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Abstract

Item representation learning is crucial for search and rec-
ommendation tasks in e-commerce. In e-commerce, the in-
stances (e.g., items, users) in different domains are always
related. Such instance relationship across domains contains
useful local information for transfer learning. However, ex-
isting transfer learning based approaches did not leverage this
knowledge. In this paper, we report on our experience design-
ing and deploying Prior-Guided Transfer Learning (PGTL) to
bridge this gap. It utilizes the instance relationship across do-
mains to extract prior knowledge for the target domain and
leverages it to guide the fine-grained transfer learning for
e-commerce item representation learning tasks. Rather than
directly transferring knowledge from the source domain to
the target domain, the prior knowledge can serve as a bridge
to link both domains and enhance knowledge transfer, es-
pecially when the domain distribution discrepancy is large.
Since its deployment on the Taiwanese portal of Taobao in
Aug 2020, PGTL has significantly improved the item expo-
sure rate and item click-through rate compared to previous
approaches.

Introduction
In the Internet era, e-commerce portals (e.g., Amazon, eBay,
Taobao) often contain hundreds of millions of items. It is dif-
ficult for users to find their desired items. Search and recom-
mendation tasks aim to address such information overload
problems. During this process, item representation learning
is an important step. A proper item representation learned
from a user interaction history can reflect item relation-
ships and further help recommend similar items according
to the user’s preference. Recently, deep representation learn-
ing has attracted significant interest in this field (Barkan and
Koenigstein 2016; Sun et al. 2017; Zhao et al. 2018). To ob-
tain an effective deep model, it usually requires a massive
amount of labeled training data. However it is not easy to
collect sufficient data during the boost strapping stage of an
e-commerce portal when it is still small with sparse user be-
haviors. In this case, transfer learning can be useful.

Transfer learning mainly studies how to transfer useful
knowledge from a task with rich data in one domain (i.e.,
the source domain) to help a task with insufficient data in

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

another domain (i.e., the target domain). It has achieved sig-
nificant success in the fields of natural language process-
ing (NLP) and computer vision (CV) (Liu, Qiu, and Huang
2017; Wang et al. 2018, 2020; Yi et al. 2020). Due to the
domain distribution divergence, the core of transfer learning
is to learn domain-invariant knowledge so that the shared
knowledge can be safely transferred from the source do-
main to the target domain. A popular approach is to build
a fully-shared network to align domain distribution (Mou
et al. 2016; Yang, Salakhutdinov, and Cohen 2017) or explic-
itly minimize the domain distribution discrepancy during the
optimization process (Long et al. 2015; Ganin and Lempit-
sky 2015). Some advanced approaches find the discrimina-
tive knowledge with domain task characteristic is also nec-
essary. They use both shared and private networks together
to extract different kinds of features (Liu, Qiu, and Huang
2017; Yu et al. 2018; Qiu et al. 2019). However these ex-
isting approaches have not been widely applied in industrial
e-commerce platforms because it is hard to directly align the
global data distribution of millions of items.

In this paper, we report on our experience designing and
deploying a novel Prior-Guided Transfer Learning (PGTL)
framework into the Alibaba e-commerce platform to address
the aforementioned gap. It leverages the prior knowledge
on relationships of instances in different domains (which is
readily available in e-commerce applications) to guide fine-
grained transfer learning for item representation learning.
PGTL consists of three key parts:

1. It extracts prior knowledge according to cross domain in-
stance relationships for target domain instances.

2. It learns domain-invariant features with the prior knowl-
edge by adversarial training, as well as the discriminative
features in the target domain. Specifically, we propose a
domain perspective network based on the typical shared
domain embeddings to extract domain specific embed-
dings for both domains, which can enhance discrimina-
tive feature extraction in the respective domains.

3. It enriches the target domain discriminative features with
the transferred prior knowledge to enhance learning per-
formance. We have designed a gate technique to control
the information flow from prior knowledge to the target
domain, which can effectively convey useful knowledge
and avoid negative transfer.
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PGTL has been deployed on the Taiwanese portal of
Taobao in Aug 2020 to recommend potential items of inter-
est for users. Overall, it has improved the item exposure rate
and the item click-through rate by 52.9% and 23.26% re-
spectively compared to the previous approach. To the best of
our knowledge, PGTL is the first prior guided transfer learn-
ing approach deployed in a large-scale e-commerce system.
It can be easily adapted to other tasks as long as prior knowl-
edge is available.

