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Abstract
As systems involving multiple agents are increasingly de-
ployed, there is a growing need to diagnose failures in such
systems. Model-Based Diagnosis (MBD) is a well known AI
technique to diagnose faults in systems. In this approach, a
model of the diagnosed system is given, and the real system
is observed. A failure is announced when the real system’s
output contradicts the model’s expected output. The model
then is used to deduce the defective components that explain
the unexpected observation. MBD has been increasingly be-
ing deployed in distributed and multi-agent systems. In this
survey, we summarize twenty years of research in the field
of model-based diagnosis algorithms for MAS diagnosis. We
depict three attributes that should be considered when exam-
ining MAS diagnosis: (1) The objective of the diagnosis. Ei-
ther diagnosing faults in the MAS plans or diagnosing coor-
dination faults. (2) Centralized vs. distributed. The diagno-
sis method could be applied either by a centralized agent or
by the agents in a distributed manner. (3) Temporal vs. non-
temporal. Temporal diagnosis is used to diagnose the MAS’s
temporal behaviors, whereas non-temporal diagnosis is used
to diagnose the conduct based on a single observation. We
survey diverse studies in MBD of MAS based on these at-
tributes, and provide novel research challenges in this field
for the AI community.

Introduction
Multi-Agent Systems (MAS) can be found in wide variety of
applications, such as automatic warehousing, autonomous
vehicles, logistics and public transport (such as train sys-
tems), video games, etc. (Hausman, Schwarz, and Graves
1976; Kato et al. 2015; Runhua et al. 2013; Marı́n-Lora et al.
2020). Such systems may vary in many characteristics, such
as the amount of cooperation between the agents, the rela-
tions between them, or how dynamic those systems are. In
many of these schemes, agents are assigned to perform tasks
in a coordinated manner, in what is called a Multi-Agent
Plan (MAP). For example, Amazon warehouses use robots
for automated relocation of items in the warehouse, freeing
manpower for less trivial tasks (Edwards 2020).

As agents are deployed more and more in complex, dy-
namic environments, ways to react to failures in multi-agent
systems have become more and more important. In some
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systems agents have to agree on their goals, plans and at
least some of their values. In other systems agents should
coordinate their interactions. However, agents may disagree
or avoid consistent interactions, because of sensory ambi-
guity, communication defects, mechanical faults, etc. If an
inconsistency arises, it needs to be diagnosed and the agents
that triggered the coordination breakdown should be identi-
fied. This is the task of diagnosis.

Model-Based Diagnosis (MBD) (Reiter 1987; de Kleer
and Williams 1987) is an Artificial Intelligence diagnosis
approach. MBD relies on a model of the diagnosed system,
which is utilized to simulate the behavior of the system given
the operational context (typically, the system inputs). The re-
sulting simulated behavior (typically, outputs) are compared
to the observed behavior to detect discrepancies indicating
failures. The model can then be used to pinpoint possible
failing components within the system. In multi-agent system
domains, the MAS model includes a model of the agents,
their plans and the interactions between them, and the obser-
vation of the MAS is the observed behaviours of the agents.
The first contribution of this survey is by presenting 20
years of research in the field of MBD of MAS.

Diagnosing MAS raises several challenges: (1) Typically,
diagnosis algorithms do not scale well. Multi-agent systems
are usually large and complex and pose a great challenge
to diagnosis algorithms. (2) Dynamic structures, like MAS,
pose a major challenge to diagnostic algorithms, since they
involve dynamic change in the behaviours, multiple observa-
tions and interactions that rapidly change. (3) MBD has been
difficult to apply to diagnose coordination failures, since
many such failures take place at the boundaries between
the agents and their environment, including other agents. (4)
MAS presents additional challenges as a result of a noisy en-
vironment that provokes uncertainty and partial observation.

Diagnosing MAS algorithms discuss different MAS di-
agnosis attributes and propose solutions accordingly. (1)The
first attribute takes into account the goal of the MAS diag-
nosis. Typically, two objectives have been investigated: the
first is connected to the occurrence of defective plan-steps
in the global or derived local plan. The second goal looks
at coordination faults, which occur when agents disagree on
key components of their joint task. (2) The second charac-
teristic of the diagnosis is whether it is applied in a central-
ized or distributed manner. A single diagnoser models and
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observes the entire MAS and infers the diagnosis in a cen-
tralized method. In a distributed approach, each agent has
a partial model and observes the system in part; then, all
of the agents communicate information to arrive at a global
diagnosis. (3) The third diagnosis attribute asks the ques-
tion whether to consider temporal aspects of the MAS or
not. Considering temporal aspects in the inference process
means either using various observations over time or consid-
ering possible agent behaviors over time. The second con-
tribution of the survey is by organizing the different MBD
methods of MAS according to these three attributes.

