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1 UNSW Sydney
2 Centre for Economic and Regional Studies, Hungary

3 Corvinus University of Budapest
4 Kyushu University, Japan

haris.aziz@unsw.edu.au, peter.biro@krtk.hu, yokoo@inf.kyushu-u.ac.jp

Abstract

Two-sided matching is an important research area that has
had a major impact on the design of real-world matching
markets. One consistent feature in many of the real-world ap-
plications is that they impose new feasibility constraints that
lead to research challenges. We survey developments in the
field of two-sided matching with various constraints, includ-
ing those based on regions, diversity, multi-dimensional ca-
pacities, and matroids.

1 Introduction
Matching market design has provided a rich and fertile the-
ory for designing centralized mechanisms for the ubiqui-
tous issue of allocation. The research area has provided
a ground for cross-fertilization of ideas, tools, and meth-
ods from economics (social choice, mechanism design etc.),
computer science (theoretical computer science and artifi-
cial intelligence), mathematics (game theory and discrete
applied mathematics), and operations research (in particular
combinatorial optimization).

In matching markets, the central problem is to match
agents to institutions (such as schools or hospitals). In these
markets, not only do agents have preferences over insti-
tutions, but these institutions also have priorities over the
agents (Roth and Sotomayor 1992). The goal is to match the
agents to the institutions while keeping into consideration
the preference and priorities.

In this survey, we consider matching market design under
various constraints. In the seminal paper on this topic (Gale
and Shapley 1962), there was already a practical constraint
that was considered: the institutions had upper capacities on
how many agents they can accommodate. As the theory of
matching market design has developed, a consistent stream
of results has focused on general two-sided matching models
with various types of constraints (see, e.g., Kojima (2019)).
Some of their results are aimed at abstraction, unification
and generalization of existing methods for two-sided match-
ing. Many results, however, are directly motivated by con-
crete problems that lead to new feasibility or distributional
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constraints to a standard two-sided matching problem. For
example, there may be an upper bound on a set of urban
hospitals to ensure there are enough doctors matched to ru-
ral hospitals. Another example is putting a lower bound on
the number of underprivileged students at a university as an
affirmative action policy. We survey some of the recent re-
sults and trends on two-sided matching with constraints. We
cover both some of the active work in the economic theory
community as well as a growing body of work on the topic
within computer science.

2 Basic Model of Gale and Shapley
We first establish the base model of matching under pref-
erences. The two-sided matching model typically has a set
of agents N on one side and a set of institutions H on the
other. Depending on the application context, the agents are
students, doctors, or applicants. Similarly, depending on the
application context, the institutions are schools, hospitals,
or employers. The basic model has been referred to as the
College Admissions model (Gale and Shapley 1962) or the
Hospitals/Residents problem (Manlove 2013).

Each institution has an upper capacity on how many
agents can be matched to it. Each agent has a preference
relation over the institutions. Each institution has a priority
relation over the agents. These preference and priority rela-
tions are typically ordinal rankings.

An outcome of a two-sided matching problem is an allo-
cation or matching that matches each agent to either some
institution or keeps her unmatched. When matching agents
to institutions, it is natural to take the preferences and pri-
orities into account. How well this information is taken into
account is formalized through axioms that capture the desir-
ability of the matching or the algorithm that finds the match-
ing. Next, we discuss some of the most important axiomatic
properties.

A minimal efficiency concept is non-wastefulness that re-
quires that no agent i should prefer to be matched to an insti-
tution h that still has some vacant space. A widely-used fair-
ness concept is fairness (Kamada and Kojima 2022) (also
called justified envy-freeness (Abdulkadiroğlu and Sönmez
2003)) that requires that there should be no agent i who
would prefer to be matched to some institution h and there
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is an agent matched to h who has lower priority than i in
h’s priority ranking. If non-wastefulness or fairness are vio-
lated, then the agent i and institution h with respect to which
the violation occurs are viewed as forming a blocking pair.
The combination of non-wastefulness and fairness (i.e., the
lack of blocking) is also referred to as stability in the litera-
ture. Stability, however, is a loaded term and there are several
variants and generalizations of stability for more complex
models and many of them are simply referred to as stability
or weak stability.