Application Description
Item representation learning is important in e-commerce.
It supports a variety of functions such as recommendation
systems and product search engines. Recently, deep repre-
sentation learning techniques are starting to be applied in
this field. For example, Barkan and Koenigstein (Barkan
and Koenigstein 2016) proposed item2vec which embeds
item IDs into a low-dimensional representation space. Liang
et al. (Liang et al. 2016) decomposed the user-item inter-
action matrix and the item-item co-occurrence matrix with
shared item latent factors to obtain item and user embed-
dings. Zhao et al. (Zhao et al. 2018) extended item2vec to
propose a basic framework to learn different types of embed-
dings. These approaches aim to learn item representations in
a single domain with sufficient data.

Transfer learning is a popular technique to improve the
performance of learning tasks with insufficient data (Pan and
Yang 2010; Long et al. 2014). It can be divided into two cat-
egories according to whether there are labeled data in the
target domain: 1) unsupervised domain adaptation and 2)
supervised domain adaptation. Unsupervised domain adap-
tation assumes that only unlabeled data are available in the
target domain. The core idea is to find a shared feature space
which can reduce the domain distribution divergence (Lee
et al. 2007; Qiu et al. 2017; Wang and Mahadevan 2008;
Jiang et al. 2019; Feng, Yu, and Duarte 2020). Pan et al. (Pan
et al. 2009) and Long et al. (Long et al. 2015) proposed
to minimize the Maximum Mean Discrepancies (MMD) to
align the domain distributions. Other advanced domain ad-
versarial approaches utilize generative adversarial networks
(GANs) (Goodfellow et al. 2014) to extract the domain-
invariant features for transfer learning (Ganin and Lempit-
sky 2015; Tzeng et al. 2017).

In supervised domain adaptation, fine-tuning is the widely
used technique. However, some parameters may be driven
far away from their initial values during fine-tuning, which
loses the initial knowledge (Li, Grandvalet, and Davoine
2018). A more effective way is to find a domain-invariant
representation space for joint learning involving source and
target domain data (Mou et al. 2016; Yang, Salakhutdi-
nov, and Cohen 2017). Further more, studies have shown
that the domain discriminative representation which main-
tain the domain characteristics is also important for domain
adaptation (Liu, Qiu, and Huang 2017; Yu et al. 2018; Qiu
et al. 2019). Nevertheless, these transfer learning approaches
are not well-suited for application in industrial e-commerce
platforms, as they cannot evaluate the global distribution and
minimize the domain distribution divergence involving mil-
lions of items efficiently.
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Figure 1: An illustration of the proposed PGTL approach. It
leverages the prior knowledge, extracted with instance rela-
tionship across domains, to guide the fine-grained transfer
learning-based item representation learning.

In e-commerce, even the same item or the same user can
show different statistical characteristics due to preference di-
versity in various scenarios. This can result in domain dis-
tribution discrepancy. On the other hand, the cross domain
instance relationship information is readily available. Based
on such relationships, we can extract semantically similar
source domain instances to generate the prior knowledge for
target domain instances. The prior knowledge can serve as a
semantic anchor to guide knowledge transfer in semantically
similar items across domains (shown in Figure 1). The se-
mantic anchor can also be a possible mechanism to scale up
the domain distribution alignment in typical transfer learn-
ing to make it suitable for practical applications.

Intuitively, the prior knowledge derived from the source
domain instances can provide complementary information
to the target domain instances. Therefore, it can be lever-
aged to enrich the target domain knowledge to enhance task
performance. However, not all prior knowledge is useful due
to domain characteristics. For example, e-commerce data in
simplified Chinese used in mainland China may not be use-
ful prior knowledge for e-commerce applications in Taiwan
which use traditional Chinese (although both domains are
essentially using the same language).

PGTL belongs to the category of supervised domain adap-
tation. Its ability to leverage relationships between instances
across domains to provide rich prior information to trans-
fer learning distinguishes it from existing approaches. In ad-
dition, PGTL scales well to large datasets widely found in
real-world e-commerce platforms. In the next section, we
describe our AI Engine based on PGTL.

