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Abstract

Artificial intelligence (AI) is a promising technology to trans-
form the healthcare industry. Due to the highly sensitive na-
ture of patient data, federated learning (FL) is often lever-
aged to build models for smart healthcare applications. Ex-
isting deployed FL frameworks cannot address the key is-
sues of varying data quality and heterogeneous data distri-
butions across multiple institutions in this sector. In this pa-
per, we report our experience developing and deploying the
Contribution-Aware Federated Learning (CAreFL) frame-
work for smart healthcare. It provides fair and explainable FL
participant contribution evaluation in an efficient and privacy-
preserving manner, and optimizes the FL model aggregation
approach based on the evaluation results. Since its deploy-
ment in Yidu Cloud Technology Inc. in March 2021, CAreFL
has served 8 well-established medical institutions in China
to build healthcare decision support models. It can perform
contribution evaluations 2.84 times faster than the best exist-
ing approach, and has improved the average accuracy of the
resulting models by 2.62% compared to the previous system
(which is significant in industrial settings). To our knowledge,
it is the first contribution-aware federated learning success-
fully deployed in the healthcare industry.

Introduction
Artificial intelligence (AI) technologies are increasingly in-
tertwined with many aspects of our daily life. For most ma-
chine learning approaches, data is at the core of power-
ing their performance. This is especially true for healthcare
applications involving AI. In such applications, more high
quality data are usually required in order to achieve an ac-
ceptable level of performance. However, medical data col-
lected by a single organization (e.g., a hospital) are often not
enough for this purpose. Hence, collaborative model train-
ing is necessary for this field to benefit from AI technologies
(Warnat-Herresthal et al. 2021).

Medical data are often highly sensitive in nature. Thus,
data sharing among healthcare institutions has always been
a challenge. This is exacerbated by recent data privacy pro-
tection laws around the world, such as the General Data
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Protection Regulation (GDPR) (GDPR 2018). On the flip
side, this development has also accelerated the advancement
of the field of federated learning (FL) (Yang et al. 2019;
Kairouz, McMahan, and et al. 2021), an emerging machine
learning paradigm which supports distributed collaborative
model training while preserving data privacy. It has been ap-
plied in fields from safety management (Liu et al. 2020) to
banking (Long et al. 2020).

In recent years, smart healthcare applications powered by
FL are starting to emerge (Kaissis et al. 2020; Xu et al. 2020;
Sheller et al. 2020; Rieke et al. 2020; Sadilek et al. 2021).
These applications generally build on top of the popular
Federated Averaging (FedAvg) approach (McMahan et al.
2017) to implement FL across multiple healthcare institu-
tions. While such frameworks are helpful for supporting
privacy-preserving collaborative model training, it is less
well suited for situations involving data heterogeneity due
to non-i.i.d. statistical data distributions across the data si-
los belonging to different healthcare institutions. In addition,
raw healthcare data are often scattered, unstructured, and
non-standardized. Thus, data quality across multiple health-
care institutions may vary.

Apart from data issues, the different stakeholders involved
in a healthcare ecosystem may have additional needs on top
of training useful FL models. For example, a pharmaceuti-
cal company may wish to build a model to facilitate drug
research by leveraging data from multiple hospitals through
FL. In order to compensate the participating hospitals, the
pharmaceutical company may need to offer incentive pay-
outs. However, without being able to directly assess the qual-
ity of each hospital’s local data, fairly compensating them
can be challenging (Lyu et al. 2020).

FL participant contribution evaluation is an active sub-
field of FL (Ghorbani and Zou 2019; Jia et al. 2019; Song,
Tong, and Wei 2019; Wang et al. 2020; Wei et al. 2020).
The aim is to estimate the value of each FL participant by
evaluating its impact on the performance of the resulting
FL model, without exposing their sensitive local data. To
bridge the aforementioned gaps in FL frameworks for smart
healthcare, we propose the Contribution-Aware Federated
Learning (CAreFL) framework. The advantages are:

1. Fast and Accurate Contribution Evaluation: it is incorpo-
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rated with our proposed GTG-Shapley (Liu et al. 2022)
approach, which can evaluate fair and accurate FL par-
ticipant contribution in a highly efficient manner.