In two-sided matching, one of the most impactful re-
sults is that the Agent Proposing Deferred Acceptance Algo-
rithm satisfies compelling properties. The algorithm returns
a matching that is stable and agent-optimal (Gale and Shap-
ley 1962). It is also polynomial-time and strategyproof (an
agent cannot get a better outcome by misreporting its pref-
erences). The algorithm works in the following way: agents
propose to their most preferred institutions. Based on the
proposals, the institutions choose the highest priority indi-
viduals up to the capacity. The rejected agents then propose
to their next most preferred institution until they run out of
options. For a history of the Deferred Acceptance (DA) al-
gorithm, the reader is recommended to read the paper by
Roth (2008). In the following section, we will present an
extended version of the DA algorithm to accommodate our
further generalized setting.

3 Generalized Deferred Acceptance
The general model that we present here has three main ex-
tensions. First, we allow different contract terms to be used
for an agent-institution pair, so for a contract x = (i, h, c),
c denotes the contractual relation, i ∈ N is an agent, and
h ∈ H is an institution. For instance, in the college admis-
sion setting the contractual relation can mean the tuition and
other terms, as in Hungary (Biró et al. 2010) and (Biró et al.
2020), or the number of years served, as in the US cadet-
branch matching (Sönmez and Switzer 2013). Let X denote
the set of all contracts, and for a set of contracts X ⊆ X
let Xi and Xh denote the subsets of contracts restricted to
i and h, respectively. Secondly, the institutions have choice
functions Chh that for every set of contracts X , h selects a
subset Y of Xh. Note that in some matching with contract
models, e.g., in (Hatfield and Milgrom 2005), as the prim-
itive of the model it is assumed that every institution h has
strict preference over the sets of contracts involving h that
determines its choice function. However, this is a simplifi-
cation that does not even cover some basic settings that is
present in some applications.1 Thirdly, we shall define the
collective choice function of the institutions ChH , that se-
lect ChH(X) ⊆ X for every X ⊆ X . Most of the models
in the literature assume that ChH is simply the union of the

1As an example we mention the choice function of the Hungar-
ian universities, where ties are present due to equal scores. When
two students are applying for the last seat at a program the decision
is to reject them both, however, if only one of these students are
applying then she is admitted. In Chile, both of them are admitted
even if the quota is violated. See more about these choice functions
in (Biró and Kiselgof 2015) and (Fleiner and Jankó 2014).

individual choice functions Chh for all h ∈ H , however,
this can be more complex in models with distributional con-
straints.2 We will also consider a collective choice function
ChN of the agents where ChN (X) =

⋃
i∈N Chi(X) for

every X ⊆ X . We summarize the main properties and re-
sults for this generalized setting.

The following properties are crucial for choice functions.

• Substitutability (SUB): X ′ ⊆ X ⊆ X implies X ′ \
ChH(X ′) ⊆ X \ ChH(X), so if a contract is rejected
from a set, then it is also rejected from an extended set.

• Irrelevance of Rejected Contracts (IRC): ChH(X) ⊆
Y ⊆ X implies ChH(X) = ChH(Y ), so if a contract
is selected from a set, then it will also be selected when
some rejected contracts are removed from the choice set.

• Law of Aggregate Demand (LAD): Y ⊂ X implies
|ChH(Y )| ≤ |ChH(X)|, so the number of selected con-
tracts can only increase from an extended set of contracts.

Fleiner (2003) showed that for the general many-to-many
matching model with substitutable choice functions on both
sides, a so-called three-stable matching always exists by
Tarski’s fixpoint theorem. Three-stability means the exis-
tence of three sets X , A, B, subsets of X , such that X =
A ∩B, X = A ∪B, and ChH(A) = X = ChN (B).

Furthermore, Fleiner (2003) showed that the three-stable
solutions form a lattice if the IRC property holds, where the
two variants of the Generalized Deferred Acceptance algo-
rithm produce the agent-optimal and institute-optimal solu-
tions.

Algorithm 1 Generalized Deferred Acceptance (GDA)
Input: Instance I, ChN , ChH , a set of contracts X
Output: An outcome Z ⊆ X

1: Re← ∅, Y ← X , Z ← ∅
2: while Y 6= Z do
3: Y ← ChN (X \Re) {Agents select contracts.}
4: Z ← ChH(Y ) {Institutions select contracts.}
5: Re← Re ∪ (Y \ Z) {Update rejected contracts.}
6: end while
7: return Z

Note that when the IRC property holds, three-stability is
equivalent to stability (Fleiner and Jankó 2014), where sta-
bility is defined as follows. An outcome X ⊆ X is sta-
ble if (i) X = ChN (X) = ChH(X) and (ii) there exists
no contract x ∈ X \ X such that x ∈ ChH(X ∪ {x})
and x ∈ ChN (X ∪ {x}) hold. However, without the IRC
condition a stable matching may not exist even for substi-
tutable choice functions in the many-to-one case, as Aygün
and Sönmez (2013) demonstrated.

