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Abstract

Recent breakthroughs in AI have shown the remarkable
power of deep learning and deep reinforcement learning.
These developments, however, have been tied to specific
tasks, and progress in out-of-distribution generalization has
been limited. While it is assumed that these limitations can
be overcome by incorporating suitable inductive biases, the
notion of inductive biases itself is often left vague and does
not provide meaningful guidance. In the paper, I articulate
a different learning approach where representations do not
emerge from biases in a neural architecture but are learned
over a given target language with a known semantics. The ba-
sic ideas are implicit in mainstream AI where representations
have been encoded in languages ranging from fragments of
first-order logic to probabilistic structural causal models. The
challenge is to learn from data, the representations that have
traditionally been crafted by hand. Generalization is then a
result of the semantics of the language. The goals of this pa-
per are to make these ideas explicit, to place them in a broader
context where the design of the target language is crucial, and
to illustrate them in the context of learning to act and plan.
For this, after a general discussion, I consider learning rep-
resentations of actions, general policies, and subgoals (“in-
trinsic rewards”). In these cases, learning is formulated as a
combinatorial problem but nothing prevents the use of deep
learning techniques instead. Indeed, learning representations
over languages with a known semantics provides an account
of what is to be learned, while learning representations with
neural nets provides a complementary account of how repre-
sentations can be learned. The challenge and the opportunity
is to bring the two together.

Introduction
A number of recent breakthroughs have shown the remark-
able power of deep learning and deep reinforcement learning
(LeCun, Bengio, and Hinton 2015; Bengio, Lecun, and Hin-
ton 2021). These developments, however, have been tied to
specific tasks like Chess, Go, or Atari games (Mnih et al.
2015; Silver et al. 2017a,b). Progress in out-of-distribution
generalization or in the generation of modular components
that can be assembled dynamically for different tasks, has
been more limited (Lake et al. 2017; Darwiche 2018; Mar-
cus 2018; Geffner 2018).
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While it is assumed that these limitations can be overcome
by adding suitable inductive biases in current neural network
architectures (Garnelo and Shanahan 2019; Goyal and Ben-
gio 2020), the notion of inductive biases itself is often left
vague and does not always provide meaningful guidance.
Traditionally, inductive biases refer to biases in the hypoth-
esis space, and in the case of neural networks, to the struc-
ture of the parametric function captured by the architecture.
More recently, the notion has been grounded on the invari-
ant properties of such functions (Bronstein et al. 2021), but
more often they are used to refer to intuitions that are not
spelled out in formal detail and are not explicitly evaluated.

In this paper, I aim to articulate a more abstract approach
to representation learning where the learned representations
are not those that emerge after training a neural network,
but those that result over a given target representation lan-
guage with a well understood semantics. The approach is
implicit in mainstream, symbolic AI, from McCarthy’s ob-
servations about the representation of general abstractions
(McCarthy 1960), to Pearl’s emphasis on the language re-
quired for reasoning about causality (Pearl and Mackenzie
2018). The challenge is to learn from data the representa-
tions that have traditionally been crafted by hand without
having to appeal to background knowledge.

The goals of the paper are to make the ideas behind the
language-based approach to representation learning explicit,
to place them in a broader context where the design of the
target language is critical, and to illustrate them in the set-
ting of learning to act and plan. For this, after a general dis-
cussion, I consider the problems of learning actions, general
policies, and problem decompositions over suitable domain-
independent languages.

Languages, Semantics, Generality
It is hard to find a needle in a haystack, but it helps to
know what a needle looks like. J. Pearl1

In Generality in AI, John McCarthy (1987), one of the
founders of the field, quotes an early paper that says that “If
one wants a machine to be able to discover an abstraction, it
seems most likely that the machine must be able to represent
this abstraction in some relatively simple way” (McCarthy

1Pearl’s quotes are from his twitter feed unless otherwise noted;
http://web.cs.ucla.edu/∼kaoru/jp-tweets.
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1960). From this and the need to use the learned abstrac-
tions in a flexible way, McCarthy concludes that the repre-
sentations have to be expressed in a logical language.