2. Contribution-Aware FL Model Aggregation: during the
contribution evaluation process, GTG-Shapley builds a
large number of aggregated FL sub-models involving lo-
cal model updates from different combinations of FL par-
ticipants. With this knowledge, CAreFL provides a novel
FL aggregation approach which selects the best perform-
ing sub-model to be distributed to the FL participants
for the next round of local training. This differs from
FedAvg-based approaches (which always aggregate all
received local models), and can better deal with data het-
erogeneity issues.

3. Contribution-based FL Participant Reputation Manage-
ment: historical contribution evaluation records are con-
verted into reputation values for the FL participants. This
information can serve as a basis stakeholder management
decision support.

Compared to existing FL-empowered smart healthcare
frameworks, CAreFL offers unique new capabilities which
can support more sophisticated use cases.

The CAreFL framework has been deployed through a
collaboration between WeBank1 and Yidu Cloud Technol-
ogy Inc.2 since March 2021. It supports FL model train-
ing under server-based horizontal FL settings (Yang et al.
2019), in which participants are from the same domain and
their datasets have large overlaps in the feature space but
little overlap in the sample space. It has helped eight well-
established healthcare institutions in China train AI models
for healthcare decision support. It can perform contribution
evaluations 2.84 times faster than the best existing approach.
Compared to the previous FedAvg-based FL model training
approach used by Yidu Cloud, CAreFL achieved a 2.62%
model accuracy improvement on average, which is signifi-
cant in industrial smart healthcare applications. To the best
of our knowledge, it is the first contribution-aware federated
learning successfully deployed in the healthcare industry.

Application Description
Yidu Cloud offers smart healthcare solutions with AI tech-
nologies. It provides FL model training services to help
healthcare customers such as hospitals, pharmaceutical,
biotech and medical device companies, research institutions
and insurers to build the required models. Its FL service pro-
vision framework is based on the opensource Federated AI
Technology Enabler (FATE) platform developed by WeBank
(Liu et al. 2021). The CAreFL framework is added on top of
this infrastructure to provide functionalities related to and
derived from FL participant contribution evaluation.

In this section, we provide detailed descriptions of the
CAreFL framework. It consists of three tiers (Figure 1): 1)
the FL infrastructure tier, which consists of the online FL
server (currently training an FL model) and the offline FL

1https://www.webank.com/
2https://www.yiducloud.com.cn/en/
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Figure 1: The CAreFL system architecture.

server (storing previously trained models), 2) the contribu-
tion evaluation (CE) tier, and 3) the user interaction tier.

The CE server interacts with FL infrastructure to assess
FL participants’ contributions. To protect participants’ pri-
vacy, only their obfuscated IDs are made available to the
CE server. The CE server contains the CAreFL model ag-
gregation approach to guide the online FL server as to se-
lect the best performing intermediate aggregated model to
be distributed to the FL participants for local training. The
CE server also tracks the participants’ historical contribution
evaluation outcomes and updates their reputation scores.
The CAreFL process visualization (Wei et al. 2019) and
management functions are made available through the user
interaction tier for authorized personnel to access. As the AI
Engine of CAreFL resides in the CE server, we describe the
three main functionalities of the CE server in more details in
the following parts of this section.

Contribution Evaluation
The contribution evaluation workflow of CAreFL is shown
in Figure 2. It can be performed in two modes: online and
offline, which correspond to the types of federations the sys-
tem serves. The online mode evaluates participants’ con-
tributions during the FL model training process. The of-
fline mode evaluates participants’ contributions for FL mod-
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Figure 2: The CAreFL contribution evaluation workflow in-
tegrated into the normal FL model training process.

els which have already been built, but with historical local
model updates stored in the system. Even though the same
evaluation algorithm is used for both modes, the interaction
processes are slightly different.

For online FL, the evaluation process is as follows:

1. The FL server initiates an FL session (under the FATE
framework, this is done by sending a homomorphic en-
cryption (HE) key to the FL participants).

2. The FL server sends an evaluation request to the CAreFL
CE server.

3. The FL server proceeds with FL model training.
4. The FL server sends the obfuscated IDs of FL partic-

ipants joining the current round of training to the CE
server.