Hatfield and Milgrom (2005) considered a restricted
many-to-one setting, where they assumed strict preferences

2An example again from the Hungarian university admissions,
where common quotas are applied for sets of programs on the top
of the individual capacities of the programs, where the programs
considered share the same ranking over the students (Biró et al.
2010).
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for the institutions (in which case the IRC property holds
automatically). Furthermore they assumed that the choice
functions are unitary, meaning that each hospital selects at
most one contract by every agent.3 Using the same proof
technique as Fleiner (2003) they showed that if the SUB and
LAD properties hold, then GDA produces an agent-optimal
stable matching, and as a new result they also showed that
this mechanism is strategyproof for the agents.

The above described general framework with contracts is
useful to derive similar results in the context of distributional
constraints using the variants of the DA algorithm. However,
in most papers in this literature the primitives are simpler,
based on the Gale-Shapley model with no contracts. Every
agent i has a preference order �i over the institutions and
her choice function Chi simply selects the best institution
from a set offered. Similarly, every institution h has a strict
order over the acceptable agents �h, together with a quota
qh and from a set of agents Chh selects the quota-many best
agents.
Example 1 (Illustration of Matching with Contracts). We
illustrate our key concepts and the GDA algorithm on a sim-
ple market with three agents 1, 2, 3 and three insititutions
h1, h2, h3 with quota 1 each. Suppose the preferences of
agents and the priorities of the institutions are represented
in the ordered list in decreasing order of preference/priority.

1 : h2, h1, h3 h1 : 1, 3, 2

2 : h1, h2, h3 h2 : 2, 1, 3

3 : h1, h2, h3 h3 : 2, 3

Note that agent 1 is not specified in the priority list of the
h3 which means that agent 1 cannot be matched to h3 (for
example it does not qualify). The set of valid contracts X is

(1, h1), (1, h2), (2, h1), (2, h2), (2, h3), (3, h1), (3, h2), (3, h3).

Note that for each pair (i, h), there are no two different pos-
sible contracts (i, h, c′) and (i, h, c′′) so we have ignored the
third tuple corresponding to the contractual relation. In this
simple example, the choice functions of each agent and insti-
tution are directly specified by the preference/priority lists.
For example the choice function Chh3

takes as input a set of
agents and selects the highest priority acceptable agent.

The outcome of running GDA is
{(1, h1), (2, h2), (3, h3)}.

When additional feasibility constraints are imposed in
two-sided matching, several challenges come up (Kojima
2019). A stable matching or even a feasible matching may
not exist and even checking the existence of such a matching
can be computationally intractable. In the subsequent sec-
tions, we discuss various types of constraints that have been
considered in the context of two-sided matching under pref-
erences.

3In a recent paper, Hatfield and Kominers (2016) showed that
indeed this unitary assumption in (Hatfield and Milgrom 2005) was
unnecessary.

4 Lower Quotas
The challenge of feasibility is immediately seen if we im-
pose lower capacities at institutions besides the upper capac-
ities. In college admission or course allocation setting, the
lower quota is considered as a minimum number of students
needed to open the program. Stability is defined in a stan-
dard way for open programs, and for each closed program,
the natural non-wastefulness condition is that the number
of students preferring this program to their matches cannot
reach the lower quota. Biró et al. (2010) conducted a detailed
computational complexity analysis of this problem. They
showed that a stable matching may not exist and proved that
the problem of determining whether a stable matching exists
is NP-hard in general. A follow-up paper has been recently
written by Boehmer and Heeger (2020).

The other main case is motivated by the resident alloca-
tion setting, where the lower quotas have to be obeyed for
all the hospitals in order to ensure sufficiently many doc-
tors also at the unpopular (rural) places. This model was first
proposed in (Kamada and Kojima 2015), who analysed the
Japanese practice of putting artificial upper quotas for popu-
lar places to enforce the required lower quotas in the country.
Fragiadakis et al. (2016) developed two strategyproof mech-
anisms: one satisfies fairness and the other one satisfies non-
wastefulness (note that no mechanism satisfies fairness and
non-wastefulness simultaneously in this setting). More gen-
eral cases with regional lower quotas have also been stud-
ied (Fleiner and Kamiyama 2016; Yokoi 2017; Goto et al.
2016).