Sixty years later, Yoshua Bengio, a leader in the field
of deep learning interested in bridging the gap between
deep learning and high-level reasoning, addresses similar is-
sues but in slightly different terms:2 “Systematic general-
ization is hypothesized to arise from an efficient factoriza-
tion of knowledge into recomposable pieces corresponding
to reusable factors . . . This is related yet different in many
ways from symbolic AI” (Goyal and Bengio 2020).

Bengio’s point that the research agenda that he describes
for capturing high-level reasoning is “related yet different”
than McCarthy’s (symbolic AI) is certainly correct. The
claim in this paper, however, is that there is much to be
gained by making the two research agendas complemen-
tary. In other words, symbolic AI has developed families of
formal languages for “factorizing knowledge into reusable
pieces” with the right semantics for supporting composition
and generalization. The limitation of symbolic AI is not in
the languages themselves but in their use by humans, which
as Bengio says, does not scale. The challenge and the op-
portunity is to learn the representations over such languages
(i.e., symbolic representations) directly from data.

Pearl’s quote at the beginning of the section refers to
representations for causal reasoning. I aim to illustrate that
his point is more general and applies to all representations
that must be learned and combined. The “needles” are the
representations sought, and we know how they look like
when they are representations over known languages. Inter-
estingly, Bengio also finds language relevant for capturing
the abstractions that are required for combinatorial gener-
alization, but “language” for him, as for others, is natural
language, not a formal language with a semantics.

Example
Toy problems is where you learn if you are on the right
track. Non-toy problems is when you hide you don’t
know which track you are on. J. Pearl

A simple toy problem will help us to make the discus-
sion of structural generalization concrete. Figure 1 shows the
Minigrid environment; a benchmark introduced for learn-
ing to interpret and achieve goal instructions (Chevalier-
Boisvert et al. 2019). As shown in the figure, a goal may be:
“pick up the grey box behind you, then go to grey key and
open the door”. The agent is the red triangle and the limited
field of view is displayed in light-grey. The general problem
is to learn a controller for the agent that accepts goals and
observations, and outputs the action to do in each step for
reaching the goals.

The Minigrid environment is similar to a classical plan-
ning problem (Geffner and Bonet 2013; Ghallab, Nau,
and Traverso 2016) except that the action model and the
goal language are not given. Both supervised and unsu-
pervised approaches have been tried, and success has been
partial (Chevalier-Boisvert et al. 2019; Chevalier-Boisvert,

2From the abstract at https://ijcai-21.org/invited-talks.

Figure 1: Minigrid environment. Problem is similar to a
“classical planning problem” except that the domain pred-
icates and action schemas are not known, and goals are to
be achieved reactively by general policy, not by planning
(Chevalier-Boisvert et al. 2019).

Willems, and Pal 2018): millions of trials are required to
achieve the given goals, and even then success rates are
not 100%. For improving performance, intuitions leading to
alternative architectures and loss functions are introduced
(e.g., presence of objects or sparse interactions) which are
then evaluated experimentally in relation to baselines. From
a methodological point of view, this is not entirely satisfy-
ing, and two key questions are what is it that we are trying
to learn, and how this object can be characterized mathe-
matically, independently of its computation. A step in this
direction is to notice that we look for a mapping from goals
G into general policies πG for achieving them in a broad
range of situations involving any number of objects at any
locations, and hence, different state spaces.