Use of AI Technology
The goal of item representation learning is to find a latent
representation space in which semantically similar items are
close to each other and dissimilar ones are far apart. In this
representation space, similar items can be easily retrieved
given a query based on distance measures.

In this paper, we formalize this learning task as a binary
classification problem L that aims to predict whether a given
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(c) Prior-Guided Transfer Learning

Figure 2: Comparing PGTL with traditional transfer learning approaches. PGTL first leverages the relationship R of cross
domain instances to extract the prior knowledge, which in turn, is used to guide fine-grained transfer learning.

pair of items are similar or not. Given a set of items {xi} ∈
X and pairwise similarity label {yij} ∈ Y , yij ∈ {0, 1}
denotes whether xi, xj ∈ X are considered similar.

We attempt to learn the feature mapping φ(·) from the
input space X to the latent representation space Z (i.e.,
φ : X 7→ Z), as well as the similarity prediction function
f for pairwise instances (i.e., f : Z ×Z 7→ Y). Specifically,
we construct the prediction function by using the cosine-
distance to weigh the affinity. The probability for (xi, xj)
to be regarded as similar is:

pij = σ(cos(φ(xi), φ(xj)))

where σ is a Sigmoid function. Then, we can solve this prob-
lem by optimizing the following objective function:

min
θ

1

N

∑
i,j

Ltask(xi, xj , yij ; θ) + βΩ(θ) (1)

where Ltask(xi, xj , yij) = −yij log pij − (1− yij) log(1−
pij) is the binary cross-entropy loss. θ represents the param-
eters of feature mapping φ. Ω is a regularization term (e.g.,
L2 regularization). β is a trade-off parameter.

Background on Transfer Learning
In traditional transfer learning, we are given a source do-
main learning task Lstask with Ds = {(xsi , xsj , ysij)}

Ns
i,j of

Ns labeled samples and a target domain learning task Lttask
with Dt = {(xti, xtj , ytij)}

Nt
i,j of Nt labeled samples (usually

Nt < Ns). The source domain data and target domain data
follow different joint distributions P = (Xs, Xs, Y s) and
Q = (Xt, Xt, Y t), respectively (denoted as P 6= Q). The
goal of transfer learning is to improve the learning of the tar-
get feature mapping φt(·) and prediction function f t using
the shared knowledge in the source domain task.

Most existing transfer learning approaches aim to learn
the domain-invariant features, which can be safely trans-
ferred from the source domain to the target domain. Usually,
a common feature mapping φc : X 7→ Zc is learnt to find the
domain-invariant feature space Zc (as shown in Figure 2a).
Furthermore, the data distribution discrepancy in the training
objective is explicitly minimized to force the representation
φc(Xs) to follow a similar distribution as φc(Xt). Here, we

define the data distribution measure as Dist. The domain
transfer objective can be expressed as:

Ls,ttrans(Ds,Dt; θc) = Distφc(Ds,Dt). (2)

Therefore, the entire training process can be optimized as:

min
θc

1

Ns

∑
i,j

Lstask(xsi , x
s
j , y

s
ij ; θ

c)

+
1

Nt

∑
i,j

Lttask(xti, x
t
j , y

t
ij ; θ

c)

+λLs,ttrans(Ds,Dt; θc) + βΩ(θc) (3)

where Lstask and Lttask are the task objectives defined in
Eq. (1). Distφc can be any distance measure (e.g., Maxi-
mum Mean Discrepancy (Gretton et al. 2012)). λ and β are
trade-off parameters.

Apart from the shared domain-invariant features, recent
works find that the domain specific features are also nec-
essary as they contain domain characteristics and are more
discriminative for domain classification tasks (Liu, Qiu, and
Huang 2017; Yu et al. 2018; Qiu et al. 2019). Formally,
we define another two domain specific feature mappings
φs : X s 7→ Zs and φt : X t 7→ Zt to learn the domain
discriminative features, respectively (Figure 2b). The final
prediction combines both domain-invariant features and do-
main discriminative features:

psij = σ(cos(φc(xsi ), φ
c(xsj) + cos(φs(xsi ), φ

s(xsj)))

ptij = σ(cos(φc(xti), φ
c(xtj)) + cos(φt(xti), φ

t(xtj)))

