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Abstract

Conceptual representations of meaning have long been the
general focus of Artificial Intelligence (AI) towards the fun-
damental goal of machine understanding, with innumerable
efforts made in Knowledge Representation, Speech and Nat-
ural Language Processing, Computer Vision, inter alia. Even
today, at the core of Natural Language Understanding lies the
task of Semantic Parsing, the objective of which is to con-
vert natural sentences into machine-readable representations.
Through this paper, we aim to revamp the historical dream
of AI, by putting forward a novel, all-embracing, fully se-
mantic meaning representation, that goes beyond the many
existing formalisms. Indeed, we tackle their key limits by
fully abstracting text into meaning and introducing language-
independent concepts and semantic relations, in order to ob-
tain an interlingual representation. Our proposal aims to
overcome the language barrier, and connect not only texts
across languages, but also images, videos, speech and sound,
and logical formulas, across many fields of AI.

Introduction
Enabling a machine to automatically process and interpret
text and then communicate a response verbally is one of the
key goals of Natural Language Processing (NLP) and a long-
standing dream of AI (Turing 1950). However, although
thanks to the emergence of large language models (Devlin
et al. 2019) significant advances can be today observed for
language comprehension tasks, it has been pointed out that
machines do not learn meaning from form alone (Bender
and Koller 2020; Bender et al. 2021). Indeed, in order to per-
form Natural Language Understanding (NLU), i.e., to enable
computers to make sense of language and comprehend text,
we need to transform text in any language into an explicit se-
mantic representation (Navigli 2018), a popular task called
semantic parsing. The representations produced by a seman-
tic parsing system can then act as an interface between hu-
mans and machines, thanks to their being human-intelligible
(in contrast to latent vector representations) and at the same
time also ready to be further processed automatically. Differ-
ent language formalisms – based on diverse linguistic theo-
ries – have been proposed over the years, namely, Discourse
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Figure 1: The AMR graph for the English text “The stu-
dent’s mouse is on top of the external hard drive”.

Representation Theory (Kamp and Reyle 1993, DRT), Ele-
mentary Dependency Structures (Oepen and Lønning 2006,
EDS), Prague Tectogrammatical Graphs (Hajič et al. 2012,
PTG), Universal Conceptual Cognitive Annotation (Abend
and Rappoport 2013, UCCA), Abstract Meaning Represen-
tation (Banarescu et al. 2013, AMR), Universal Decompo-
sitional Semantics (White et al. 2016, UDS) and, more re-
cently, an extension of AMR called Universal Meaning Rep-
resentation (Gysel et al. 2021, UMR). In fact, AMR has be-
come one of the most popular formalisms for encoding text
into semantic structures (Bevilacqua, Blloshmi, and Navigli
2021), and it has several promising applications in Machine
Translation (Song et al. 2019), Text Summarization (Hardy
and Vlachos 2018; Liao, Lebanoff, and Liu 2018), Human-
Robot Interaction (Bonial et al. 2020a), Information Extrac-
tion (Rao et al. 2017) and Question Answering (Lim et al.
2020; Bonial et al. 2020b; Kapanipathi et al. 2021), to name
just a few. We focus here on AMR and discuss other for-
malisms below, in the Related Work section.

AMR is modeled as a labeled graph where nodes are con-
cepts and edges are semantic relations between them. An
example of an AMR graph is shown in Fig. 1. Even though
AMR was designed for English sentence representation and
is not an interlingua (Banarescu et al. 2013), a lot of re-
search has been done on adapting this formalism for other
languages, due to the rich amount of information it encodes
(Xue et al. 2014; Damonte and Cohen 2018; Zhu, Li, and
Chiticariu 2019; Gysel et al. 2021). Nevertheless, there are
several challenges that prevent AMR from being a fully se-
mantic formalism, making it inadequate to act as an interlin-
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gua. First, AMR draws its concepts from the English lexicon
(e.g., mouse, top, drive, external in Fig. 1), and the PropBank
verbal framesets (Palmer, Gildea, and Kingsbury 2005) (e.g.,
study.01, hard.04), from which it also takes the core predi-
cate argument roles (e.g., :ARG1, :ARG2). Unfortunately,
PropBank is based on the English language, and even where
similar predicate inventories in other languages exist, they
rely on language-specific rules and theories. Moreover, the
usage of a lexicon means that AMR cannot be fully seman-
tic, since words are not only ambiguous but also language-
specific. Finally, the encoding guidelines for additional rela-
tions and concepts within AMR make it difficult to transfer
this formalism cross-lingually.