5. The CE server sends the combination of participant IDs
selected by the proposed GTG-Shapley algorithm (Liu
et al. 2022) to the FL server for Shapley Value (SV)-
based contribution evaluation.

6. The FL server reconstructs an FL sub-model with only
the model updates from the set of participants selected
by the CE Server. Then, it evaluates the performance of
the sub-model and sends the results to the CE server.

7. The CE server analyzes the received results and adjusts
the selected participants set. The new set of participants
are sent to the FL server to be evaluated.

8. When the CE server determines that enough information
has been gathered, it stops further sub-model evaluation.
The contribution values for each participant are sent to
FL the server.

9. The FL server proceeds with the next round of training.

For offline FL, the evaluation process is the same as above.
However, since the model updates are already stored by the
FL server, the offline mode skips the FL training process and
uses stored model updates to reconstruct sub-model directly.

CAreFL Model Aggregation
During the course of contribution evaluation, the perfor-
mance of different FL sub-models (aggregated using local
updates from different combinations of selected FL partic-
ipants) are calculated as a by product. The CE server can
thus identify the sub-model with the best performance. This
information is used to guide the online FL server to improve
the final FL model performance as follows:

1. After computing the FL participant contribution values
for a training round, the CE server returns an additional
subset of participants whose local model updates produce
the best performing aggregated FL model. This subset
can be viewed as the “best subset” of participants for FL
model aggregation.

2. With this information, the FL server reconstructs an FL
model with the local model updates only from partici-
pants in the “best subset”.

3. This “best subset” FL model is then distributed to all
the participants as the new global FL model for the next
round of collaborative training.

Reputation Management
When starting a new federation, the FL initiator often needs
to select a number of participants from the candidate pool.
During this process, participants’ track records can be use-
ful information to support decision-making. The CAreFL
framework includes a reputation management module to fa-
cilitate FL participant selection.

CAreFL adopts well-established principles of reputation
evaluation from the multi-agent systems literature (Yu et al.
2013; Shen et al. 2011), emphasizing on context-awareness
and temporal sensitivity. For example, a participant’s data
might be more valuable for building an FL model for cancer
research than one for bone fracture identification. Moreover,
as a participant’s data quality depends on its data collection
and processing effort, its perceived contribution value in the
same application context may also change over time. Hence,
the historical contribution evaluation records for each partic-
ipant are organized according to the application context and
the time stamp to facilitate reputation evaluation.

The CAreFL reputation model is designed based on the
Beta Reputation System (BRS) (Josang and Ismail 2002).
Based on participants’ contribution records, it discretizes
each record into “good” and “bad” to make it suitable for
BRS. If a participant’s contribution value is higher than
the average contribution value of all the participants in this
round, this record is categorized as “good”; otherwise, it is
categorized as “bad”. CAreFL calculates every participants’
reputation under each context based on BRS. A participant’s
overall reputation is the average of their reputation values
over all the contexts they have joined before. As the reputa-
tion information is mainly for decision support during man-

12398



ual FL participant selection in the current application, it is
not considered part of the CAreFL AI Engine.

Use of AI Technology
In this section, we describe the AI Engine of CAreFL. It can
be divided into two main parts: 1) an efficient Shapley Value
(SV)-based participant contribution evaluation algorithm -
GTG-Shapley (Liu et al. 2022), and 2) a contribution-aware
FL model aggregation algorithm. The system architecture of
the AI Engine is illustrated in Figure 3. GTG-Shapley com-
putes the participants’ contributions in an efficient manner
and returns the results to the FL server. In addition, it also
identifies the “best subset” and passes this information to the
FL server to improve model aggregation. This function is
only relevant for online FL training during which the global
FL model is still in the process of being established.

Suppose there are N = {1, . . . , n} hospitals, each with
a local dataset Di, i ∈ {1, . . . , n}. For a general FL pro-
cess, there are a total of T collaborative training rounds.
During each round t ∈ {1, . . . , T}, participant i downloads
the global model M (t), and computes a local model M (t+1)

i
with its local dataset Di. Then, each participant sends its
gradient update ∆

(t+1)
i = M

(t+1)
i −M (t) to the FL server.