In this survey, we first explain the main challenges that
the above MAS diagnosis aspects pose (Section ). In Sec-
tion we present a literature review of MAS diagnosis ap-
proaches. We divide this review between algorithms that
consider multi-agent plan diagnosis (Section ) and MAS co-
ordination diagnosis (Section ). Note that we consider only
works that deal with diagnosing faults in multi-agent sys-
tems, rather than studies that use MAS to diagnose faults
in other systems, as lastly proposed (El Koujok et al. 2020;
Srivastava, Bhat, and Singh 2020). Then in Section , we
present research opportunities in MAS diagnosis, this is the
third contribution of this survey. There are six open re-
search directions: diagnosing MAS with uncertain observa-
tion, troubleshooting MAS failures, recover from failures,
integrating machine-learning approaches, diagnosing MAS
with privacy constraints and diagnosing intermittent faults
in MAS. Section concludes.

Attributes of MAS Diagnosis
Diagnosing MAS algorithms consider different aspects of
the MAS diagnosis problem and propose solutions appro-
priately. Next we explain these different aspects.

Planing and Coordination Faults
Parker and Lynne (Parker 2012) consider several faults a
multi-agent system might encounter: individual agent mal-
functions, local perspectives that are globally incoherent,
inter-agent interference, software errors or incompleteness,
and communications failures. In this study we focus on
two fundamental types of faults, which are at the core of
the “multi” aspect of multi-agent systems: planning related
faults and coordination related faults. The other types of
faults described in (Parker 2012), such as communication
failures or incorrect local perceptions, will eventually evolve
to, or be the result of either planning related faults or coor-
dination related faults (Khalastchi and Kalech 2019).

Planning Related Faults: Planning related faults intro-
duce the occurrence of faulty plan-steps either in the global
or the derived local plan. A faulty plan-step is an instruction
which may lead to mission failure, degraded performance, or
waste of resources such as energy. For instance, in a foraging
domain, a faulty step of the global plan resulted in the fol-
lowing task allocation: two agents forage in the same area,
following a predefined plan. Although we can assume that
their plans are coordinated, it may happen that the agents
will interfere each other by allocating the same place simul-
taneously. This fault may be caused by a faulty behaviour of

each one of the agents, deviated from its plan. A diagnosis
mechanism is challenged to identify the faulty plan-step and
time as the root cause. It is challenging since there could be
many time steps along the plan as well as many agents that
may cause the fault. Also, a faulty agent may cause another
healthy agent a delay in his plan, which in turn may cause
a third agent an additional delay, and so on. Diagnosing the
root cause agent in such a chain reaction is challenging.

A known research field that considers the synchronization
challenge is Multi-Agent Path Finding problem (MAPF)
(Pallottino et al. 2007; Erdem et al. 2013; Surynek et al.
2016; Švancara et al. 2019; Barták et al. 2019; Barták,
Švancara, and Krasičenko 2020; Li, Ruml, and Koenig
2021). MAPF describes the problem of moving agents to
destinations while avoiding collisions. For example, Ama-
zon warehouses use robots for automated relocation of items
in the warehouse, freeing manpower for less trivial tasks. In
another example (Švancara et al. 2019; Ma and Li 2021) an
autonomous intersection management (AIM) is presented.
In such systems, the agents are assigned to execute tasks.
This assignment is called Multi-Agent Plan (MAP).

In such environments agents often share reusable re-
sources such as doorways, charge points, moving space etc.
for a given amount of time. In case of a fault, an agent may
result in holding a resource for longer amount of time than
planned, and creating a chain reaction of agents failing to
follow their original plans, which could result in halting of
a production process or worse. This raises the necessity to
isolate the faulty agents and the time at which they failed.

Coordination Related Faults: Coordination (e.g., on a
joint plan or goal) is a key to establishment and main-
tenance of teamwork (Tambe 1997; Pynadath and Tambe
2003; Sycara and Sukthankar 2006; Geihs 2020). One type
of failure of particular interest in multi-agent systems is a
coordination fault, where agents come to disagree on salient
aspects of their joint task. There is thus a particular need to
be able to detect and diagnose the causes for coordination
faults that may occur, to facilitate recovery and reestablish-
ment of collaboration, e.g., by negotiations (Beer et al. 1999;
Calvaresi et al. 2018). This type of diagnosis is called social
diagnosis, since it focuses on finding causes for failures to
maintain social relationships (Franchi and Poggi 2012), i.e.,
coordination failures.

Coordination failures take place at the boundaries be-
tween the agents and their environment, including other
agents. For instance, in a team, an agent may send a message
that another agent, due to a broken radio, did not receive. As
a result, the two agents come to disagree on an action to be
taken. Lacking an omniscient diagnoser that knows of the
sending of the message, the receiver has no way to detect
and diagnose its fault, since the context—the message that
can be fed into a model of the radio of both agents—is un-
observable to the diagnoser.