Even this toy example is a hard problem given how little
is known a priori. The surprise is not that supervised and un-
supervised DL approaches struggle in the problem but that
they manage to generate a meaningful behavior at all. The
immediate goal for us is not to do better in the task but to
identify the building blocks that are needed for approach-
ing this and other problems in a meaningful way. Key ques-
tions from the perspective of language-based representation
learning are what is a good, domain-independent language
for expressing the general policies πG, and how can repre-
sentation in that language be learned? Related questions are
what is a good, domain-independent language for express-
ing the dynamics of Minigrid and how can representations
over such a language be learned? The answers to these ques-
tions, to be sketched below, do not have to get in the way of
developing neural architectures for solving these problems;
the hope is that the answers can inform our understanding of
the problems and their solutions, neural and otherwise.

Causal Models
My greatest challenge was to break away from prob-

abilistic thinking and accept, first, that people are not
probability thinkers but cause-effect thinkers and, sec-
ond, that causal thinking cannot be captured in the
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language of probability; it requires a formal language
of its own. J. Pearl3

One formal language that is making it into mainstream
ML is the language of (structural) causal models (SCMs).
This owes to the work of Judea Pearl and others that has
revolutionized our understanding of causality by articulat-
ing a simple formal language and a semantics to talk about
causes and effects (Pearl 2009; Pearl and Mackenzie 2018).
The language accommodates observations, interventions,
and counterfactuals. A structural causal model (SCM) can
be understood as a deterministic Bayesian network (con-
ditional probabilities are all one or zero) that defines not
just one joint probability distribution over the variables but
many. A SCM handles interventions (actions) of the form
do(X = x), by which a variable X is set to a specific
value x, and the probability distribution that results from
such actions is the distribution that is encoded by the “muti-
lated” Bayesian network where the parents of variable X
are replaced by the single parent do(X = x) for which
P (X = x|do(X = x)) = 1. The answers to queries about
combinations of observations, interventions, and counterfac-
tuals are determined by a SCM once the priors on “exoge-
nous” variables (those without parents) are given. The lan-
guage of SCMs has been used, for example, to determine the
conditions under which the answer to queries in one causal
model “generalize” or “transport” to another causal model
(Pearl and Bareinboim 2011).

In principle, structural causal models can be learned from
data, and this is a very active line of research, both in the
cases where the variables in the model are given, and when
they are not (Schölkopf et al. 2021). This does not mean,
however, that structural causal models can be bypassed when
answering queries from data. In order to do that meaning-
fully, the design of the algorithms must take the semantics
of SCMs into account (Pearl 2021). Doing this, model-free,
while ignoring the language and semantics of SCMs runs
the risk of reinventing the wheel with not much guidance, as
experimental evaluations are no substitutes for a meaning-
ful theory. This does not rule out the possibility of learning
causal models using neural nets by stochastic gradient de-
scent, but the architecture and loss functions must be aligned
with the representations sought.

Languages, Models, and Solvers
Every science that has thriven, has thriven upon its
own symbols. De Morgan (1864), quoted by J. Pearl.4

Bayesian networks and structural causal models are mod-
els that make predictions from knowledge expressed in
terms of variables, graphs, and probabilities. In AI, other
languages and models have been developed as well some of
which are relevant to our focus on actions and planning. For
example, classical planning refers to planning with deter-
ministic actions with known effects and preconditions, from

3http://www.cambridgeblog.org/2012/07/qa-with-judea-pearl-
part-one.

4(Pearl and Mackenzie 2018).

a known initial state, given a compact encoding of the ac-
tions in terms of state variables. These encodings have a
size that is polynomial in the number of variables but result
in state models of exponential size. Compact languages for
representing other state models like MDPs and POMDPs,
have also been developed.

The use of languages for encoding state models has been
motivated by two reasons. First, state models need to be
specified in a concise manner, as they would not fit in mem-
ory otherwise. Second, it is assumed that a compact speci-
fication reveals structure that can be exploited computation-
ally. For example, a common technique for solving classi-
cal planning problems is using heuristic functions, yet these
heuristics can be extracted from compact representations but
not from flat models (McDermott 1999; Bonet and Geffner
2001).