5 Regional Constraints
Regional constraints came up in the context of residen-
tial allocation, i.e., matching medical residents (doctors) to
hospitals. The background was that in order to ensure that
sufficient doctors work in rural regions, an upper capac-
ity was placed on urban regions. In general, regional con-
straints place subsets of institutions such as hospitals into
regions and then place upper capacities on the regions. Re-
gional constraints have also been referred to as common
quotas (Biró et al. 2010).

There are various levels of regional constraints: (1) dis-
joint (2) nested (in which for any two regions, either they
are disjoint or one is contained in the other), and (3) ar-
bitrary. For the disjoint case, we assume there exists a set
of regions R, which is a partition of institutes H . Each re-
gion r ∈ R has its upper quota qr. In addition to the con-
straints for the basic model, we require for any X ′ ⊆ X ,
if X = ChH(X ′), then

∑
h∈r |Xh| ≤ qr holds. Note that

with regional constraints, we are no longer able to represent
choice function ChH as a union of individual choice func-
tions Chh for h ∈ H . The next example shows that regional
quotas can lead to the non-existence of stable matchings.
Example 2 (A stable matching may not exist under regional
constraints). Suppose the preferences of agents and the pri-
orities of the institutions are represented in the ordered list
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in decreasing order of preference/priority.

1 : h1, h2 h1 : 2, 1

2 : h2, h1 h2 : 1, 2

Suppose both h1 and h2 are in a region that has an upper
quota of 1. Any feasible matching only matches one agent
with one of the instititutions. Consider {(1, h1)}. The match-
ing is not stable as both h1 and 2 would prefer to form a con-
tract (2, h2). Consider {(1, h2)}. The matching is not stable
as both h1 and 1 would prefer to form a contract (1, h1). By
a symmetric argument no matching that matches agent 2 is
stable.

If we remove the regional quota constraint but add a third
institution h3 with a lower quota constraint of 1 that all
agents prefer the least, a similar situation arises.

The hospital-resident matching problem with regional
constraints has been studied in several papers (Kamada and
Kojima 2015; Biró et al. 2010; Goto et al. 2016; Aziz et al.
2019). Kamada and Kojima (2017a) focused on the case of
disjoint regions and showed that even for this restriction, a
natural notion of stability which they refer to as strong stabil-
ity is not guaranteed to be satisfied by at least some match-
ing. Aziz, Baychkov, and Biró (2020) showed that even for
disjoint regions, checking whether a strongly stable match-
ing exists or not is NP-hard. Kamada and Kojima (2017a)
proposed a weak stability concept for the setting. We call
a matching X weakly stable if, for any blocking pair (i, h)
for matching X , the following two conditions are satisfied.
(i) j �h i for all applicants s.t. (j, h) ∈ Xh (ii) X ∪{(i, h)}
is not feasible.

We can construct ChH such that it satisfies the SUB con-
dition as well as required constraints, as discussed in Ko-
jima, Tamura, and Yokoo (2018). For the simplest case, as-
sume each region r has a priority order among all contracts
related to the institutions in r. ChH(X) chooses at most qr
contracts from

⋃
h∈H Xh as a whole, and at most qh con-

tracts from Xh, according to the priority. It is easy to ver-
ify such a choice function satisfies the SUB, IRC, and LAD
conditions. By using this choice function, Algorithm 1 sat-
isfies strategyproofness, and the obtained matching satisfies
the stability defined in Section 3 as well as weak stability.

Kamada and Kojima (2017a) also presented an algorithm
to compute a weakly stable matching for the problem for
any class of region constraints. The algorithm is not strat-
egyproof and in fact, it is an open problem whether weak
stability and strategyproofness are compatible.

For a general model of matching with regional constraints
in which regions also have priorities over the distributions of
agents within the sub-regions within the region, Kamada and
Kojima (2018) considered an intermediate notion of stabil-
ity that they refer to as stability. They show that a matching
guaranteeing the notion is guaranteed to exist if and only if
the set of region constraints forms a nested structure. Biró
et al. (2010) and Goto et al. (2016) also presented positive
existence and computational results for nested constraints.
Goto et al. (2016) allow both lower and upper quotas on the
regions.

6 Diversity Constraints
Diversity concerns are prevalent in many decision making
problems including that of two-sided matching. Each agent
in a two-sided matching problem may have certain types that
indicate they have special attributes (such as being highly
talented) or satisfy some affirmative action categories (such
as being a historically disadvantaged group). Each institu-
tion may have its own diversity constraints and may make
selection decisions based on a combination of its priority list
over agents as well as information about the types satisfied
by the agents.