It is possible to diagnose coordination failures, given
the actions of agents, and the coordination constraints that
should ideally hold between them. In the example above,
knowing that the two agents should be in agreement as to
their actions, and observing that their actions are not in
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agreement, is sufficient to (1) show that a coordination fail-
ure has occurred; and (2) to propose several possible diag-
noses for it (e.g., the first agent did not send a message, the
second agent did not receive it, etc.). However, the diagno-
sis task is challenging since agents could blame each other,
which increasing the number of possible diagnoses.

Centralized vs. Distributed Diagnosis
Most approaches in model–based diagnosis depict central-
ized diagnosis, where a single observer makes the diagnosis
(de Kleer and Williams 1987; Metodi et al. 2014). On the
other hand, there are a few approaches to distributed diag-
nosis, where multiple observers distribute the diagnosis task
among them (Su et al. 2002; Lo, Lynch, and Liu 2016). In
this case, each diagnoser observes part of the system and
infers local diagnosis. Then, they coordinate to share infor-
mation and reach a global diagnosis.

In MAS diagnosis, most approaches present centralized
diagnosis, but there are some distributed approaches. A dis-
tributed approach for MAS is motivated even more than in
regular systems, since MAS is a distributed system by defi-
nition. Moreover, a single diagnosing agent is a single point
of failure. Distributing the diagnosing process among the
agents may overcome such difficulties.

Temporal vs. Non-Temporal Faults
Many approaches in model-based diagnosis do not consider
temporal aspects of a system. In such cases, a system can
be modelled and diagnosed without the need to consider or
model temporal relations between the agents. On the other
hand, there are approaches that consider temporal aspects of
the actions and the relations between components (Brusoni
et al. 1998; Bunte, Stein, and Niggemann 2019). In those
cases, when modelling the system, there is importance to the
time and order at which actions, including faults, take place.

When diagnosing MAS, temporal aspects may or may not
be taken into account. The nature of the diagnostic system
has a considerable bearing on this. Non-temporal systems
are depicted by one type of MAS. In such systems, regu-
lar execution refers to the agents’ agreement on a specific
behavior. An example can be seen in a work where agent
teams coordinate their plans (Kalech and Kaminka 2007).
In that work, coordination manifests in the agreement of
agents on the execution modes they are in. Another type of
MAS depicts systems in which the temporal relations have
great importance in the system modelling. Such systems are
highly sensitive to the order of events. For instance, an agent
that experiences delay in taking a box from point A to point
B, might impact the execution of another agent, that is sup-
posed to take the same box from point B to point C. In such
approaches considering temporal aspects is major part of the
modelling of the system, and relations between actions of
different agents should be taken into consideration. An ex-
ample can be seen in (Micalizio and Torasso 2014). The au-
thors present a system where agents use resources in an of-
fice environment (rooms, desks, doors, parking points etc.).
In this example, the agents work cooperatively, and when a
fault occurs, the modelled system needs to have perspective

of temporal order between the different events, to track down
the root cause of the failure in the execution of the plan.

Single vs. Multiple Observation Times
MAS diagnosis algorithms are based on observation(s) of
the system. They compare between the expected behaviour
of the agents and the observed behaviour to infer which
agents behaved abnormally. The greater the number of ob-
servation times, the more likely the diagnosis can be iso-
lated. In the extreme case, where all agents are observed
throughout all time steps, it is possible to conclude the ex-
act agents that caused the MAS to fail. Some of the previ-
ous work assume multiple observation time points during the
agents’ execution, and deduce a diagnosis that is consistent
with all observations. Other studies assume a single obser-
vation time, and provide diagnosis algorithms based on that
observation.

A Survey of MAS Diagnosis
Previous research has looked on the diagnosis of multi-
agent system failures. We divide this survey into two topics,
based on the main attribute of the diagnosis MAS, described
above: diagnosing MAS plans (Section ), and diagnosing co-
ordination faults (Section ). But first we introduce the fun-
damentals of MBD.

Model-Based Diagnosis: Background
An MBD problem arises when the normal behavior of a sys-
tem is violated due to faulty components as indicated by cer-
tain observations. An MBD problem is specified by the tu-
ple 〈SD,COMPS,OBS〉 where: SD is a system description,
COMPS is a set of components, and OBS is an observation.
SD takes into account that some components might be ab-
normal (faulty). This is specified by the unary predicate h(·)
on components such that h(c) is true when component c
is healthy, while ¬h(c) is true when c is faulty. A diagno-
sis problem arises when the assumption that all components
are healthy is inconsistent with the system model and ob-
served system behavior. This is expressed formally as fol-
lows: SD ∧

∧
c∈COMPS h(c) ∧ OBS ` ⊥.

Diagnosis algorithms try to find diagnoses, which are pos-
sible ways to explain the above inconsistency by assuming
that some components are faulty. A component set4 is a di-
agnosis if: SD ∧

∧
c∈4 ¬h(c) ∧

∧
c/∈4 h(c) ∧ OBS 0 ⊥.

Diagnosis of Plan Related Faults
In this section, we cover works related to the diagnosis prob-
lem in multi-agent systems plan; i.e. the plan performed by
the agents is considered as part of the system description
(SD), the agents are components (COMPS) and the observa-
tion (OBS) includes the actions of the agents.