After the FL server has gathered participants’ gradient up-
dates, it executes an aggregation approach to obtain a global
model M (t+1) for next round of training. The aggregation
approach can be any algorithm. For example, if FedAvg
(McMahan et al. 2017) is adopted, then:

M (t+1) = M (t) +
∑
i

|Di|
|DN |

∆
(t+1)
i (1)

where |Di| denotes the size of dataset Di. |DN | =∑n
i=1 |Di| denotes the combined size of all N datasets.

Contribution Evaluation
When evaluating a participant’s contribution under the FL
paradigm, any direct access to its local data is prohibited.
Therefore, the contribution evaluation process must be car-
ried out without examining the actual data. Shapley Value
(SV) (Shapley 1953) is a classic approach to fairly quantify
the contributions of individuals within a coalition. Moreover,
it only requires the final utility achieved by the coalition for
calculation. This makes it suitable as a fair contribution eval-
uation principle for FL.

A participant’s SV is the average of all its marginal contri-
butions under all possible permutations within the coalition.
The SV, φi(N,V ), is expressed as:

φi(N,V ) =
∑

S⊆N\{i}

V (S ∪ {i})− V (S)(|N|−1
|S|

) . (2)

S denotes a subset of participants from coalitionN . The util-
ity function V (·) evaluates the joint utility of the input set. It
can be of any form. In machine learning, the utility evalua-
tion function V (S) is based on the performance of the model
learned using S. That is, V (S) = V (MS), where MS is the
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Figure 3: The CAreFL AI Engine

FL model trained with the subset of participants’ datasets
DS = {Di}, ∀i ∈ S:

V (S) = V (MS) = V (A(M (0), DS)) (3)

whereA is the learning algorithm and M (0) denotes the ini-
tial model.

From Eq. (2), it is obvious that computing the canonical
SV takes exponential time with regard to the number of FL
participants involved. In practice, FL in the healthcare do-
main often involves multiple participants (e.g., hospitals).
Training the model once on large local data silos is already
very time consuming. Furthermore, the sizes of the FL mod-
els can be large. Thus, aggregating and evaluating the FL
models can also be time consuming. Hence, the canonical
SV cannot be directly used for contribution evaluation in the
context of FL.

In FL, approaches to accelerate SV calculation have been
proposed. (Ghorbani and Zou 2019) samples part of the
entire set of possible participant combinations to reduce
SV calculation complexity. However, as it still required re-
training of the subset FL models, it is still too computa-
tionally expensive. Therefore, gradient-based FL model re-
construction approaches (Song, Tong, and Wei 2019; Wang
et al. 2020) have been proposed to avoid FL sub-model re-
training. These approaches do relieve a large proportion of
the SV computational overhead. However, they still require
O(2N ) FL sub-model reconstructions. Thus, they cannot be
scaled up to large federations.

In the FL for smart healthcare application scenario, a
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contribution evaluation solution that can fairly assess par-
ticipants’ contributions in a highly efficient manner is re-
quired. Therefore, the CAreFL AI Engine is incorporated
with our proposed Guided Truncation Gradient Shapley
(GTG-Shapley) approach (Liu et al. 2022). It not only signif-
icantly improves computation efficiency, but also achieves
higher accuracy compared to the state-of-the-art SV-based
FL participant contribution evaluation approaches.

GTG-Shapley is designed to perform contribution evalu-
ations during any given FL training round. To protect par-
ticipants’ privacy, GTG-Shapley only requires participants’
IDs as the input. It is worth mentioning that these IDs do not
have to be the actual identifiers used by the FL server. The
FL server can obfuscate the participants’ IDs in any form as
long as they are unique. The key idea of GTG-Shapley is to
opportunistically reduce the need for sub-model retraining
with model reconstruction and strategic sampling of combi-
nations of participants. It truncates unnecessary sub-model
evaluations to reduce computational costs, while maintain-
ing high accuracy of estimated SVs.

Elimination of Sub-Model Retraining GTG-Shapley
leverages the performance information of reconstructed FL
models to generate the necessary sub-models. The utility
produced by a subset of FL participants represents the col-
lective contributions of participants to the subset. These con-
tributions can be in the form of their local datasets since
the FL model is trained on them. Alternatively, it can also
be their gradient updates which represent each participant’s
knowledge derived from its local dataset.