A standard technique to address diversity constraints is
to impose lower and upper quotas on the number of mem-
bers of given types at the institution. These quotas may
be treated as hard constraints or soft constraints (goals).
For example, assume agents are divided into disjoint types
T = {t1, . . . , tk}, and institution h imposes a hard type-
specific upper quota qh,t for each type t ∈ T (as well
as its overall upper quota qh). Then, we require for any
X ′ ⊆ X , if X = ChH(X ′), then |Xh,t| ≤ qh,t holds, where
Xh,t = {(i, h) | (i, h) ∈ X, i belongs to type t}.

Ehlers et al. (2014a) wrote one of the most influential
papers on the topic where they considered the impact of
soft and hard diversity constraints. Echenique and Yenmez
(2015) also assumed that each student has one type and ex-
amined the structure of choice functions that satisfy the SUB
condition. Next, we illustrate how one of the choice func-
tions proposed by Ehlers et al. (2014a) works to select a set
of agents for an institution by treating the quotas as soft con-
straints.
Example 3 (Illustration of a choice function with diversity
constraints). Suppose there is one institution h with upper
quota qh = 3 priorities: h : 1, 2, 3, 4, 5. Suppose there is
a minority type t such that agents 3, 4, 5 satisfy. Suppose h
also has type-specific quotas that capture diversity goals: a
lower quota of 1 and upper quota of 2 for t.

Then, Chh can be defined as follows. Firstly, we try to se-
lect the highest priority agents of a type that has not reached
the lower quota. So agent 3 is selected. Then, we try to select
the highest priority agents of a type that has not reached the
upper quota, so 4 is selected. After that, we select the highest
priority agents if there is space, so agent 1 is selected. There-
fore, Chh({1, 2, 3, 4, 5}) = {1, 3, 4}. Note that if diversity
constraints are ignored, h would use the priority relation to
select {1, 2, 3}.

Kurata et al. (2017) were the first to consider the setting
in which each student has multiple types and each school
imposes soft quotas on each type. There are several subse-
quent works with similar approaches. For example, Aygün
and Turhan (2020) and Correa et al. (2019) focus on a model
in which student are allowed to have multiple types and col-
leges divide the seats into groups. Aygün and Bó (2020)
study the college admission with multidimensional privi-
leges where each student may have multiple types and each
seat within the same school may have different priorities
over students. One of the main routes to achieving desider-
ata such as stability and strategyproofness in this domain is
to design suitable choice functions of institutions that satisfy
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the SUB and LAD conditions. By doing so, the machinery
of GDA (Algorithm 1) and the general results of Hatfield
and Milgrom (2005) can be applied in these contexts.

Gonczarowski et al. (2019) proposed an algorithm for the
Israeli “Mechinot” gap-year problem in which each student
has multiple types and schools impose soft lower quotas and
hard upper quotas. There has also been some recent work on
matchings with constraints on the ratios of types (Nguyen
and Vohra 2019).

Matching with diversity has also been examined from a
complexity perspective (Biró et al. 2010; Chen, Ganian, and
Hamm 2020; Huang 2010; Aziz et al. 2019). Aziz et al.
(2019) and Sun (2020) showed that under hard constraints,
certain problems for diversity constraints can be reduced to
problems under general regional constraints.

In recent years, a new application where matching must
take into account representation of various type agents is in
healthcare rationing. In this application, the types of agents
correspond to important categories such as being a frontline
worker, being elderly, or being extra vulnerable (see, e.g.,
(Aziz and Brandl 2021; Pathak et al. 2020)).

7 Multi-dimensional Capacity Constraints
and Agent Sizes

Matching with Sizes
When the agents have sizes, then a stable matching may not
exist, and the corresponding decision problem is NP-hard,
as McDermid and Manlove (2010) showed for the case of
sizes one and two, motivated by the resident allocation prob-
lem with couples. In this model, the couples are accepting
joint offers only at the hospitals occupying pairs of positions.
However, we note that the usual model setting and practice
allow also the couples to apply for positions in different hos-
pitals, for a survey see (Biró and Klijn 2013). The stable
matching problem with sizes was also studied in the context
of unsplittable flow problem, motivated by job scheduling to
machines (Dean, Goemans, and Immorlica 2006; Cseh and
Dean 2016).