Roos and Witteveen (Roos and Witteveen 2009) inves-
tigate this problem. They introduce a formal model where
partial observations of plan states are compared with pre-
dicted states based on a model of the expected plan execu-
tion. Deviation between observed and predicted states can
be explained by faulty plan(s). The diagnosis is a subset of
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abnormal plan steps that can explain the incompatibility be-
tween the predicted and the observed state. They show how
these diagnoses can be found efficiently if the plan is dis-
tributed over a number of agents.

Extending Roos and Witteveen’s notion, de Jonge et al.
(De Jonge, Roos, and Witteveen 2009) introduce the use of
model-based diagnosis in two general types of plan diagno-
sis: primary plan diagnosis identifies the incorrect or failed
execution of actions, and secondary plan diagnosis identifies
the root cause of these faulty actions. The primary diagno-
sis is linked to the secondary diagnosis and thus the root
cause (e.g., agent, equipment) of failed plan steps can be di-
agnosed.

Micalizio and Torasso (Micalizio and Torasso 2007) also
address the problem of MAS plan diagnosis, aiming to find
the faulty agents. They model the normal and abnormal exe-
cution of actions and propose a mechanism for identifying
how agent faults affect the functionality of the MAS. By
modelling of the agents, they assume that agents monitor
their behavior through series of observations as part of the
diagnosis.

In another work, Micalizio (Micalizio 2009) proposes a
distributed approach to autonomous plan repair. Each agent
executes a local plan that is derived from the global multi-
agent plan. The agents autonomously monitor, diagnose, and
repair their local plan. Since the system is only partially ob-
served, the state of an agent is not certain but rather esti-
mated. Thus, the diagnosis is typically ambiguous, and thus
the repair or re-planning step must handle uncertainty. They
show that the proposed methodology is adequate to promptly
react to an action failure and that the computational cost of
the approach is affordable since the agent diagnosis highly
constrains the search for a recovery plan.

Another approach to plan related faults (Micalizio and
Torta 2012) focuses on temporal aspects of a diagnosis and
tries to explain delays in the execution of the multi agent
plans by assigning an execution modes to actions (e.g. nomi-
nal, faulty1, faulty2,. . . ) that are essentially time lengths that
an action took, in order to explain consistently the observa-
tions received throughout the plan.

In a later work, Micalizio and Torasso (Micalizio and
Torasso 2014) presented a novel methodology, named Coop-
erative Weak-Committed Monitoring (CWCM), where the
diagnosis of the multi-agent plan, executed in a dynamic
and partially observable environment, is addressed in a fully
distributed and asynchronous way. As opposed to previous
approaches the action failures are not assumed as indepen-
dent of each other. CWCM exploits non-deterministic ac-
tion models to carry out two main tasks: detecting action
failures and reconstructing possible beliefs an agent has had
about the environment. Thus, each agent has the ability for
self-diagnosis in terms of explaining action failures as ex-
ogenous events. A diagnostic engine is utilized for distin-
guishing primary and secondary action failures. They show
that CWCM is effective in identifying and explaining action
failures even when the observability of the system is signifi-
cantly reduced.

In the recent series of studies by Torta et al. (Torta and
Micalizio 2018; Torta, Micalizio, and Sormano 2019a,b),

the authors focus on temporal aspects of a diagnosis sim-
ilarly to (Micalizio and Torta 2012). Those works focus on
explaining failures that happen during the execution of Tem-
poral MAP (TMAP), in a way that explains how root failures
propagate into later stages of the execution. The model of
the system contains normal as well as abnormal execution
modes of the actions, and the diagnosis algorithm identifies
actions that were executed in faulty mode as well as actions
that executed abnormally as a result of failure propagation.

A distributed diagnosis approach is proposed by Qin et al.
(Qin et al. 2018). A distributed fault detection (DFD) unit
and a distributed fault isolation (DFI) unit are included in
each agent. A model of each agent’s interactions with its
neighbors is supplied, which is used to discover faults and
isolate them using a residual generator. The agents are able
to isolate the global fault by interacting this information.

Diagnosis of Coordination Faults
In this section, we cover works related to the diagnosis of
coordination faults, i.e., faults which prevent or disturb the
ability of agents in the system to coordinate their actions.
Coordination faults are not usually relevant to adversary
agents, but typically could appear in systems with coopera-
tive agents. The components (COMPS) and the observation
(OBS), in this case are the same as in diagnosis of MAS
plans, but the system description (SD) includes a description
of the coordination between agents.

Early studies in this subject depict centralized architec-
tures. For instance, Micalizio et al. (Micalizio, Torasso, and
Torta 2004) have utilized causal models of failures and di-
agnoses to centrally detect and respond to single-agent fail-
ures and to multi-agent coordination failures. Unfortunately,
a centralized architecture can be computationally expensive
in terms of communications and run-time, and there is a sin-
gle point of failure as the diagnosing agent might fail. Dis-
tributed approaches address this limitation.