The benefits of languages supporting compact action rep-
resentations, however, go well beyond the facilities that
they provide for model specification and computation, as
they also provide the ingredients needed for generalization,
transfer, and knowledge reuse. Indeed, these languages have
been designed for human to use with these goals in mind:
when writing the description of a planning problem, we want
the description to be reusable with minor modification in
similar problems. The use of first-order languages for re-
ferring to objects and relations has been essential for this
purpose.

Consider for example, a simplification of the Minigrid do-
main, that we refer to as Delivery, where there areN objects
in a grid n ×m, and the goal is to pick up the objects, one
by one, and deliver them to a target cell. The actions avail-
able are to pick up and drop an object, and to move one
cell at a time. Different instances of the Delivery domain are
encoded in planning languages such as PDDL in two parts
as P = 〈D, I〉. One part, the domain D, encodes what is
common about all the Delivery instances in terms of three
action schemas: pick, drop, and move. The other part, I , de-
tails the objects in the instance, the ground atoms that are
initially true, and those that must be made true in the goal
(McDermott 2000; Haslum et al. 2019). For example, the
action schema pick can be defined as:

pick(o, x, y):
Prec: at(o, x, y), atr(x, y), handempty
Eff: hold(o), ¬at(o, x, y), ¬handempty

where o, x, and y are the schema arguments, and precondi-
tions and effects are atoms formed by predicate symbols and
some of the schema arguments. The schema for move can
be expressed in turn as:

move(x, y, x′, y′):
Prec: atr(x, y), adjacent(x, y, x′, y′)
Eff: atr(x′, y′), ¬atr(x, y)

where atr and at are the predicates that encode the loca-
tion of the agent and the packages, and adjacent encodes
the grid topology. These pick and move action schemas,
along with the drop scheme and the predicates involved in
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them, are precisely the “reusable pieces” over all Delivery
instances, and hence if we want to learn a dynamic model
from some instances that generalizes to other instances, we
will be well advised to learn a representation of this type.

There are indeed important similarities between planning
languages and structural causal models: SCMs provide a
compact and invariant description of the effects of inter-
ventions on probability distributions, while planning lan-
guages provide a compact and invariant description of the
effects of interventions on states. Compact, first-order lan-
guages for defining probabilistic graphical models, MDPs,
and POMDPs have also been developed (Raedt et al. 2016;
van den Broeck et al. 2021; Younes et al. 2005; Vallati et al.
2015), and if we want to learn models that generalize, such
languages would be good targets for learning as well.

Languages vs. Inductive Biases
It’s hard to understand why we should struggle to un-
derstand deep learning instead of learning deep un-
derstanding. J. Pearl

There is a compelling reason for why learning approaches
are either model-free and learn no models, or are model-
based but do not learn language-based representations (i.e.,
do not learn symbolic representations). The reason is that
learning such representations appears to require humans in
the loop, something that gets in the way of the automated
learning pipeline. This impression, however, is wrong: while
languages like those of SCMs and planning have been de-
veloped to be used by humans, this does not mean that the
representations over such languages can only be provided
by humans and cannot be learned from data. Certainly, there
are obstacles to overcome for achieving this and a key one is
the identification of the (state) variables from unstructured
data, but this is a technical problem that can be solved. I’ll
show that there are indeed crisp solutions to this problem
that exploit the natural inductive biases of language-based
representations.

Current DRL approaches can learn in principle policies
that solve problems such as Delivery or Minigrid for any
value of the parameters, but even then, it is not clear why this
is so. For representations learned over languages designed to
support modularity and reuse, the answers to these questions
follow from their semantics.

While the use of formal languages for learning representa-
tions is not common in deep learning, there is an increasing
trend to reflect intuitions about the representations sought
in the architectures. For example, RIM networks assume a
dynamics determined by sparse object interactions (Goyal
et al. 2020). Yet, informal talk of sparse interactions is no
substitute for a language with a clear semantics that can rep-
resent the range of possible sparse interactions and lead to
representations that can be understood in that way.