Refugee Constraints
Next, we overview multi-dimensional upper capacity con-
straints inspired by the problem of matching refugee fami-
lies. Delacrétaz, Kominers, and Teytelboym (2019) formal-
ized refugee allocation as a centralized matching market de-
sign problem. A locality can feasibly host a set of families if
it can meet the multi-dimensional requirements of the fam-
ilies that could involve services such as hospital beds, chil-
dren’s day care, special medical services, etc. These feasibil-
ity requirements can be captured by multi-dimensional fea-
sibility constraints.
Example 4 (multi-dimensional capacity constraints). Con-
sider three families represented by three agents. Family 1 is
an elderly couple that requires 1 room. Family 2 is a family
of four that requires 2 rooms and 2 school seats. Family 3
is a family of a single mother and her daughter who require
1 room and 1 school seat. The consumption requirements
of the families can be represented by vectors (1, 0), (2, 2),

and (1, 1) where the first coordinate represents the required
number of rooms and the second coordinate represents the
required number of school seats. If a council has 2 available
rooms and 2 free school seats, then it cannot accommodate
any other family if it accepts Family 2.

Under multi-dimensional sizes and capacity constraints,
the synergies between the agents leads to the choice func-
tions of institutions not satisfying the SUB condition.
Delacrétaz, Kominers, and Teytelboym (2019) pointed out
that for the refugee allocation problem, the standard stabil-
ity concept may lead to non-existence of a stable matching.

Aziz et al. (2018) considered a stability concept that is
also a natural weakening of stability for two-sided matching
and proposed an algorithm to achieve the property. The con-
cept requires that only those agents can have justified envy
for another agent if the former require weakly less resources
in each category. Aziz et al. also studied the computational
complexity of computing matchings satisfying various no-
tions of stability.

Andersson and Ehlers (2016) focused on a restricted ver-
sion of the refugee allocation problem with unidimensional
service demands and capacity vectors but with a feature that
captures language compatibility of families and hosts. For
this setting, they presented an algorithm that finds a stable
maximum matching.

Budgetary Capacity Constraints
Next, we consider related models in which budgetary con-
straints are involved that are essentially single-dimensional
constraints. Ismaili et al. (2019) considered the case where
hospitals hire doctors. To hire a doctor, a hospital need to
pay a certain wage, which can vary according to the ex-
pertise of the doctor. A hospital wants to hire the highest
priority doctors within a given budget limit. Assume each
contract is represented as (i, h, w), where w is the wage for
agent i paid by institution h. We require for any X ′ ⊆ X , if
X = ChH(X ′), then

∑
(i,h,w)∈Xh

w is at most the budget
limit of h. It is easy to see that the SUB condition can be vio-
lated; if a hospital prefers hiring two low-wage doctors over
hiring one high-wage doctor, two low-wage doctors can be
complementary. Ismaili et al. (2019) presented several im-
possibility results for the general case, as well as positive
results for some special cases. There also exist works that
deal with budget constraints where hospitals have additive
utilities (Kawase and Iwasaki 2017, 2018).

Kawase and Iwasaki (2020) considered a model in which
institutions have cardinal preferences rather than ordi-
nal. They focus on three types of cardinal preferences:
cardinality-based (utility is equal to the size of the match),
additive, and submodular. The choice functions of the in-
stitutions maximize total utility subject to various kinds of
packing constraints such as capacity (upper quota), an inter-
section of multiple matroids, or a multi-dimensional knap-
sack.4 They considered the problems of checking existence
of a feasible matching as well as a stable matching. The car-

4Note that the constraints involved in refugee matching markets
are also based on multi-dimensional knapsacks.
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dinal preference allows them to also explore approximately
stable outcomes.

8 Matroidal Constraints
In the classical stable matching problem, each institution has
a capacity constraint. These constraints can be generalized
to matroidal constraints. In addition to capacity constraints,
matroids also capture more complex constraints including
hierarchical or nested capacity constraints that are discussed
in the section on regional constraints.