Roos et al. (Roos, Ten Teije, and Witteveen 2003) present
model-based diagnosis methods for spatially distributed
agents, where each agent is responsible for diagnosing a dif-
ferent subsystem of the MAS. Every agent makes a local
diagnosis to its own sub-system and then all agents compute
a global diagnosis. However, while building the global di-
agnosis set there is an assumption that there are no conflicts
between the knowledge of the different agents, i.e., that no
coordination faults occur.

The following works of Kalech and Kaminka explic-
itly tackle the problem of diagnosing coordination faults.
Continuing with their centralized approach (Kalech and
Kaminka 2005), Kalech et al. introduce a distributed model-
based coordination-failure diagnosis approach (Kalech et al.
2006). In their work, the coordination between the agents is
modeled as a constraint graph. For the diagnosis, they utilize
different distributed CSP (Constraint Satisfaction Problem)
algorithms. They conclude that there is a trade-off between
the effectiveness of the algorithms, in terms of communi-
cation and computation, and the correctness of the diagno-
sis that the algorithms produce. In those works, the diagno-
sis process tries to explain inconsistencies in the constraint
graph isolating agents that do not behave as expected.
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Fault Type Centralized/ # Observations Temporal?
Distributed

(Roos and Witteveen 2009) Plan related Both Many Temporal
(De Jonge, Roos, and Witteveen 2009) Plan related Centralized Many Temporal

(Micalizio and Torasso 2007) Plan related Distributed Many Temporal
(Micalizio 2009) Plan related Distributed Many Temporal

(Micalizio and Torta 2012) Plan related Unspecified Many Temporal
(Micalizio and Torasso 2014) Plan related Distributed Many Temporal
(Torta and Micalizio 2018) Plan related Unspecified Many Temporal

(Torta, Micalizio, and Sormano 2019a) Plan related Unspecified Many Temporal
(Torta, Micalizio, and Sormano 2019b) Plan related Centralized Many Temporal

(Qin et al. 2018) Plan related Distributed Many Temporal
(Micalizio, Torasso, and Torta 2004) Coordination related Centralized Many Temporal

(Daigle, Koutsoukos, and Biswas 2006) Coordination related Distributed Many Temporal
(Kalech and Kaminka 2005) Coordination related Centralized One Not temporal

(Kalech et al. 2006) Coordination related Distributed One Not temporal
(Kalech and Kaminka 2007) Coordination related Both One Not temporal
(Kalech and Kaminka 2011) Coordination related Both One Not temporal

(Kalech 2012) Coordination related Centralized Many Not temporal
(Passos, Abreu, and Rossetti 2015) Coordination related Centralized Many Temporal

(Elimelech et al. 2017) Plan/Coordination related Centralized One Temporal
(Natan and Kalech 2020) Plan/Coordination related Distributed One Temporal

Table 1: This table summarizes the related work considering the discussed aspects.

The following year, Kalech and Kaminka (Kalech
and Kaminka 2007) introduced a novel design space of
coordination-diagnosis algorithms. Their underlying as-
sumption is that different faults might lead agents to dis-
agree. They use the term “social diagnosis” to describe the
process that diagnoses the reason why agents disagree. This
process is divided into the task of selecting the diagnos-
ing agent and the task of computing the diagnosis. Differ-
ent methods were implemented for each task, and thousands
of diagnosis cases were tested. They concluded that (a) cen-
tralizing the diagnosis calculation task is critical in reducing
communications, and (b) techniques where agents do not ex-
plicitly reason about the beliefs of their peers are preferable
in terms of computational runtime.

In (Kalech and Kaminka 2011), Kalech and Kaminka
have extended their work to scale well with a high number
of agents. The social diagnosis scalability can be achieved
in two ways: (a) agents should use communication early in
the hypotheses generation process to stave off unneeded rea-
soning, which ultimately leads to unneeded communication,
and (b) by diagnosing only a limited number of representa-
tive agents (instead of all the agents).

In a following work (Kalech 2012), Kalech has proposed
a matrix-based representation for the coordination between
the agents and a set of operators to handle the exploration of
the coordination along time. These operators use to model
the MAS coordination and to diagnose the faulty agents
when some fail.

A different approach, that integrates diagnosis of MAP
and coordination faults, is presented by Elimelech et al.
(Elimelech et al. 2017). In their work, the authors propose a
model based approach to diagnose resource usage failures in
multi-agent systems. On the one hand, each agents has a pre-
defined plan, on the other hand, the plans dictate the agents’

resource usage, which defines coordination constraints be-
tween the agents. They model the diagnosis problem, called
TMARA-Diag, as a Model-Based Diagnosis problem by
defining a set of constraints over the usage of the resources.
They use a SAT solver to assign health values to different
agents in order to explain the observation of the system. In
later work, Natan and Kalch (Natan and Kalech 2020) ex-
tended this framework to distributed diagnosis, where the
agents collaborate to compute the diagnosis without shar-
ing their plans. They present synchronous and asynchronous
distributed algorithms to diagnose the faulty agents.