BabelNet Meaning Representation
We put forward the idea that, to get closer to solving the
puzzle of NLU – which we insist should not revolve mainly
around the English language – we need a fully semantic
language-independent representation. Such a representation
would be useful i) at a practical modeling level, since it
would provide a unified representation for text in all lan-
guages instead of multiple language-specific ones, and, ii)
at the wider application level, e.g., as the long-sought in-
terlingual representation in Machine Translation (Richens
1958). Importantly, a language-independent meaning rep-
resentation would also abstract away from the communica-
tion medium and could be used i) to represent not only the
content of text, but also images, videos, speech, sound, etc.,
and ii) to connect pieces of information of different modal-
ities, thereby enhancing the intelligibility and interpretabil-
ity of AI systems. In this paper we argue that, given the re-
cent availability of large multilingual resources, this long-
standing dream can now be realized and we propose the Ba-
belNet Meaning Representation (BMR).

BMR Ingredients
To achieve the goal of a language-independent representa-
tion we rely on two main lexical-semantic inventories:

1. The BabelNet inventory of concepts to use as fully se-
mantic nodes of the graph representations. BabelNet
(Navigli and Ponzetto 2010; Navigli et al. 2021) is a mul-
tilingual encyclopedic dictionary and semantic network
that organizes word meanings into multilingual synsets,
i.e., sets of synonymous lexicalizations in 500 languages.
It integrates heterogeneous sources of knowledge such
as Wikipedia and WordNet (Miller 1994), which makes
it attractive for large-scale applications and tasks across
domains and languages.1

2. VerbAtlas (Di Fabio, Conia, and Navigli 2019) to ob-
tain cross-lingual verbal frames for the predicate nodes,
and cross-frame argument roles to be used as seman-
tic relations in the graph. VerbAtlas is a hand-crafted
lexical-semantic inventory of predicates and argument

1We are aware of the limitations of BabelNet regarding the
supported languages, which does not allow full language indepen-
dence. However, it is the largest multilingual semantic resource to
date, hence we consider it a good starting point towards our goal.

structures, organized into frames which cluster verbal
concepts2 into semantically-coherent frames and cross-
frame human-readable relations (e.g., AGENT, LOCA-
TION, BENEFICIARY, etc.), as opposed to PropBank
used in AMR, which is language-specific and defines
enumerative roles (e.g., ARG0, ARG1, etc.).

From AMR to BMR
BMR has a similar structure to that of AMR, in that it is
modeled as a directed labeled graph, where concepts are
connected by semantic relations. However, BMR brings lan-
guage independence in three steps, which we describe here-
after.

Concepts. We replace lexical, language-specific symbols
(i.e., words) with fully semantic symbols (i.e., concepts)
as nodes of the graph representation. To do this, we re-
place AMR verbal predicates, which are based on the
English PropBank (or other language-specific inventories),
with language-independent VerbAtlas frames. For all other
nodes, instead of using words as is done in AMR, we use
BabelNet synsets as nodes in BMR graphs. This can be
achieved by leveraging state-of-the-art multilingual Word
Sense Disambiguation (WSD) systems which, given an in-
put text, associate WordNet and BabelNet synsets with its
content words. Thanks to recent neural architectures, today
this step can be carried out with performances in the range of
80-85% in many languages (Pasini, Raganato, and Navigli
2021; Bevilacqua et al. 2021). In a similar manner, named
entity nodes can be associated with synsets thanks to the
high-accuracy Entity Linking systems (De Cao et al. 2021).

Semantic relations. As a result of replacing AMR pred-
icates with VerbAtlas frames, as explained in the first
step, we can straightforwardly move from resource- and
language-specific lexical-semantic relations to cross-frame
and language-independent semantic relations.

Multiword and idiomatic expressions. In AMR, mul-
tiword and idiomatic expressions (e.g. bus driver or miss
the boat, respectively) are typically represented compo-
sitionally. However, this hampers language independence
in that different languages will have different subgraphs.
Therefore, we replace such subgraphs with simpler, non-
compositional meaning representations from BabelNet
whenever these are available, or compose their underlying
meaning otherwise.

The above three steps are aimed at obtaining a truly se-
mantic representation, where nodes are fully symbolic con-
cepts bound to a multilingual knowledge base, and edges are
semantic relations that hold true across languages. Here we
do not have room to discuss further aspects like temporal
information and plurality, which are taken into account by
UMR (see Related Work section). We just note that nothing
prevents these notions from being incorporated into BMR
as well.