These frameworks aim to extract the shared domain-
invariant knowledge across domains, and then directly com-
bining it with target domain knowledge. In practical transfer
learning problems in industrial e-commerce portals, mini-
mizing the data distribution discrepancies involving millions
of items is not easy, making it hard for existing transfer
learning approaches to learn such a shared feature space.
Especially when target domain data are insufficient, the
model can easily pull dissimilar items together to minimize
the whole distribution, resulting in semantic mismatches
and negative transfer. In addition, as described before, not
all transferred knowledge is useful for target domain tasks
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Figure 3: The PGTL framework with its three component parts: (1) Embedding Generation, an attention net to extract the
domain specific embedding; (2) Feature Transfer, domain adversarial learning for transferring the source domain knowledge to
prior knowledge; and (3) Feature Enrichment, incorporating the prior knowledge into target domain discriminative features.

due to domain characteristics. Selectively transferring use-
ful knowledge can be an advantageous mechanism to avoid
negative transfer.

Prior-Guided Transfer Learning
Existing transfer learning methods mainly focus on the
change of data distribution across domains from a global
perspective without regard to the cross domain relationship
among instances which can provide additional local infor-
mation. For transfer learning scenarios in e-commerce, the
source domain instances and target domain instances are of-
ten related. For example, the source domain items and target
domain items are from the same product repository but show
different statistical distributions due to different user prefer-
ences. PGTL leverages the data instance relationships across
domains to extract prior knowledge for the target instances
in order to enhance partial knowledge transfer.

Formally, for each target domain instance xti, we define
Ri = {k}rik=1 as the related source domain instance set.
rik ∈ {0, 1} indicates whether the source domain instance
xsk is related to target domain instance xti (e.g., items xsk
and xti belonging to the same item category). According to
the data instance relationship, we can extract the combined
information of the related source domain instances as the
prior feature for xti, which is denoted as xpi . For example,
if one target domain instance is related to multiple source
domain instances, we can take the average features of re-
lated source domain instances as the prior knowledge (i.e.,
xpi = 1

|Ri|
∑
k∈Ri

xsk). When the source domain instance
and target domain instance have a one-to-one relationship,
the prior knowledge degenerates to the counterpart source
domain features.

For a target domain task with a prior feature, it implicitly

constructs the prior domain task Dp = {(xpi , x
p
j , y

t
ij)}

Nt
i,j of

Nt labeled samples. The corresponding joint distribution is
Q̃(Xp, Xp, Y t). Rather than directly reducing the discrep-
ancy between P and Q, we first transfer knowledge from P

to Q̃, and then enrich Q with Q̃ for the target domain task
(Figure 2c). Hence, the PGTL objective function is:

min
θs,θt,θc,θp

1

Ns

∑
i,j

Lstask(xsi , x
s
j , y

s
ij ; θ

s, θc)

+
1

Nt

∑
i,j

Lt,ptask(xti, x
t
j , x

p
i , x

p
j , y

t
ij ; θ

t, θc, θp)

+λLs,ptrans(Ds,Dp; θs, θc, θp) + βΩ(θs, θt, θc, θp)
(4)

Compared to Eq. (3), PGTL is advantageous in two ways.
Firstly, the knowledge transfer process is easier. Since the
prior knowledge is derived from source domain instances,
the data distribution discrepancy is naturally much smaller.
Secondly, the target domain task can achieve better general-
ization performance with prior-enriched feature that is com-
plementary to target feature.

The PGTL framework is shown in Figure 3. It contains
three key parts: 1) the domain-perspective embedding ex-
traction layers, 2) the domain-invariant feature transfer lay-
ers, and 3) the domain discriminative feature enrichment
layers. The left portion of Figure 3 contains the embedding
extraction layers. Besides the typical shared embedding lay-
ers, we further design two attention networks for the source
domain and the target domain to extract the domain perspec-
tive embedding which is helpful for obtaining different dis-
criminative features for the source task and the target task. In
the upper-right portion of Figure 3, we apply the domain ad-
versarial learning to derive the transferred domain-invariant
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features for the source domain and the prior domain. Then,
we enrich the target discriminative features with the trans-
ferred prior knowledge via a gate network to improve task
performance (the bottom-right portion of Figure 3). The fol-
lowing sections describe each part in detail.