Passos et al. (Passos, Abreu, and Rossetti 2015) present
an original way to reduce the complexity of the diagnosis
process. Instead of modeling the behaviours of the agents,
they propose a model-free approach, usually used in auto-
mate debugging, Spectrum-based Fault Localisation (Abreu,
Zoeteweij, and van Gemund 2011; Elmishali, Stern, and
Kalech 2018). In this approach, the model is built on the
fly, by tracking the MAS tasks and marking for each agent
whether it participated an observed task or not. The success
of the tasks is analysed too. This information is used then to
generate possible diagnoses. This approach scales well but
assumes full and many observations along the time. Also,
they assume that the agents’ and MAS’ normal behavior are
deduced from earlier executions in which no faults occurred.

Summary
Table 1 summarizes the different MAS diagnosis work de-
tailed above. We grouped these works according to the MAS
diagnosis objectives, either to diagnose plan-related faults
(Section ) or coordination-related faults (Section ). In each
objective, we further divide the works according to the fol-
lowing criteria:

• Input. The input given to the diagnoser. This can be a

12338



global MAP that is shared between the agents, the agents’
behaviors, a group of interconnected sub components of
the system, Bond graph between varying subsystems.

• Distributed or centralized. Whether the computation of
the diagnosis is done in a distributed or in a centralized
manner.

• Number of observations. The number of observations
given to the diagnoser.

• Temporal or non-temporal. Whether the diagnosis pro-
cess takes into consideration temporal constraints or not.

Research Opportunities for MAS Diagnosis
Next, we describe open research opportunities to the AI
community in the field of MAS diagnosis.

Troubleshooting. Troubleshooting is the task of failure
root cause analysis and repair. Troubleshooting starts by a
diagnosis process which outputs a set of candidate diagnoses
and their likelihood. Then a discrimination process collects
additional observations to localize the root cause of the fault.
Finally, a repair process should fix the faulty component.
Although the diagnosis process for multi-agent has been re-
searched in the literature, troubleshooting remains an open
research question. Given a set of diagnoses and their like-
lihood, choose what information (such as observations) to
obtain in order to enable finding the correct diagnosis and to
assist the agents to reach their goals.

Privacy. Privacy is a growing concern while designing
a multi-agent system (Such, Espinosa, and Garcı́a-Fornes
2014; Katewa, Pasqualetti, and Gupta 2018). Distributing
the diagnosis process might help with preserving agent pri-
vacy to some degree. Agents in multi-agent systems could
be cooperative (Kalech et al. 2006), non-cooperative (Elim-
elech et al. 2017) or even adversary (Rehák, Pěchouček, and
Tožička 2005). While cooperative agents might not be so
concerned about privacy, by definition non-cooperative and
adversarial agents are usually presumed to be interested in
keeping as much of their information for themselves. When
diagnosing a system fault, such goal may be achieved to
some degree by using a distributed approach in which agents
share only part of their internal data or some sort of pro-
cessed data that does not disclose sensitive information.

Uncertain observation. Typically, model-based diagnosis
algorithms assume the existence of a model of the system
and observations. In real world the observations are not al-
ways certain due to inaccurate sensors, environmental noises
and communication failures (Cazes and Kalech 2020, 2021).
In such cases we should diagnose the system with uncertain
observation. In multi-agent domains, uncertain observations
are natural and thus a third challenge is to develop diagnosis
algorithms to cope with uncertain observations.

Online replan. As part of the troubleshooting process,
once the malfunctioned agent is isolated, a repair action
should be preformed. In a multi-agent system this task is
not always feasible since the agents could be physically dis-
tributed so the malfunctioned agent could be far away from
the control center. In this case, we would like to enable the

other agents to continue according to their plans and reach
their goals. However, due to some malfunctioned agents, the
other agents may be stuck. Thus, the fourth challenge is to
develop online replan algorithms for the multi-agent with a
minimum deviation from the original plans.

A machine-learning approach. All the methods men-
tioned in this survey focus on model-based diagnosis ap-
proach. The reason is that, to the best of our knowledge,
no other diagnosis approaches have been proposed for
MAS. Some papers propose machine-learning algorithms
that use multi-agent approach to diagnose other systems
(Koujok, Ragab, and Amazouz 2019), but no paper proposed
machine-learning algorithms to diagnose multi-agent sys-
tem. As the growing of machine-learning field in academia
and industry, and specifically for diagnostic tasks (Huang,
Zhang, and Li 2018; Hoang and Kang 2019), we believe that
this approach could be applied to diagnose MAS too.