For a finite set of contracts X , let F denote a family of
subsets of X , each of which is feasible according to the
constraints. We say a pair (X ,F) is a matroid if it satis-
fies the following conditions. (i) ∅ ∈ F (ii) If X ′ ∈ F
and X ′′ ⊆ X ′, then X ′′ ∈ F . (iii) If X ′, X ′′ ∈ F and
|X ′| > |X ′′|, then there exists some x ∈ X ′ \ X ′′ such
that X ′′ ∪ {x} ∈ F . It is easy to verify that for the stan-
dard model, where only constraints are the upper quota
of each institute, the family of feasible contracts related
to each institute constitutes a matroid. Also, for the case
of disjoint regions, the family of feasible contracts related
to each region constitutes a matroid. Matroidal constraints
have been examined in a series of papers (see, e.g., Fleiner
(2001), Fleiner and Kamiyama (2016), Kamiyama (2019b),
Kamiyama (2019a), (Kamiyama 2020a)). Yokoi (2019) dis-
cussed that if the feasibility constraints are madroidal and
if there is a total order on the individuals, then the greedy
algorithm of selecting agents while not violating feasibility
constraints gives rise to a choice function that satisfies the
SUB condition.

Note the matroidal feasibility constraints require that the
empty set must be feasible. Hence, feasibility constraints
that involve lower quotas cannot be directly captured by ma-
troidal constraints. However, both Fleiner and Kamiyama
(2016) and Yokoi (2017) consider a generalized approach
based on matroids that captures stability and fairness, re-
spectively, for lower quotas with matroid feasibility con-
straints.

Kojima, Tamura, and Yokoo (2018) showed that (i) Algo-
rithm 1 is strategyproof for agents, (ii) the resulting match-
ing is stable (according to the definition in Section 3) and
optimal for each agent among all stable matchings, and (iii)
the time complexity of the algorithm is proportional to the
square of the number of possible contracts, assuming ChH

is defined based on matroidal constraints (as well as institu-
tions’ aggregated preferences have some simple structures,
e.g., maximizing the sum of values associated with individ-
ual contracts).5

Kojima, Tamura, and Yokoo (2018) showed that a
wide variety of constraints, including nested regions (Biró
et al. 2010; Goto et al. 2016), diversity requirements in
school choice with soft constraints (Ehlers et al. 2014b),
the student-project allocation problem (Abraham, Irving,

5More precisely, Kojima, Tamura, and Yokoo (2018) assume
that ChH is represented as a maximizer of a given function f that
satisfies the condition called M\-concavity. The fact that f is an
M\-concave function implies that hard constraints are represented
as matroidal constraints.

and Manlove 2007), and the cadet-branch matching prob-
lem (Sönmez and Switzer 2013), can be represented as ma-
troidal constraints and existing mechanisms/algorithms that
had been developed independently/separately can be repre-
sented as a unified mechanism/algorithm described as Algo-
rithm 1.

9 Heredity Constraints
In this section, we consider feasibility constraints that satisfy
the heredity property where the feasibility of a matching is
monotone in the number of agents matched at the institu-
tions. The heredity property requires that if a matching is
feasible, then any matching in which the numbers of agents
matched to each institution weakly decreases, is feasible as
well. Heredity constraints are more general than imposing
upper bounds on regions/subsets of institutions. The reason
is that if the number of agents at institutions weakly de-
creases, the constraints imposed by imposing upper quotas
on regions are still satisfied. However, heredity constraints
do not capture certain types of diversity constraints: decreas-
ing the matches of institutions may make the representation
requirement of some type of agents to be lower than the re-
quired level. Heredity constraints have been considered in
some recent papers (Kamada and Kojima 2017b; Goto et al.
2017; Aziz, Baychkov, and Biró 2020; Kamada and Kojima
2022).

Adaptive Deferred Acceptance
Goto et al. (2017) proposed a general algorithm called
Adaptive Deferred Acceptance (ADA) that can be applied
to any heredity constraints. This algorithm satisfies strate-
gyproofness, non-wastefulness, and a fairness property (that
is weaker than the weak stability concept of Kamada and
Kojima (2017b)). Next, we provide some high level ideas be-
hind ADA. ADA utilizes a serial order among agents called
master-list. ADA works by repeatedly calling the standard
Deferred Acceptance algorithm by adding agents one by
one according to the master-list. In ADA, an institution be-
comes forbidden if it cannot accommodate any additional
agent without some feasibility constraint being violated. In
each stage, there are multiple rounds, each adding students
according to the master-list as long as no institution be-
comes forbidden. When an institution becomes forbidden,
the algorithm finalizes the current matching and moves to
the next stage where the upper quotas and the distributional
constraints are updated by taking into account all the con-
tracts that have been finalized so far. The formal description
of ADA is given as Algorithm 2.