Domain-perspective Embedding Extraction Layers In
previous studies, the target domain is always assumed to
share the same embedding layers with the source domain.
However, the domain agnostic embedding ignores the do-
main characteristics from the input layers, which is not use-
ful to extract the discriminative features in subsequent layers
for different tasks. Therefore, domain specific embedding is
needed. A simple way to model domain specific embedding
is to use individual embedding layers for each domain. How-
ever, it results in a huge number of parameters in the embed-
ding layers which cannot be learned well with insufficient
data in the target domain. To avoid parameter explosion, we
design two individual small attention networks to provide
domain perspective upon basic shared embedding in order
to enhance the domain specific embedding.

Specifically, for an input x = [x1, ..., xd] ∈ Rd with d
types of features, PGTL first looks up the shared embedding
matrix to obtain the feature embedding ek for each feature
xk. Then, ek is fed into the attention network to extract the
domain perspective attention ak. Next, ak is applied upon ek
to obtain the domain perspective embedding mk. Finally, all
features are concatenated together to produce the final em-
bedding Ge(x) = Concat(m1, ...,md). Formally, we define
the embedding generation network as:

ek = E(xk; θe)

ak = Ga(ek; θa)

mk = ak � ek

where E is shared embedding matrix across domains. Ga is
the domain specific attention network that can be instanti-
ated by Gsa for xs and xp, and instantiated by Gta for xt.

Domain-invariant Feature Transfer Layers Typical
transfer learning approaches transfer source domain knowl-
edge to the target domain by learning domain-invariant fea-
tures. However, in e-commerce portals with millions of
items, it is hard for two different feature spaces to learn a
shared feature space, especially when the domain distribu-
tion discrepancy is large. In PGTL, the source domain and
the implicit prior domain are for different tasks, but share
similar feature distributions. Thus, transferring source do-
main knowledge to the prior domain is much easier. Re-
cently, domain adversarial networks have been successfully
applied to transfer learning (Ganin and Lempitsky 2015;
Tzeng et al. 2017; Guo et al. 2021). Here, we leverage such
adversarial training to extract the domain-invariant features
between the source domain and the prior domain.

The domain adversarial learning procedure is a two-
player game, which contains two generators, Gsf and Gpf ,
and one discriminator Gd. During training, Gd learns to
maximize the probability of assigning the correct label to
samples from different domains, while Gsf and Gpf learn
to maximize the probability of identifying the fake samples

generated by the discriminator. In such a two-player min-
max game, the generator Gpf and Gsf will eventually achieve
the same distribution.

For min-max optimization with back propagation, Ganin
and Lempitsky proposed a special gradient reversal layer
(GRL) as a “pseudo-function” R(x) inserted between the
feature generator and the domain classifier (Ganin and Lem-
pitsky 2015). Its forward and back propagation behaviors are
defined as:

Rλ(x) = x

dRλ
dRx

= −λ (5)

The optimization objective for source and prior domain is:

L1 =
1

Ns

∑
i,j

Lstask(Gsy(Gsf (Gse(x
s
i , x

s
j))), y

s
ij) +

1

Ns +Nt

Ns+Nt∑
k

Ls,ptrans(Gd(Rλ(Gsf (Gse(x
s
k)), Gpf (Gpe(x

p
k)))), yd)

(6)

where Lstask is the source task objective defined in Eq. (1).
Ls,ptrans is cross-entropy loss, yd is the domain label for dis-
criminator and λ is the trade-off parameter.

Domain Discriminative Feature Enrichment layers Af-
ter extracting the transferred prior knowledge, we use it to
enrich the target discriminative features. Such prior knowl-
edge can bring two benefits for the target domain task. On
one hand, it contains rich transferred knowledge. On the
other hand, the prior knowledge derived from the source do-
main feature space will provide complementary information
to target discriminative features.

However, as described before, not all prior knowledge is
useful for target domain tasks since different domains are
with different characteristics. Therefore, we design a gate
network to control the transfer flow of prior knowledge to
the target domain. Let zp and zt denote the transferred prior
feature and the discriminative target feature, respectively.
Then, the gate is constructed as:

g = Gg(z
p, zt)

= σ(θTg [zp, zt] + bg) (7)

where θg and bg are weights and biases of the gate network,
respectively. σ is a sigmoid function which produces the im-
portance of prior knowledge. The final discriminative repre-
sentation enriched by prior knowledge is:

g � zp + zt (8)

and the target task objective is:

L2 =
1

Nt

∑
i,j

Lt,ptask(Gty(gi � zpi + zti , gj � z
p
j + ztj), y

t
ij).