2Although VerbAtlas is built starting from the English Word-
Net, its frames include multilingual synsets from BabelNet due to
inter-resource mapping, and are therefore language-independent.

12275



Figure 2: Equivalent sentences in different languages (left) and their BMR graph (right) with multiple possible lexicalizations.
STAY-DWELL is the VerbAtlas frame that includes the verb to be, while bn:[. . .] denotes a synset identifier in BabelNet.

Figure 3: The AMR graph for the Spanish text “El ratón del
estudiante está en la parte superior del disco duro pórtatil”.

Creating a training corpus. Given an input text, ex-
isting semantic parsers produce a representation in AMR
or another formalism. Such systems typically employ
Transformer-based models (Bevilacqua, Blloshmi, and Nav-
igli 2021; Procopio, Tripodi, and Navigli 2021), which re-
quire large training sets. To make the BMR idea realistic,
we put forward a procedure for creating a similar dataset for
BMR. We can start from the biggest AMR dataset3 com-
prising 59,255 English sentences from different sources an-
notated with their respective AMR graphs.4 We then pro-
pose applying the above three-step procedure for moving
from AMR to BMR automatically to all the graphs of an
existing AMR bank. Some technical details include:

1. Identifying the node(s) associated with a disambiguated
word or multiword, which can be addressed by mak-
ing use of the AMR word-to-node alignments (Flanigan
et al. 2014) to propagate synsets into the graph.

2. The integration of VerbAtlas frames into AMR can be
obtained by replacing PropBank framesets with their cor-
responding VerbAtlas frames by exploiting the mappings
made available by Di Fabio, Conia, and Navigli (2019).

3AMR 3.0: https://catalog.ldc.upenn.edu/LDC2020T02
4While BMR might seemingly be more difficult to learn than

an AMR graph, thus requiring more training data, we leave this
assumption to be investigated by future empirical studies.

BMR by Example
Here we illustrate, using the example in Fig. 2, how BMR
compares to AMR in representing sentences with a fully-
semantic language-independent structure.

Concepts. Consider the AMR graph in Fig. 1. While a hu-
man can easily choose computer device as the most likely
meaning of mouse in this graph – due to the co-occurrence
with external hard drive – using an ambiguous word in the
graph leaves open the less likely possibility that an animal is
on the drive. Since BMR uses synsets as nodes, instead, this
is no longer an issue: in the BMR graph, mouse is explic-
itly represented as a computer device and, even more impor-
tantly, it is represented with the same synset in any language.
Similarly, the explicit semantics of the other nodes in BMR
is maintained across languages, as shown in Fig. 2.

Semantic relations. As mentioned earlier, the semantic
relations which connect parts of an AMR graph are provided
by the English PropBank. There have been several attempts
to annotate non-English sentences with structures similar
to AMR using language-specific PropBank-like ontologies,
such as AncoraNet in Spanish (Aparicio, Taulé, and Martı́
2008) and Chinese PropBank (Xue and Palmer 2009). An
example of the Spanish translation for the example in Fig.
1 is shown in Fig. 3.5 In addition to the inherent differences
in concept nodes due mainly to different lexicons of the two
languages, we also observe two main differences due to the
usage of different predicate inventories: i) some frames in-
cluded in one are not found in the other, e.g., hard.04 ver-
sus duro, be-located-at.91 versus estar.c1, ii) semantic rela-
tions are differently expressed or no longer apply due to the
missing frames, e.g., ARG1-of versus :mod for the nodes
hard.04 and duro, respectively. Moreover, PropBank-like ar-
guments are both predicate-specific and language-specific,
leading to different representations across languages. These
differences are overcome by BMR which represents the

5We notice that no predefined rules exist on how to apply AMR
in Spanish, we therefore try to achieve a structure that is compara-
ble to that of English AMR in Fig. 1.
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Spanish sentence using the same graph as its parallel trans-
lations in other languages (see Fig. 2).

Multiword and idiomatic expressions. Idioms and mul-
tiword expressions are poorly represented in AMR, which
assumes their meaning can be broken down literally accord-
ing to their constituents, e.g., external hard drive in Fig. 1
represented with three nodes. In BMR instead, thanks to Ba-
belNet’s coverage of multiword expressions, we can assign a
single node to the whole term (see Fig. 2). Most importantly,
the same synset is defined semantically across different lan-
guages. The situation is even worse when we consider id-
ioms (e.g. miss the boat), where a representation would not
be produced in terms of its components, as its overall mean-
ing is not deducible from those of the individual words.

