations of
the properties of π that predict higher results. Also, we can
think of small variations of µ that could lead to success (e.g.,
µ cannot be solved with π but slightly similar µ′ or π′ would
work). Asking questions about these properties as counter-
factuals could give very useful information to explain when
a system fails, and explore solutions. Actually, XAI meth-
ods, such as LIME and many others (Molnar 2020), could
be applied to an assessor rather than the original model.

Assessors for AutoML and adaptive sampling A special
case of the above is when we search for the best proper-
ties of π for a given population of instances. For instance,
in AutoML (Hutter, Kotthoff, and Vanschoren 2019), when
looking for optimal hyperparameters, the search algorithm
can interrogate an assessor as a heuristic rather than running
all possibly experiments. Questioning an assessor is much
cheaper than training and evaluating a new model. Unlike
meta-learning (Vanschoren 2018), AutoML and related ap-
proaches, an assessor is granular (level of instance rather
than dataset). This implies that it could determine those in-
stances with more variance for different hyperparameters,
and concentrate the actual search on them. In other words,
assessors can be used for adaptive sampling (Shekhar, Ja-
vidi, and Ghavamzadeh 2020) but also for active learning
(Settles 2009, 2011; Chakraborty 2020): the most informa-
tive instances are those for which an assessor is less certain,
i.e., the output distribution has a high variance.

Infer fairness metrics for different distributions Many
fairness metrics compare results when conditioned to val-
ues of a protected attribute. For instance, overall accuracy
equality (Verma and Rubin 2018) can be derived from an as-
sessor model by conditioning on the protected attribute and
seeing whether the distributions on r change. Using an as-
sessor rather than the data has the advantage that we could
try to explain why the model is unfair using XAI techniques
on an assessor, e.g., why is this face recognition system
worse for this group than for any other group?

Maintenance and revision Any AI system will be subject
to changes and monitoring (Sculley et al. 2015; Hernández-
Orallo et al. 2016). If these changes can be expressed as
properties that change a profile π into π′, then an assessor
could be retrained to this evolution of the system. Cover-
ing this change of systems may lead to much more robust
estimates than when using an uncertainty or confidence es-
timator that needs to be created from scratch for each new
revision of the system. It can also highlight the properties
responsible for the increase or decrease in performance.

Auditing and certification Intellectual property concerns
do not always allow disclosing the inner workings of an AI
system. This is problematic regarding transparency and ex-
ternal auditing of the system, and similarly for estimating
performance or explaining results during deployment. When
it is not possible to share details or run the system (IP issues,
compute or hardware costs, etc.), at least an adequate asso-
ciated assessor model should be shared; one that should be
fully open and auditable. Actually, not being able to provide
a good assessor for an AI system telling the operating con-
ditions where it succeeds and fails could be a reason to deny
the authorisation to release a system (Brundage et al. 2020;
Falco et al. 2021). This holds even more so in safety critical
domains such as medicine or the automotive.

The Road Ahead
We have argued that the primal goal of AI evaluation is to
predict system performance on unseen problems. We have
illustrated how assessors can be built and used to explore
the system-problem space, but the full potential of learning
behavioural models from evaluation data is currently unen-
gaged. We must analyse, sooner rather than later, the trade-
off between the performance of a system and its predictabil-
ity, similar to how it is done in XAI. As a general formula-
tion, assessors are the ideal framework to do so. They come
with operating conditions, uncertainty, and population infor-
mation naturally included. Safety analysis can be done with
an assessor as both reference and as object, and explainabil-
ity techniques get a new microscope to find where and why
things go wrong. Having every deployed AI system backed
by and accounted for with its assessor model will enhance
transparency, auditing, and system selection.

In all, the research directions and opportunities are plenty,
since the problems they could solve are plenty as well, and
these problems already exist today. We therefore hope asses-
sor models will become an active research area in the years
to come, as staple companions of every deployed AI system.
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INNEST/2021/317 (Neurocalçat) and by the Vic. Inv. of the
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