Therefore, when GTG-Shapley determines that the util-
ity of a given subset of participants needs to be evaluated,
the FL server reconstructs an FL model based on these par-
ticipants’ model updates, instead of retraining from scratch.
In this way, the evaluation of the utility of S no longer in-
volves retraining the sub-model MS . Thus, Eq. (3) can be
re-expressed as:

V (S) = V (MS) = V

(
M +

∑
i∈S

|Di|
|DS |

∆i

)
. (4)

Guided Truncation of Model Evaluations With the need
for sub-model retraining eliminated, the majority of the time
required to estimate SVs is incurred by the exponential num-
ber of FL sub-model reconstructions and evaluations. For
models with a large number of parameters and federations
with large test datasets, SV estimation can be significantly
slowed down. Thus, it is advantageous to strategically elim-
inate unnecessary sub-models.

SV estimation in FL differ from traditional cooperation
games in two major ways.
1. An FL participant’s SV is estimated based on its marginal

gain in different participant permutations, and the FL
server performs SV utility evaluation. Similar to tradi-
tional machine learning, FL shows patterns of diminish-
ing returns both on the marginal gains of within-round
participant evaluation orders in a sampled permutation,
and the marginal gains across different rounds. A par-
ticipant can be categorized as “valuable” or “not valu-
able” based on its marginal gain. Thus, GTG-Shapley

Algorithm 1: GTG-Shapley

Input: final FL model M (t)’s utility v0, final FL model
M (t+1)’s utility vN , evaluation request function V (·)
Output: SVs for round (t+ 1), φ(t+1)

i , for all
{i ∈ {1, . . . , n} participants

1: φ(t+1)
i = 0, ∀i ∈ {1, . . . , n};

2: k = 0;
3: # between round truncation;
4: if |vN − v0| > εb then
5: while Convergence criteria not met do
6: k = k + 1;
7: πk: Partial (n −m) permutation of participants; #

guided sampling
8: vk0 = v0;
9: # within-round truncation ;

10: for j = 1, . . . , n do
11: if |vN − vkj−1| ≥ εi then
12: C = {πk[1], . . . , πk[j]};
13: vkj = V (M

(t+1)
C );

14: else
15: vkj = vkj−1;
16: end if
17: φ

(t+1)

πk[j]
= k−1

k φ
(t+1)

πk[j]
+ 1

k (vkj − vkj−1);
18: end for
19: end while
20: end if
21: return {φ(t+1)

1 , . . . , φ
(t+1)
n };

only needs to evaluate those “valuable” participants in
a sampled permutation. The rest can be omitted without
significantly affecting SV estimation.

2. The marginal utility gains concentrate at the leading posi-
tions in a given FL participant permutation. Thus, it is im-
portant to ensure that participants have equitable oppor-
tunities to occupy different positions across multiple per-
mutations in order to evaluate their contributions fairly.

To take advantage of these insights, GTG-Shapley is in-
corporated with a between-round truncation policy to oppor-
tunistically skip entire rounds of SV calculation when the
remaining marginal utility gain is deemed to be insignif-
icant. In addition, a within-round truncation policy is put
in place for opportunistically terminating the ongoing sub-
model evaluation when the marginal gain of the remaining
FL participants in the current permutation is deemed to be
insignificant. Lastly, GTG-Shapley has a guided sampling
policy to fairly place FL participants in different positions
across multiple participant subsets.

Algorithm 1 shows the details of GTG-Shapley (without
the CAreFL model aggregation part). The initial FL model
M (t), which was the final FL model from the (t − 1)-th
round, involves an empty set (S = {}) of participants for
the (t)-th round of SV calculation. The final model M (t+1)