As mentioned before, suitable target languages yield
meaningful learning biases, as generalization is most of-
ten the result of learning compact descriptions. In Bayesian
networks, compactness comes from sparse graphs, while in
SCMs, compactness comes from the language and semantics
of interventions. In planning, compact descriptions result

from the language of action schemas and the predicates used
in them. Compact descriptions are easier to learn and af-
ford a powerful generalization, implying that representation
size is a key bias in language-based representations learning.
While there is no similar notion in deep learning, the “right”
biases in neural nets would be the ones that deliver compact
and reusable representations of this type.

Related Research
Language-based representations, most often first order, are
at the heart of the models and solvers studied in AI (Geffner
2014). The problem of learning such representations from
data is active in some of these settings, like learning causal
representations, mentioned above, and learning general ac-
tion models, to be discussed below. Methods designed to
learn symbolic representations from data provide a natural
way for integrating learning and reasoning (Konidaris, Kael-
bling, and Lozano-Perez 2018; Evans et al. 2021). Neuro-
symbolic methods make use of prior symbolic knowledge
(Serafini and Garcez 2016; Yang, Ishay, and Lee 2020), pos-
sibly in terms of first-order probabilistic models (Raedt et al.
2016; Manhaeve et al. 2021). The use of logical languages
has been central in recent characterizations of the expres-
sive power of graph neural networks (Barceló et al. 2020;
Grohe 2020). Domain specific task languages have been
used in a number of settings (Lake et al. 2017; Silver et al.
2020; Tsividis et al. 2021), including the dynamics of MDPs
(Diuk, Cohen, and Littman 2008). These languages are do-
main specific in the sense that they assume a particular vo-
cabulary. Language-based representations of rewards have
been explored too (Camacho et al. 2019; De Giacomo et al.
2019). Some deep learning approaches aim to approximate
first-order formulas like conjunctions of atoms (Shanahan
et al. 2020) or rules (Goyal et al. 2021), while others draw
intuitions from them (Garnelo and Shanahan 2019; Goyal
and Bengio 2020). Generally, symbolic methods like those
considered in inductive logic programming (Muggleton and
De Raedt 1994) assume and exploit background knowledge,
while deep learning approches do not use and do not produce
background knowledge; i.e., knowledge that can be reused.
This is their advantage and also their limitation.

Action Models, Policies, and Decompositions
We consider next three concrete examples of domain-
independent languages for acting and planning, and how
representation over them can be learned.

Language for General Action Models
Classical planning problems P = 〈D, I〉 are described in
terms of a planning domain D involving action schemas and
predicates, and instance information I detailing the objects,
the initial situation, and the goal. A planning instance P
defines a unique graphG(P ) where the nodes s stand for the
states over P and edges (s, s′) express that there is a ground
action a in P that maps the state s into s′. The states s are
the possible truth valuations over the ground atoms in P .
The general model learning problem over this language can
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be expressed then as the following inverse problem (Bonet
and Geffner 2020):

Given plain graphsG1, . . . , Gk, find the simplest domain
D and instances Pi = 〈D, Ii〉 over D such that the given
graphs Gi and G(Pi) are isomorphic, i = 1, . . . , k.

Variations of this problem have also been considered
where the edges in the input graphs Gi are labeled with ac-
tion types (e.g., pick, drop, move), and edges may be miss-
ing or observations may be noisy (Rodriguez et al. 2021).
The domains learned from some instances can then be used
to predict the effects of actions in other, unseen instances.
This learning formulation has been used to obtain the pred-
icates and action schemas for domains such Blocks, Tower
of Hanoi, and others. For example, the following domain de-
scription for Hanoi is learned from a single graph, produced
by an instance with 3 disks (predicate and variable names
are ours):

Move(d, fr, to)
Sta: neq(d, to), neq(d, fr), neq(to, fr), ¬larger(to, d)
Pre: ¬p(to, d), ¬p(fr, fr), p(d, d), p(to, to), p(fr, d)
Eff: ¬p(to, to), ¬p(fr, d), p(t, do), p(fr, fr) .