Diagnosing intermittent faults. Previously developed
MAS diagnosis algorithms were based on the assumption
that faulty agents behave abnormally over time. However,
there are systems in which faulty agents do not persis-
tently perform faulty actions. Furthermore, in some systems,
agents may perform faulty actions, but the system does not
fail. These are known as Intermittent Faults (Kalech, Stern,
and Lazebnik 2021). Observing the MAS in a single execu-
tion for a short period of time with such intermittent faults
may result in an incorrect diagnosis. As a result, the MAS
should be observed over time in a variety of executions. This
presents the challenge of identifying the faulty agents that
can explain the failed MAS executions. To the best of our
knowledge, diagnosing intermittent faults in MAS has not
been addressed.

Conclusions
In this survey, we presented studies on model-based diagno-
sis techniques for multi-agent systems. We divided the algo-
rithms considering three attributes: (1) the objective of the
MAS diagnosis - either algorithms that consider diagnosis
of multi-agent plan or algorithms that consider MAS coor-
dination faults. (2) The diagnosis method - either algorithms
that use a centralized agent who makes the diagnosis or al-
gorithms that run in a distributed manner. (3) Temporal vs.
non- temporal - either algorithms that consider temporal as-
pects of MAS failures or only a single time fault. In addi-
tion, we presented challenges in MAS diagnosis that could
be new opportunities for future work for the AI community.
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1998. A spectrum of definitions for temporal model-based
diagnosis. Artificial Intelligence, 102(1): 39–79.
Bunte, A.; Stein, B.; and Niggemann, O. 2019. Model-based
diagnosis for cyber-physical production systems based on
machine learning and residual-based diagnosis models. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, 2727–2735.
Calvaresi, D.; Appoggetti, K.; Lustrissimini, L.; Marinoni,
M.; Sernani, P.; Dragoni, A. F.; and Schumacher, M. 2018.
Multi-Agent Systems’ Negotiation Protocols for Cyber-
Physical Systems: Results from a Systematic Literature Re-
view. In ICAART (1), 224–235.
Cazes, D.; and Kalech, M. 2020. Model-Based Diagnosis
with Uncertain Observations. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, 2766–
2773.
Cazes, D.; and Kalech, M. 2021. Model-based diagnosis
with uncertain observations. Int. J. Intell. Syst., 36(7): 3259–
3292.
Daigle, M.; Koutsoukos, X.; and Biswas, G. 2006. Dis-
tributed diagnosis of coupled mobile robots. In Proceed-
ings 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006., 3787–3794. IEEE.
De Jonge, F.; Roos, N.; and Witteveen, C. 2009. Primary
and secondary diagnosis of multi-agent plan execution. Au-
tonomous Agents and Multi-Agent Systems, 18(2): 267–294.
de Kleer, J.; and Williams, B. C. 1987. Diagnosing Multiple
faults. Artificial Intelligence, 32(1): 97–130.
Edwards, D. 2020. Amazon now has 200,000 robots work-
ing in its warehouses. Robotics and Automation, 21.
El Koujok, M.; Ragab, A.; Ghezzaz, H.; and Amazouz, M.
2020. A Multi-Agent-Based Methodology for Known and
Novel Faults Diagnosis in Industrial Processes. IEEE Trans-
actions on Industrial Informatics.
Elimelech, O.; Stern, R.; Kalech, M.; and Bar-Zeev, Y. 2017.
Diagnosing resource usage failures in multi-agent systems.
Expert Systems with Applications, 77: 44–56.
Elmishali, A.; Stern, R.; and Kalech, M. 2018. An Ar-
tificial Intelligence paradigm for troubleshooting software
bugs. Engineering Applications of Artificial Intelligence, 69:
147–156.
Erdem, E.; Kisa, D. G.; Oztok, U.; and Schüller, P. 2013.
A general formal framework for pathfinding problems with
multiple agents. In Twenty-Seventh AAAI Conference on Ar-
tificial Intelligence.