is the global FL model learned during the t-th round of
training, which includes the full set of participants (S =
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{1, ..., n}). Lines 1-2 show parameter initialization. GTG-
Shapley performs Monte-Carlo sampling with the truncation
policy at two levels. In Line 4, it performs between-round
truncation. If the marginal gain of the t-th round |vN − v0|
is not larger than a pre-defined threshold εb, the entire round
t is truncated, and GTG-Shapley returns 0 for every partic-
ipant in this round of evaluation. Otherwise, GTG-Shapley
proceeds to estimate the SVs for the t-th round. Line 7 shows
the permutation sampling policy of GTG-Shapley. The par-
tial permutation is the proposed guided sampling policy with
the following rule: the leading m (m << n) bits in the se-
quence are circulated in a fixed order P (n,m) by the n par-
ticipants, and the last (n−m) bits are randomly sampled per-
mutations of the remaining participants. This is to avoid un-
fair SVs estimation and improve convergence. Lines 10-18
show the within-round truncation operation at the sequence
level. The utility evaluation for subsequent sub-models in
an evaluation sequence can be truncated if the remaining
marginal gain is smaller than a pre-defined threshold εi. Oth-
erwise, the CE server sends a request with an ID list C to
the FL server to carry out utility evaluation. After receiv-
ing the request, the FL server assembles the FL sub-model
V (M

(t+1)
C ) based on participants in C, and returns the util-

ity evaluation result to the CE server as shown in Line 13.
Lastly, the participants’ SVs are updated by their marginal
gain in πk.

CAreFL Model Aggregation
During the calculation of SVs, the CE server collects perfor-
mance information of FL sub-models formed by many alter-
native combinations of FL participants. In the online mode
of operation shown in Figure 2, the CE server selects the
subset Sp ⊆ N with the best performance (i.e., the “best
subset”). Then, Sp is sent to the FL server. The FL server
then aggregates a new global FL model with gradients from
participants ∀i ∈ Sp. Thus, the following model aggregation
equation is used to replace Eq. (1):

M (t+1) = M (t) +
∑
i∈Sp

|Di|
|DSp |

∆
(t+1)
i . (5)

Application Development and Deployment
The CAreFL framework has been developed mainly us-
ing the Python programming language by teams from the
Joint NTU-WeBank Research Centre on Fintech, Nanyang
Technological University (NTU), Singapore, Yidu Cloud
Technology Inc., and the Institute for AI Industry Research
(AIR), Tsinghua University, China. When developing the AI
Engine, we have evaluated seven existing SV-based FL par-
ticipant contribution evaluation approaches. They are:
1. Canonical SV: This method follows the canonical SV

calculation according to Eq. (2).
2. TMC Shapley (Ghorbani and Zou 2019): Utility evalu-

ation of a subset involves re-training a sub-model with
participants’ local datasets. Monte-Carlo estimation of
SVs is performed by sampling random participant per-
mutations and truncating unnecessary sub-model utility
evaluations.

3. Group Testing (Jia et al. 2019): It samples a number of
subsets of FL updates and evaluates the corresponding
sub-model utility. Then, it estimates the Shapley differ-
ences instead of SVs. Later, it infers SVs by solving a
feasibility problem with the Shapley differences.

4. MR (Song, Tong, and Wei 2019): The utility of a sub-
set is evaluated by reconstructing the FL sub-model with
gradient updates. The SV of each participant is calculated
according to Eq. (2). The final SV for a participant is the
sum of its SVs in all rounds.

5. Fed-SV (Wang et al. 2020): It approximates the “feder-
ated Shapley value” via group testing-based estimations.
The differences are: 1) the subset utility values used for
estimating the Shapley differences is evaluated based on
reconstructed sub-models; and 2) SVs are estimated in-
dependently each round and aggregated in the end.

6. TMR (Wei et al. 2020): SVs are calculated indepen-
dently in each round with reconstructed FL sub-models,
with a decay parameter λ which serves as: 1) weights to
amplify SVs from earlier rounds; and 2) a truncation fac-
tor to eliminate unnecessary sub-model reconstructions.

7. GTG-Shapley (Liu et al. 2022): our proposed approach.

To compare the contribution evaluation performance of
these approaches under different FL settings, we designed
i.i.d. and non-i.i.d. FL scenarios involving 10 participants.
The datasets used in the experiments are derived from the
MNIST dataset (LeCun, Cortes, and Burges 2010). The re-
sults in terms of the time duration taken and the accuracy of
the contribution evaluation (measured by the Euclidean Dis-
tance (ED) between the estimated SVs and the value com-
puted by the Canonical SV approach) are shown in Table
1. In the table, both metrics are presented in log10 scale. It
can be observed that GTG-Shapley consistently achieves the
highest efficiency and accuracy under both i.i.d. and non-
i.i.d. settings. The results helped the design team to make
the decision to select GTG-Shapley for the task of FL par-
ticipant contribution evaluation in CAreFL.

i.i.d non-i.i.d
Duration ED Duration ED

Canonical SV 4.615 - 4.615 -
MR 3.833 -2.35 3.733 -2.148
TMC 4.168 -1.687 4.213 -1.369
TMR 3.531 -2.353 3.678 -2.27
GroupTesting 4.583 -0.894 4.557 -0.667
Fed-SV 3.784 -0.757 3.711 -0.789
GTG-Shapley 2.662 -2.427 2.733 -2.323

Table 1: Contribution evaluation experiments on MNIST.