The domain learned can be shown to be correct for in-
stances of any size (any number of disks and pegs), and use
the predicate p(x1, x2) for two different purposes: for cap-
turing the relation on(x2, x1) when x2 6= x1, and for cap-
turing clear(x1) otherwise. The three schema arguments d,
fr, to represent disks, and “Sta(tic)” refers to precondition
atoms that are not affected by the actions. One can actually
test that this domain descriptionD is correct experimentally,
using (validation) graphs G obtained from other instances,
and checking if there is an I such that G and G(P ) for
P = 〈D, I〉 are isomorphic (a simpler version of the learn-
ing problem above). The learned representation also iden-
tifies the state variables of the problem through the p(d, d′)
atoms that encode the location of each of the disks d. As dis-
cussed by Bonet and Geffner (2020), the use of a first-order
target language with action schemas is critical for learning
such state variables, as propositional representations cannot
be reused in the same way and hence do not admit the same
learning bias.

The language of action models (action schemas and pred-
icates) is suitable for learning in this setting, not just because
it supports representations that generalize to other instances,
but also because it defines a heavily biased hypothesis space,
with the space of possible domains being characterized by a
small number of parameters with small integer values, like
the number of action schemas and predicates and their ar-
ities. Provided with bounds on these values, the learning
problem becomes a combinatorial optimization problem that
can be solved in a number of ways, in many cases optimally.
The optimization criterion used by Rodriguez et al. (2021),
for example, minimizes the sum of actions and arities. Asai
(2019), on the other hand, learn first-order action represen-
tations using deep learning, while Cresswell, McCluskey,
and West (2013) learn first-order representations heuristi-
cally assuming that action arguments in state transitions are

observable. Many other works learn similar representations
but assuming that the domain predicates are known.

Language for General Policies
The target languages for learning in many settings can be
taken off the shelf like the languages for representing ac-
tions and causal models discussed above. But for other tasks,
new domain-independent languages with the right properties
may have to be created. For example, in the Minigrid prob-
lem, DRL approaches are not after general dynamic mod-
els, but after general policies: policies that can deal with
any instance of the domain. What is then a good language
for representing such policies that is not tied to this partic-
ular domain? This question has been considered in the area
of generalized planning (Srivastava, Immerman, and Zilber-
stein 2008; Hu and De Giacomo 2011), and the language be-
low follows the one introduced by Bonet and Geffner (2018).

A general policy π for a class of domain instances Q is
a set of policy rules of the form C 7→ E where C contains
boolean conditions of the form p, ¬p, n = 0, or n > 0, and
E contains effects of the form p, ¬p, p?, n↓, n↑, n?, where
p and n stand for boolean and numerical features. Features
are functions over states. Boolean features p can have value
true or false, and numerical features n can have any non-
negative integer value. Conditions in C like p and n = 0
are true in a state when p has value true, and n has value
0 respectively, and effects in E like p (¬p), n↓ (n↑), and
p? (n?) indicate that p must be made true (resp. false), that
n must decrease (resp. increase), and that p (resp. n) can
change in any way. Features not appearing in the effects of a
rule must keep their values. The value of all the features Φ in
a state s is expressed as f(s), and f without a state argument
refers to an arbitrary feature valuation.

A pair of feature valuations (f, f ′) satisfies a policy rule
C 7→ E if f makes the conditions in C true, and the change
in feature values from f to f ′ is compatible with E. A
state transition (s, s′) in P is compatible with a policy π
if (f(s), f(s′)) satisfies a policy rule, and a state trajectory
s0, . . . , sn is compatible with the policy in P if s0 is the ini-
tial state of P and each transition (si, si+1) is compatible
with π. Finally, the policy π solves P if every maximal state
trajectory compatible with π reaches a goal state of P , and
it solves Q if it solves every instance P in Q.