(9)

The entire network is optimized as:

min
θ

L1 + L2 + βΩ(θ). (10)
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TaoBao Ali-Express
CN(Src) TW(Tgt) RU(Src) BR(Tgt)

# training 1.3B 0.2B 0.4B 0.1B
# test 1.3B 5.8M 0.3B 68M
# feature 36 36 42 42

Table 1: Statistics of the datasets

It is noteworthy that PGTL can be adapted to any transfer
learning task once the prior knowledge is available. In ad-
dition, other advanced transfer learning techniques or gate
techniques can be incorporated into PGTL if the need arises.

Application Development and Deployment
To facilitate decision-making within Alibaba about whether
to deploy PGTL online, our team has performed extensive
offline experiments to compare its performance with state-
of-the-art approaches.

Experiment Settings
Datasets Due to the lack of public transfer learning
datasets in e-commerce, we crawled the data from two large
e-commerce websites, Taobao1 and Ali-Express2, to con-
struct two real-world industrial datasets.

Taobao is a large-scale e-commerce system, providing
similar item catalogs for 13 regions. Mainland China is
the biggest site generating billions of trading records daily,
while smaller sites (e.g., Hong Kong) only generate millions
of trading records daily. Even for the same item, different
populations show different preferences, which causes data
distribution divergence. We create the first dataset by col-
lecting trading records in Mainland China as the source do-
main (referred to as CN), and the trading records in Taiwan
as the target domain (referred to as TW). Ali-Express is an-
other online recommendation system serving more than 200
countries around the world. The second dataset is created by
collecting the trading records in Russia as the source domain
(referred to as RU) and Brazil as the target domain (referred
to as BR). In each dataset, we take two-weeks of trading
records as the training data and one day of trading records
as the test data. Table 1 summarizes the statistics of both
datasets.

Data preprocessing Each record in the trading log is a
user behavior log. It contains three parts: 1) user informa-
tion (e.g., age, gender), 2) the exposure item information
whether the user clicked the item or not which can be used
as the click-through label in the click-through rate predic-
tion task. For the item representation task, we manually ex-
tract the item similarity label. We take the current clicked
item with historical clicked items in the user behavior logs
as positive similar pairs. The sequentially clicked items tend
to be similar. To construct the negative pairs, we take the
current non-clicked item with historical clicked items in the
user behavior logs as dissimilar pairs.

1https://taobao.com
2https://www.aliexpress.com

Since the source domain and the target domain share sim-
ilar items, we can easily obtain the relationship of instances
in the two domains. Specifically, we define cross domain
items with the same item id as strongly related, and items be-
longing to the same item category as weakly related. When
extracting the prior knowledge for target domain data, we
first consider source domain items with strong relationships,
and then with weak relationships if strong relationships are
not available. The prior feature is generated by averaging all
related source instance features.

In the following experiments, we select item profile fea-
tures(e.g., price), item and seller statistic features, both short
term and long term (e.g., CTR, CVR, GMV for 1 days, 7
days, 30 days) as item features. For each type of feature, we
discretize dense feature to construct multiple hash buckets,
and represent each hash bucket with an 8-dimension embed-
ding. The final feature embedding is the concatenation of all
hash bucket embeddings.

Evaluation Metrics We take AUC as the task perfor-
mance metric. It is widely used in industrial e-commerce
tasks (Qiu et al. 2019; Yu et al. 2018) and defined as fol-
lows:

AUC =
1

m+m−

∑
x+∈D+

∑
x−∈D−

(I(f(x+) > f(x−)))

where D+ is the collection of all positive examples and D−
is the collection of all negative examples. f(·) is the task
prediction function and I(·) is an indicator function.

Besides, we introduce the RelaImpr metric to measure rel-
ative improvement of PGTL over existing approaches (Yan
et al. 2014; Zhou et al. 2018). RelaImpr measures the im-
provement ratio for two models with respect to a random
guesser with an AUC of 0.5:

RelaImpr =

(
AUC(measure model)− 0.5

AUC(base model)− 0.5
− 1

)
∗ 100%.