Furthermore, we experimentally compared CAreFL
model aggregation with FedAvg, which is part of the FATE
framework Yidu Cloud uses, under the same i.i.d. and non-
i.i.d. FL scenarios with 10 participants. The datasets used
in the experiments are derived from the CIFAR-10 dataset
(Krizhevsky 2009). The results are illustrated in Figures 4(a)
and 4(b). It can be observed that CAreFL outperforms Fe-
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Figure 4: Model aggregation experiments on CIFAR-10.
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dAvg under both settings. The outperformance is more pro-
nounced under the non-i.i.d. setting, which is more prevalent
in healthcare data silos. The results helped the design team
to make the decision to incorporate this new FL aggregation
approach into CAreFL.

Figure 5 shows the user interface through which CAreFL
visualizes FL participant contribution evaluation for the sys-
tem administrators. The left sidebar enables switching be-
tween the three perspectives. On the main page of “Fed-
erations”, the left-hand side illustrates different federations
as clickable cards with brief overview information, such as
federation name, task description, creation time, number of
participants and FL model performance. The list of federa-
tions displayed can be refined with the filters on the top. The
right-hand portion of the main page shows key information
about participant contribution and CAreFL model aggrega-
tion for the selected federation (highlighted in dark blue). At
the top, textual descriptions about the selected federation is
displayed to the left, while the evaluated contributions of the
participants are displayed to the right. The training accuracy
and loss of the aggregated FL model over time are shown
below them. Underneath, a grid heat map of FL sub-model
utility values during each round of contribution evaluation is
plotted. Each row represents one training round. FL models
consisting of all participants’ model updates are highlighted
with a white dot. In each row, the sub-models are arranged

in descending order of their performance from left to right.
When clicking on a cell, a box will pop up with more de-
tailed information about model performance and the IDs of
the participants involved. Lastly, at the bottom, the marginal
gains of each round of evaluation are displayed to the left.
When clicking on a round this chart, the contributions of all
FL participants involved in it are plotted as a barchart to the
right. It should be noted that the actual deployed system user
interface is in Chinese. Figure 5 has been translated for En-
glish speaking readers.

Application Use and Payoff
The CAreFL framework has been deployed in Yidu Cloud
Technology Inc. since March 2021 in two lines of their busi-
ness: 1) clinical research services, and 2) real-world trial
research services. Clinical research focuses on training FL
models involving data silos from multiple hospitals. Real
world trial research is often initiated by a pharmaceutical
company which aims to leverage data from multiple hospi-
tals to build models. Both services require data which need
to be collected by the hospitals over months or years under
their respective Institutional Review Board (IRB) supervi-
sion. So far, CAreFL has been used to help eight well-known
medical institutions in China to train AI models for risk pre-
diction, disease diagnosis and influence factor analysis.

Leukemia: CAreFL has been used to train models for re-
currence risk prediction after hematopoietic stem cell trans-
plantation for acute leukemia treatment. This is a clinical
research business case. A total of 62,000 patients were in-
cluded in the study, and 2,830 samples are included after
acute leukemia screening and hematopoietic stem cell trans-
plantation (709 positive cases and 1,054 negative cases at the
end point of the recurrence study one year after the surgery).
The results for this case are shown in Figures 6(a) and 6(b).
A logistic regression (LR) model and a homo SecureBoost
Tree (SBT) model (Cheng et al. 2021) have been trained
with FedAvg in the previous system, and later retrained with
CAreFL after its deployment. In both cases, CAreFL quickly
reaches the performance plateau. It outperforms the previ-
ous system (with FedAvg) by 3.34% and 2.83% for the LR
model and the SBT model, respectively.