For example, the policy π over the features Φ = {H,n},
captured by the following two rules

{¬H,n> 0} 7→ {H,n↓}; pick block above x
{H,n> 0} 7→ {¬H}; put block away

where H is true if holding a block and n is the number of
blocks above a block x, solves the class Q of Blocksworld
problems where the goal is clear(x), regardless of the num-
ber or initial configuration of blocks. The first rule in the pol-
icy says to do any action that makes H true and decreases
the value of n, provided that H is false and n is positive,
while the second rule says to do any action that makes H
false and does not affect the value of n, provided that H is
true and n is positive.
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More interestingly, a general policy for the Delivery
domain above can be defined using the features Φ =
{H, p, t, n} for “holding”, “distances to nearest package and
target”, and “number of undelivered packages”, as:

{¬H, p> 0} 7→ {p↓, t?}; go to nearest pkg
{¬H, p= 0} 7→ {H}; pick it up
{H, t> 0} 7→ {t↓}; go to target
{H,n> 0, t= 0} 7→ {¬H,n↓, p?}; drop pkg.

The first rule says to do any action that decreases the dis-
tance p to the nearest package when not holding a package
and the distance is positive, whatever the effect on the dis-
tance t to the target. The reading of the other rules is similar.
These are policies written by hand though, and the ques-
tion is how such policies can be learned? As before, this
learning problem has been formulated and solved as a com-
binatorial optimization problem by creating a large but fi-
nite set F of possible boolean and numerical features from
the domain predicates, using a standard grammar based on
description logics, which is a fragment of 2-variable logics
(Baader, Horrocks, and Sattler 2008). Provided with this set
F where each feature is given a cost (the number of gram-
mar rules used to derive it), the learning task becomes:

Given a domain D, instances P1, . . . , Pk of Q, and a fi-
nite pool of featuresF , each with a cost, find the cheapest
set of features Φ ⊂ F and a policy π over them such that
π solves the instances P1, . . . , and Pk.

This is a combinatorial optimization problem that is cast
and solved as a Weighted Max-SAT task (Francès, Bonet,
and Geffner 2021). Once again, the language in which rep-
resentations are sought provides a strongly biased hypoth-
esis space where policies that involve few simple features
(in terms of the domain predicates) are preferred. As before,
nothing precludes the use of deep learning to provide an al-
ternative computational method, potentially more scalable
and robust (Toyer et al. 2020; Garg, Bajpai, and Mausam
2020). A formal step in this direction is the computation of
general optimal value functions using graph neural networks
(Ståhlberg, Bonet, and Geffner 2021), that exploits a cor-
respondence between 2-variable logics and GNNs (Barceló
et al. 2020; Grohe 2020).

Language for Decomposing Goals into Subgoals
The problem of expressing and using the common subgoal
structure of a collection of problemsQ has been important in
AI since the 1960s (Newell and Simon 1963; Erol, Hendler,
and Nau 1994), while the problem of learning such struc-
ture (in the form of intrinsic rewards) has become important
in recent RL research as well (Zheng et al. 2020). We are in-
terested in a similar problem but want to learn such structure
over a suitable formal language.

A policy sketch or simply a sketch is a set of sketch rules
C 7→ E of the same form as policy rules. But while pol-
icy rules filter 1-step transitions; namely, when in a state
s, select a 1-step transition to any s′ such that the feature

valuations (f(s), f(s′)) satisfy a policy rule, sketch rules
define subproblems: when in a state s, reach a state s′,
not necessarily in one step, such that the feature valuations
(f(s), f(s′)) satisfy a sketch rule (Bonet and Geffner 2021).

Sketches decompose problems into subproblems without
prescribing how these subproblems should be solved (go-
ing from s to s′). One is interested, however, in sketches that
yield subproblems that can be solved efficiently, in low poly-
nomial time (in the number of problem variables), and this
is guaranteed when subproblems have a low, bounded width
(Lipovetzky and Geffner 2012). In that case, the sketch has
a bounded width, and all the problems inQ can be solved in
polynomial time.