Comparison Baselines. We compare PGTL with follow-
ing existing approaches:
• Src-only: a basic model as defined in Eq. (1) trained from

scratch on the source domain dataset.
• Tgt-only: a basic model as defined in Eq. (1) trained from

scratch on the target domain dataset.
• Fine-tune: a basic transfer learning method that first

trains the source model and then initializes the target
model parameters with well trained source parameters.

• FShare: a fully-shared model as shown in Fig-
ure 2a which aims to learn only domain-invariant fea-
tures (Yang, Salakhutdinov, and Cohen 2017).

• SShare: a state-of-the-art transfer learning model shown
in Figure 2b which leverages shared and private model
together to learn both domain-invariant features and do-
main discriminative features in other tasks (Yu et al.
2018). Since there are no specific transfer learning mod-
els for the item representation task, we construct the same
framework for comparison.

Further, we design two variants of PGTL for ablation exper-
iments to evaluate the effectiveness of each component part:
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Methods AUC RelaImpr

Base Src-only 0.651
Tgt-only 0.593

TL

Fine-tune 0.599 6.45%
FShare 0.602 9.68%
SShare 0.603 10.75%
PGTLno specific embedding 0.606 13.97%
PGTLno prior feature 0.605 12.90%
PGTL 0.611 19.40%

Table 2: AUC of all approaches on the Taobao dataset.

Methods AUC RelaImpr

Base Src-only 0.692
Tgt-only 0.682

TL

Fine-tune 0.682 0.0%
FShare 0.686 2.19%
SShare 0.679 -1.65%
PGTLno specific embedding 0.683 0.55%
PGTLno prior feature 0.688 3.29%
PGTL 0.692 5.49%

Table 3: AUC of all approaches on Ali-Express dataset.

• PGTLno specific embedding: a PGTL variant which only uses
shared embedding and does not consider the domain-
specific embedding.

• PGTLno prior feature: a PGTL variant which does not con-
sider the prior knowledge for the target domain. The prior
feature is replaced with the target feature.

Network Parameters For all models, we use the Adam
optimizer with learning rate starting from 0.0001. We set
the activation function as tanh and the dropout probability
p = 0.5. In the embedding layers, we set the basic bucket
embedding dimension for each feature to 8 and the attention
layers as [6,4,8]. In the feature generation layers, we set the
hidden layers as [256,128]. In addition, we set the final item
representation layer to 36 for Taobao and 42 for Ali-Express
that corresponds to the number of input features.

Results and Discussion
The performance of all comparison approaches on both
datasets in terms of AUC is tabulated in Table 2 and Ta-
ble 3, where the best performance achieved is in bold. It can
be observed that PGTL achieves the best performance on
the Taobao dataset, outperforming the single domain model
Tgt-only by 19.40%. In contrast, the transfer learning base-
line model that uses fine-tuning only improves over Tgt-only
by 6.45%. Comparing to the more advanced transfer learn-
ing models FShare and SShare, PGTL has also achieved sig-
nificant performance improvement by 9.72% and 8.65% re-
spectively. Similar trends can be found for the Ali-Express
dataset. The superiority of the PGTL is statistically signifi-
cant. It is noteworthy that fine-tuning is not better than Tgt-

only on the Ali-Express dataset. This is because the param-
eters are driven far away from the initial values and little
knowledge has been transferred. While the jointly trained
models can effectively avoid this problem and achieve bet-
ter performance.

The superior performance of PGTL over comparison ap-
proaches indicates that it is effective in transferring source
domain knowledge to enrich the target domain. The previous
models aim to reduce the domain distribution discrepancy to
learn domain-invariant features. When the domain distribu-
tion discrepancy is large, the target domain does not benefit
much, as shown in the results on the Ali-Express dataset. In
this case, PGTL still achieves the best performance.

Ablation Study
In this subsection, we further analyse the effect of domain-
specific embedding and prior knowledge in PGTL and also
visualize gate-control technique in case study.

The effect of domain-specific embedding We compare
PGTL to PGTLno specific embedding, which drops the atten-
tion layers to study the effect of domain-specific embed-
ding. Table 2 and Table 3 show that PGTL outperforms
PGTLno specific embedding by 5.43% and 4.94% on the Taobao
dataset and the Ali-Express dataset respectively. This sug-
gests that domain specific embeddings are useful for enhanc-
ing discriminative feature learning in the following layers.