Biopsy: CAreFL has been used to train models for ana-
lyzing major factors influencing prostate biopsy positivity
based on real-world trial data. This is a clinical research
business case. A total of 5,978 patients who underwent
prostate cancer biopsy during a 5-year period were screened,
and 2,426 patients are selected. The model mainly analyzes
the relationship between patient age, family history, tPSA/f-
PSA, PSAD, preoperative testosterone, preoperative MRI,
preoperative DRE, Gleason score and other factors with pos-
itive biopsy diagnosis. The results for this case are shown
in Figures 6(c) and 6(d). CAreFL outperforms the previous
system by 3.41% and 2.22% for the LR model and the SBT
model, respectively.

Pneumonia: CAreFL has also been used to train models
for classifying whether hospitalized pneumonia patients will
be transferred to the intensive care unit (ICU) or pass away.
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Figure 6: Deployment comparison results (test accuracy).

This is a real-world trial research business case. A total of
103,455 sample data were selected based on hospitalization,
death, and transfer to ICU for continued treatment during
hospitalization. These samples contain 57 features, includ-
ing basic patient information, vital signs, test results, symp-
toms and other information. The results for this case are
shown in Figures 6(e) and 6(f). CAreFL outperforms the pre-
vious system by 2.87% and 1.00% for the LR model and the
SBT model, respectively.

With the help of CAreFL, Yidu Cloud has avoided the
problems of high computation costs and low accuracy of
existing FL participant contribution evaluation approaches.
This capability not only allows it to provide more de-
tailed analysis about the value each FL participant can bring
into building any given FL model without exposing their
sensitive data, but also enables a new contribution-aware
FL model aggregation approach to be developed. Overall,
CAreFL is 2.84 times faster than the best performing base-
line, MR, in terms of evaluating participants’ contributions.
It has improved the average accuracy of FL models trained
by Yidu Cloud by 2.62% compared to its previous system,
which is significant in industrial smart healthcare settings.

Maintenance
As time goes by, there are additions of new types of health-
care related machine learning tasks, changes in personnel
access rights, and changes in operating parameters in the
system. Since the platform architecture follows a modular

design approach around tasks and personnel to achieve sep-
aration of concerns, such updates can be performed with-
out affecting the AI Engine. Since deployment, there has not
been any AI maintenance task.

Lessons Learned During Deployment
During the deployment process of the CAreFL framework,
there are several lessons worth sharing.

Firstly, contribution evaluation seeks to explain the impact
of each FL participant on model performance. A fine balance
needs to be struck between this goal and the primary design
objective of FL, which is privacy preservation. Thus, care-
ful designs of access control and participant ID obfuscation
need to be worked out together with our industry partners
to ensure that private information is properly protected to a
level that they can accept.

Secondly, contribution evaluation results need to be
shared with the FL participants involved. Thus, it is impor-
tant for our industry partners to ensure that the evaluations
reflect participants’ contributions fairly. Based on this con-
sideration, they strongly prefer adopting an evaluation ap-
proach that is grounded in well-established CE principles.
These lessons has shaped the final design of CAreFL.

Conclusions and Future Work
In this paper, we reported on our experience using
contribution-aware federated learning to enhance privacy-
preserving collaborative training of machine learning mod-
els involving multiple healthcare industry data owners. We
developed the CAreFL framework which provides fair and
explainable FL participant contribution evaluation in an ef-
ficient and privacy-preserving manner, and optimizes the
FL model aggregation approach based on the evaluation re-
sults. Since its deployment in March 2021 in Yidu Cloud,
CAreFL has helped eight well-established medical institu-
tions in China to train machine learning models for health-
care decision support, and has made significant positive im-
pact by improving contribution evaluation efficiency and
model performance compared to the previous system. To
the best of our knowledge, it is the first successfully de-
ployed contribution-aware federated learning framework in
the healthcare industry.

In future, we will continue the explore the applicability of
CAreFL in other smart healthcare application scenarios. We
will also extend the CAreFL framework with contribution-
based data pricing mechanisms (Pei 2020) to support the
emergence of an FL-based healthcare data exchange mar-
ketplace. Eventually, we aim to incorporate these function-
alities into the opensource FATE framework and make them
available to more developers, researchers and practitioners.
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