Cutoff Stable Algorithm
Aziz, Baychkov, and Biró (2021) showed that as long as
the feasibility constraints satisfy the heredity property, cut-
off stability (a natural notion of stability that is stronger than
weak stability of Kamada and Kojima (2017b)) is satisfied.
The idea behind cutoff stability is as follows. Cutoff sta-
bility requires that fairness as well as what is called cutoff
non-wastefulness are satisfied. Cutoff non-wastefulness re-
quires that either an agent cannot leave her match and join a
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Algorithm 2 Adaptive Deferred Acceptance (ADA)

Input: master-list L = (i1, i2, . . .) and upper quotas qH
Output: matching Y

Initialization: q1h ← qh for each h ∈ H , Y ← ∅. Proceed
to Stage 1.

Stage k: Proceed to Round 1.
Round t: Select t agents from the top of L. Let Y ′ denote

the matching obtained by the standard deferred accep-
tance for the selected agents under (qkh)h∈H .
(i) If all agents in L are already selected, then Y ← Y ∪

Y ′, output Y and terminate the mechanism.
(ii) If no new institution is forbidden, then proceed to

Round t+ 1.
(iii) Otherwise, Y ← Y ∪Y ′. Remove t agents from the

top of L. For each institution h that is forbidden, set
qk+1
h to 0. For each h ∈ H , which is not forbidden, set
qk+1
h to qkh − |Y ′h|. Proceed to Stage k + 1.

more preferred institution h without violating some feasibil-
ity constraint or if it can, then there exists another agent that
is at higher priority at h that cannot leave her match and join
h without violating some feasibility constraint. Aziz, Bay-
chkov, and Biró (2021) presented a simple but widely appli-
cable algorithm that works for any matching problem with
feasibility constraints. If the constraints satisfy the heredity
property, the algorithm returns a cutoff stable outcome.

Let d : H → [0, 1, . . . , |N |+ 1] be the cutoff score func-
tion, where d(h) is the cutoff at institution h. Without loss of
generality we assume that each institution h assigns a score
to each agent i in accordance with its preference list, that is
i has score |N | − k + 1 if she is ranked k-th by institution
h. Given cutoff scores d, we say that agent i is admissible to
institution h if her score achieves the cutoff. Cutoff scores
d induce matching M , if every agent is matched to the best
institution of her preference where she is admissible.

Let d−h denote the cutoff scores after decreasing the cut-
off of h by one, and keeping the other cutoffs the same, i.e.,
d−h(h) = d(h)− 1, and d−h(h′) = d(h′) for every h′ 6= h.
We say that cutoffs d are minimal if we cannot decrease the
cutoff score of any institution without making the induced
matching infeasible. More formally for every institution h,
either d(h) = 0 or the matching induced by d−h, which we
call M−d, is infeasible. The formal definition of the algo-
rithm presented by Aziz, Baychkov, and Biró (2021) is given
as Algorithm 3.

Intra-Institution Heredity Constraints
Kamada and Kojima (2022) consider a more restricted ver-
sion of heredity constraints that are intra-institution and
show that an outcome that satisfies the following properties
exists: fairness, feasibility, agent-optimal among all match-
ings that satisfy fairness and feasibility.

Algorithm 3 Cutoff algorithm for heredity constraints.
Input: lists �h for all h ∈ H and �i for all i ∈ N ; feasi-

bility function f ; institution order P ∗ = (h1, ..., hk)
Output: Matching M and corresponding cutoffs dM

1: Initialize M to empty and dM (h) = |N | + 1 for every
institution h.

2: while Cutoff dM are not minimal do
3: Locate the first hj in the list P ∗ such that M−hj is

feasible.
4: Let M = M−hj and dM = d

−hj

M .
5: end while

10 Conclusions
We surveyed recent work on two-sided matching with con-
straints. We focused on the work that takes stability and
fairness as central concerns. In recent years, work on other
objectives such as popularity has also been extended to
more complex feasibility constraints (see, e.g., Kamiyama
(2020b)). We restricted our presentation to many-to-one
matching problems in which each agent is matched to at
most one institution. There are many results in the literature
that pertain to many-to-many matchings, a model motivated
by several relevant applications such as the resident alloca-
tion problem with couples (Biró and Klijn 2013), the assign-
ment of papers to reviewers (Garg et al. 2010), and course
allocation (Budish et al. 2017). Another stream of work is
on exchange problems (Abdulkadiroglu and Sönmez 1999;
Guillen and Kesten 2012; Suzuki, Tamura, and Yokoo 2018)
in which individual rationality and Pareto optimality are ma-
jor concerns.
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Biró, P.; Hassidim, A.; Romm, A.; Shorrer, R. I.; and
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