The effect of prior knowledge To study the effect of prior
knowledge in PGTL, we use PGTLno prior feature for compari-
son which drops the actual prior feature and takes the tar-
get feature as the prior feature. This variant is similar to
SShare, but with the domain specific embedding layers. It
can be observed from Table 2 and Table 3 that PGTL out-
performs PGTLno prior feature on both datasets. This shows that
enriching the target domain features with prior knowledge is
advantageous.

The effect of gate-control We conduct experiments with
a one-dimensional gate and show the cases of different prior
weights. We can easily find that everyday items always have
higher prior weights. Particularly, for baby clothes, the prior
weight can be as high as 0.98. On the other hand, the signif-
icant difference between Mainland China and Taiwan is the
language used (i.e., simplified Chinese vs. traditional Chi-
nese). We find items specially made for Taiwan (e.g., navi-
gators in traditional Chinese) have very small prior weights.
The results show that our gate network can selectively trans-
fer useful knowledge to preserve the target domain charac-
teristics when fusing with the transferred knowledge. These
results helped Alibaba’s decision to deploy PGTL.

Application Use and Payoff
The well trained item representation model produced by
PGTL has been deployed in the Taiwanese portal of Taobao
since Aug 2020 to support the “Guess what you like” ser-
vice. This service is divided into two stages: 1) recalling a
pool of candidate items, and 2) ranking these items. PGTL
is part of the first stage, leveraging the relationships among
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(a) g = 0.98 (b) g = 0.71 (c) g = 0.26 (d) g = 0.14

Figure 4: An example of gate weights for prior knowledge in the item representation learning task. The gate weights are larger
for the first two cases, which are items popular in both Mainland China and Taiwan. The last two cases are items specially for
Taiwan (e.g., navigators with traditional Chinese), for which the gate weights are smaller.

products from different domains to recall items which a
given customers may be interested in.

When comparing the system performance as a result of
deploying PGTL with the previous approach used by the Tai-
wanese portal of Taobao (which was a single domain item
representation model), we use the relative improvement of
item exposure ratio and item click-through rate as evaluation
metrics. Overall, PGTL outperforms the previous approach
by 52.9% in term of item exposure rate and 23.26% for item
click-through rate. Such improvements show that the PGTL
item representation model can find interested items for users
more accurately, which in turn, can achieve significant posi-
tive business impact.

Maintenance
The objectives of the PGTL AI Engine need to be set man-
ually. Thus, we have conducted regular reviews of the sys-
tem performance to make necessary adjustments. Other than
this, no major maintenance task on the PGTL AI Engine was
needed since its deployment in Aug 2020.

Lessons Learned During Deployment
It is worth mentioning that even PGTL can guide the fine-
grained transfer learning process and selectively transfer
shared knowledge, there are still situations that the AI En-
gine could not handle. Here is an important lesson has been
learned from our deployment experience which we feel is
worth sharing.

Knowledge transfer in heterogeneous feature spaces is
challenging, especially in industrial applications. One pos-
sible solution is to leverage partial shared features to learn
domain-invariant knowledge, while leveraging specific fea-
tures together with the shared features to learn domain dis-
criminative knowledge (Guo et al. 2021). We are in the pro-
cess of exploring adapting PGTL in such settings in order
to improve its performance. During the current deployment
effort, feature engineering still has to be performed as dif-
ferent applications always have features that are specific to
each of them.

Conclusions
In this paper, we reported on our experience designing and
deploying a novel prior-guided transfer learning framework
- PGTL, which effectively leverages the prior knowledge to
guide fine-grained transfer learning. It first learns domain-
invariant features from the source domain to obtain prior

knowledge, and then enriches the target domain discrimina-
tive features with the transferred prior knowledge through
the gate technique. Extensive offline experimental results
on two major e-commerce tasks with real-world datasets as
well as in the actual deployment environment demonstrate
that PGTL significantly outperforms state-of-the-art transfer
learning approaches and can be easily adapted to other tasks.
Since its deployment on the Taiwanese portal of Taobao in
Aug 2020, it has significantly improved the item exposure
rate and item click-through rate for recommended potential
items of interest. To the best of our knowledge, this is the
first successful deployment of prior guided transfer learning
approach in a large-scale e-commerce system.
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