Franchi, E.; and Poggi, A. 2012. Multi-agent systems and
social networks. In Handbook of Research on Business So-
cial Networking: Organizational, Managerial, and Techno-
logical Dimensions, 84–97. IGI Global.
Geihs, K. 2020. Engineering challenges ahead for robot
teamwork in dynamic environments. Applied Sciences,
10(4): 1368.
Hausman, W. H.; Schwarz, L. B.; and Graves, S. C. 1976.
Optimal storage assignment in automatic warehousing sys-
tems. Management science, 22(6): 629–638.
Hoang, D.-T.; and Kang, H.-J. 2019. A survey on deep learn-
ing based bearing fault diagnosis. Neurocomputing, 335:
327–335.
Huang, Q.; Zhang, F.; and Li, X. 2018. Machine learning
in ultrasound computer-aided diagnostic systems: a survey.
BioMed research international, 2018.
Kalech, M. 2012. Diagnosis of coordination failures: a
matrix-based approach. Autonomous Agents and Multi-
Agent Systems, 24(1): 69–103.
Kalech, M.; and Kaminka, G. A. 2005. Towards model-
based diagnosis of coordination failures. In AAAI, volume 5,
102–107.
Kalech, M.; and Kaminka, G. A. 2007. On the design of co-
ordination diagnosis algorithms for teams of situated agents.
Artificial Intelligence, 171(8-9): 491–513.
Kalech, M.; and Kaminka, G. A. 2011. Coordination diag-
nostic algorithms for teams of situated agents: Scaling up.
Computational Intelligence, 27(3): 393–421.
Kalech, M.; Kaminka, G. A.; Meisels, A.; and Elmaliach, Y.
2006. Diagnosis of multi-robot coordination failures using
distributed CSP algorithms. In AAAI, 970–975.
Kalech, M.; Stern, R.; and Lazebnik, E. 2021. Minimal Car-
dinality Diagnosis in Problems with Multiple Observations.
Diagnostics, 11(5).
Katewa, V.; Pasqualetti, F.; and Gupta, V. 2018. On privacy
vs. cooperation in multi-agent systems. International Jour-
nal of Control, 91(7): 1693–1707.
Kato, S.; Takeuchi, E.; Ishiguro, Y.; Ninomiya, Y.; Takeda,
K.; and Hamada, T. 2015. An open approach to autonomous
vehicles. IEEE Micro, 35(6): 60–68.
Khalastchi, E.; and Kalech, M. 2019. Fault detection and
diagnosis in multi-robot systems: a survey. Sensors, 19(18):
4019.
Koujok, M. E.; Ragab, A.; and Amazouz, M. 2019. A Multi-
Agent Approach Based on Machine-Learning for Fault Di-
agnosis. IFAC-PapersOnLine, 52(10): 103–108. 13th IFAC
Workshop on Intelligent Manufacturing Systems IMS 2019.
Li, J.; Ruml, W.; and Koenig, S. 2021. EECBS: A Bounded-
Suboptimal Search for Multi-Agent Path Finding. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI).
Lo, C.; Lynch, J. P.; and Liu, M. 2016. Distributed model-
based nonlinear sensor fault diagnosis in wireless sensor net-
works. Mechanical Systems and Signal Processing, 66: 470–
484.

12340



Ma, M.; and Li, Z. 2021. A time-independent trajectory op-
timization approach for connected and autonomous vehicles
under reservation-based intersection control. Transportation
Research Interdisciplinary Perspectives, 9: 100312.
Marı́n-Lora, C.; Chover, M.; Sotoca, J. M.; and Garcı́a, L. A.
2020. A game engine to make games as multi-agent systems.
Advances in Engineering Software, 140: 102732.
Metodi, A.; Stern, R.; Kalech, M.; and Codish, M. 2014. A
novel sat-based approach to model based diagnosis. Journal
of Artificial Intelligence Research, 51: 377–411.
Micalizio, R. 2009. A distributed control loop for au-
tonomous recovery in a multi-agent plan. In Twenty-First
International Joint Conference on Artificial Intelligence.
Micalizio, R.; and Torasso, P. 2007. Plan diagnosis and agent
diagnosis in multi-agent systems. In Congress of the Italian
Association for Artificial Intelligence, 434–446. Springer.
Micalizio, R.; and Torasso, P. 2014. Cooperative monitoring
to diagnose multiagent plans. Journal of Artificial Intelli-
gence Research, 51: 1–70.
Micalizio, R.; Torasso, P.; and Torta, G. 2004. On-line mon-
itoring and diagnosis of multi-agent systems: a model based
approach. In Proceedings of the 16th European Conference
on Artificial Intelligence, 848–852. IOS Press.
Micalizio, R.; and Torta, G. 2012. Diagnosing delays in
multi-agent plans execution. In European Conference on
Artificial Intelligence, 594–599. IOS Press.
Natan, A.; and Kalech, M. 2020. Distributed Diagnosis of
Multi-Agent Plans. In 31st International Workshop on Prin-
ciple of Diagnosis (DX-20).
Pallottino, L.; Scordio, V. G.; Bicchi, A.; and Frazzoli, E.
2007. Decentralized cooperative policy for conflict res-
olution in multivehicle systems. IEEE Transactions on
Robotics, 23(6): 1170–1183.
Parker, L. E. 2012. Reliability and fault tolerance in col-
lective robot systems. Handbook on Collective Robotics:
Fundamentals and Challenges.
Passos, L. S.; Abreu, R.; and Rossetti, R. J. 2015. Spectrum-
based fault localisation for multi-agent systems. In Twenty-
Fourth International Joint Conference on Artificial Intelli-
gence.
Pynadath, D. V.; and Tambe, M. 2003. An automated team-
work infrastructure for heterogeneous software agents and
humans. Autonomous Agents and Multi-Agent Systems, 7(1):
71–100.
Qin, L.; He, X.; Zhou, D.; Cui, J.; Li, F.; and Wang, G.
2018. A new local-model-based distributed fault diagnosis
scheme for multi-agent systems with actuator faults. IFAC-
PapersOnLine, 51(24): 292–299.
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