For example, a sketch R1 for Delivery that involves the
single feature n which tracks the number of packages not
yet delivered, is given by the rule

R1 : {{n > 0} 7→ {n↓}}

that expresses a decomposition where, in states s where
n > 0, states s′ should be reached where the value of n
is lower than in s. One can show that the resulting subprob-
lems have a width bounded by 2. Likewise, a sketchR2 over
the features n and H with the same meaning as above, can
be given with two rules:

R2 : {{¬H} 7→ {H} , {n> 0, H} 7→ {n↓,¬H}} .

The rule on the left says that if not holding a package, get
hold of one, while the other rule, that if holding a pack-
age, deliver it. The sketch R2 has width 1 meaning that all
subproblems and hence all Delivery instances are rendered
solvable in linear time. The use of hand-crafted sketches has
been addressed by Drexler, Seipp, and Geffner, and work on
learning sketches automatically is next.

Summary
Deep learning and deep reinforcement learning are incred-
ibly powerful techniques that struggle with structural gen-
eralization. While researchers assume that the right induc-
tive bias in the architecture is all that is needed, no much
guidance is offered to get there. In this paper, I’ve argued
that learning representations over suitably designed formal
languages with a semantics provides a research path that is
crisp and meaningful, and illustrated the approach by fo-
cusing on the problems of learning general action models,
policies, and subgoals (intrinsic rewards). This is all com-
patible with Bengio’s vision that systematic generalization
arises from an “efficient factorization of knowledge into re-
composable pieces”, but complements it by assuming that
the pieces are expressed in a language. Learning language-
based representations from data, indeed, is not incompatible
with the use of deep learning techniques. Moreover, the inte-
gration of language-based representations and deep learning,
one describing what needs to be learned, and the other, de-
livering it at scale, has the potential to inform the design of
deep learning methods that are more transparent and which
can be assessed in ways that go beyond performance curves.
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P. 2021. Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges. arXiv preprint arXiv:2104.13478.
Camacho, A.; Icarte, R. T.; Klassen, T. Q.; Valenzano, R. A.;
and McIlraith, S. A. 2019. LTL and Beyond: Formal Lan-
guages for Reward Function Specification in Reinforcement
Learning. In IJCAI, 6065–6073.
Chevalier-Boisvert, M.; Bahdanau, D.; Lahlou, S.; Willems,
L.; Saharia, C.; Nguyen, T. H.; and Bengio, Y. 2019.
BabyAI: A Platform to Study the Sample Efficiency of
Grounded Language Learning. In ICLR.
Chevalier-Boisvert, M.; Willems, L.; and Pal, S. 2018. Min-
imalistic Gridworld Environment for OpenAI Gym. https:
//github.com/maximecb/gym-minigrid.
Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013.
Acquiring planning domain models using LOCM. The
Knowledge Engineering Review, 28(2): 195–213.
Darwiche, A. 2018. Human-level intelligence or animal-like
abilities? Communications of the ACM, 61(10): 56–67.
De Giacomo, G.; Iocchi, L.; Favorito, M.; and Patrizi, F.
2019. Foundations for restraining bolts: Reinforcement
learning with LTLf/LDLf restraining specifications. In
ICAPS, volume 29, 128–136.

Diuk, C.; Cohen, A.; and Littman, M. L. 2008. An object-
oriented representation for efficient reinforcement learning.
In Proceedings of the 25th international conference on Ma-
chine learning, 240–247.
Drexler, D.; Seipp, J.; and Geffner, H. 2021. Expressing
and Exploiting the Common Subgoal Structure of Classical
Planning Domains Using Sketches. In KR. ArXiv preprint
arXiv:2105.04250.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. In AAAI, volume 94, 1123–
1128.
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