Miscellanea. AMR maximizes the usage of PropBank
frames, whenever possible, ignoring the morphological cate-
gory of words. In Fig. 1, a student is represented as a person
who studies. First, this is not entirely equivalent semanti-
cally, as not every person who studies is a student. In addi-
tion, these language-specific rules do not apply across lan-
guages. In contrast, BMR uses BabelNet synsets to abstract
all translations as shown in Fig. 2, reducing graph complex-
ity and being equally applicable across languages.

Related Work
While most of the formalisms focus on English, more re-
cently various attempts have been made towards formally
representing non-English text. Abend and Rappoport (2013)
proposed UCCA as a cross-lingual annotation which con-
nects words in a sentence using semantic relations that are
not language-specific. However, UCCA does not represent
the meaning of individual words explicitly and the semantic
relations are highly coarse-grained, thus it is not suitable as
a fully-semantic language-independent representation. PTG
(Hajič et al. 2012) is another formalism that enriches syntac-
tic structures with the core predicate-argument relations of a
sentence. Similarly to AMR, it relies on PropBank-like in-
ventories to represent sentences, thus it is inapplicable when
such an inventory does not exist. More recently, Abzianidze
et al. (2017, PMB) proposed a parallel meaning bank based
on the DRT formalism, i.e., a formal logic meaning repre-
sentation which includes syntactic and semantic annotations
of text. PMB obtains non-English sentence representations
by automatically projecting through English using word
alignments. Its dependency on English, however, means its
representation cannot be truly language-independent. Re-
garding AMR instead, several works attempted to adjust it
for cross-lingual applicability. Xue et al. (2014) analyzed
the suitability of AMR as an interlingua by annotating non-
English sentences with language-specific inventories, while
others (Damonte and Cohen 2018; Blloshmi, Tripodi, and
Navigli 2020) projected English-centric AMR as a repre-
sentation for parallel sentences in multiple languages. These
works pointed out the limitations of AMR as an interlin-
gua. Recently, Zhu, Li, and Chiticariu (2019) and Gysel et al.
(2021) worked at the formalism level; the former suggested
simplifying AMR so as to express only predicate roles and
linguistic relations in a sentence, in order to be able to apply

it across languages. In marked contrast, the latter designed
UMR, an extension of AMR which i) adds aspect and scope,
ii) includes document-level temporal and modal dependen-
cies, and iii) adapts AMR to a cross-lingual formalism al-
lowing language-specific distinctions with extra relations.
Nevertheless, none of these enhancements put forward an
interlingual representation. Indeed, this is the goal of BMR,
which fully abstracts away from form by using concepts and
semantic relations that are shared cross-lingually.

Scope of BMR
We believe that BMR has the potential to unify the data and
knowledge processed in many key areas of AI, including:

Machine Translation (MT). An immediate example is
that of interlingual MT (Richens 1958), which casts the task
into two subsequent parts: parsing text into an interlingua,
and generating text from it. The key advantage brought by
BMR is to drop the current requirement of bilingual corpora
which particularly affects low-resource languages.

Question Answering (QA). Intermediate symbolic repre-
sentations can be a useful means in QA for achieving better
question comprehension and then retrieval of facts from a
knowledge base, which in their turn further enable an inter-
pretable, cross-lingual form of QA (Kapanipathi et al. 2021).

Dialogue. Humans wish to speak to computers, e.g., dig-
ital assistants, using the same language with which they
speak to each other. Indeed, an interlingua – which decou-
ples comprehension from generation – would ease the path
for human-computer interaction in any language, as the in-
tent of a user could be encoded in a language-independent,
but human-readable form.

Vision, Speech, and More. Besides language, humans in-
teract through information from diverse channels, includ-
ing visual, audial, and haptic feedback. Thanks to its full
abstraction to concepts, BMR aspires to achieving univer-
sality in representing all these channels of information, and
enabling interconnections across modalities, preparing the
ground towards e.g., multimodal conversational AI, a direc-
tion of growing interest (Yu 2020).

Knowledge Representation. Semantic representations,
and especially an interlingua, are at the core of the theo-
retical foundations of the knowledge representation prob-
lem (Davis, Shrobe, and Szolovits 1993). The grounding of
BMR in a large semantic network of interconnected knowl-
edge sources allows the elements of logical formulas to be
linked to explicit concepts which explain their meaning and
how such meanings are related, thus opening an important
direction towards Explainable AI (Lecue 2020).

Conclusions
We have presented BMR, a new formalism for a language-
independent representation of meaning. We hope that, once
implemented, it will provide the expected benefits and prove
its potential as a universal representation, not only in NLP
tasks, but also in several other areas of AI.
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