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Abstract
Implementations of artificial intelligence (AI) based on deep
learning (DL) have proven to be highly successful in many
domains, from biomedical imaging to natural language pro-
cessing, but are still rarely applied in the space industry, par-
ticularly for onboard learning of planetary surfaces. In this
project, we discuss the utility and limitations of DL, enhanced
with topological footprints of the sensed objects, for multi-
class classification of planetary surface patterns, in conjunc-
tion with tactile and embedded sensing in rover exploratory
missions. We consider a Topological Convolutional Network
(TCN) model with a persistence-based attention mechanism
for supervised classification of various landforms. We study
TCN’s performance on the Barefoot surface pattern dataset, a
novel surface pressure dataset from a prototype tactile rover
wheel, known as the Barefoot Rover tactile wheel. Multi-
class pattern recognition in the Barefoot data has neither been
ever tackled before with DL nor assessed with topological
methods. We provide insights into advantages and restric-
tions of topological DL as the early-stage concept for onboard
learning and planetary exploration.

Introduction
From seeking signs of past life on Mars to collecting sam-
ples of lunar rock, robotic rovers are planetary exploration
vehicles with a high level of onboard intelligence that per-
form complex tasks in science data gathering. For exam-
ple, NASA’s Mars Exploration Rovers (MER) is one of the
longest deployments of robotic intelligence on remote plan-
etary surfaces. Another example is the most recent rover
Zhurong, part of China’s first Mars mission. An emerging
instrumental concept of tactile wheels equipped with vari-
ous in-situ sensors, such as tactile technology, directly on
the wheel can add additional information to the planetary ex-
ploration rovers by providing them with a “sense of touch”.
Sensing modality enabled by the tactile wheel has a premise
to become the primary planetary mission driver, particularly
in conjunction with mapping efforts at cruising, rather than
crawling speeds for future Moon and Mars rover missions.
Moreover, the tactile wheel has the potential to enhance mo-
bility missions to Icy Moons due to the even more uncer-
tain terrain properties and the need for increased autonomy.
Learning such uncertain terrain properties requires devel-
opment of novel machine learning (ML) techniques which
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can not only capture sophisticated characteristics of plane-
tary surfaces, but also demonstrate computational efficiency
for onboard applications.

This paper is motivated by the challenging question of
whether we can potentially address such needs in rover ex-
ploration missions using deep learning (DL) models, en-
hanced with topological footprints of terrain. In particular,
we aim to explore the utility and limitations of topological
DL as the primary tool for detecting various terrain classes in
rover missions. We provide experiments on a novel surface
pressure dataset from a prototype tactile rover wheel, named
the Barefoot Rover tactile wheel, making a case for potential
applications of topological DL in terrain exploration and au-
tonomous driving. The embedded sensors, like the pressure
sensor on a wheel, provide additional capabilities for devel-
opment of the autonomous systems and could be an impor-
tant component of future spacecraft exploring Earth, space
and unknown environments. These new, under-explored ap-
plications for DL currently require higher levels of computa-
tional efficiency and memory utilization due to hardware and
cost constraints. While DL, especially enhanced with topo-
logical information (Hofer, Kwitt, and Niethammer 2019),
has proven to deliver superior accuracy, its computational
costs is one of the primary roadblocks for onboard appli-
cations. Previous work (Chen, Marchetti, and Gel 2021) has
shown that adding a topological layer to graph convolutional
networks (GCNs) can yield noticeable gains for binary clas-
sification of planetary rock patterns collected by the similar
tactile wheel. However, such topological GCNs are compu-
tationally prohibitive for exploratory missions.

Here we advance this analytic proof-of-concept method
for rover exploration further into two directions. First, we
consider a more realistic scenario for rover missions and
learn more complex terrain types from pressure images
of various landforms, such as sharp and smooth dunes,
bedrock, gullies and pebbles. Second, we significantly re-
duce computational costs. To achieve these goals, in con-
trast to the previous study, we use an ensemble of topolog-
ical summaries that are obtained from rotation augmenta-
tion. Such topological meta-representation gathers a richer
knowledge on the hidden shape properties of planetary ter-
rains, making it possible to utilize a simpler model (com-
pared to GCN), and hence provide considerable computa-
tional gains with less training data necessary. In particular,
to adaptively learn the importance weights for the resulting

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

12468



embeddings in the topological meta-representation, we pro-
pose a persistence-based attention mechanism, making the
first step toward the paradigm of attention-based topologi-
cal representation learning. We then introduce Topological
Convolutional Networks (TCN), i.e., topologically-enhanced
convolutional neural networks, that are able to efficiently un-
cover unseen local shape signatures of landforms, improve
classification performance, and substantially reduce compu-
tational costs. Furthermore, some TCN model training can
be done offline prior to deployment, with only incremental
training required to update the model, allowing us to bet-
ter balance accuracy and computational costs. This new ap-
proach does not require a priori knowledge of topological
signals and noise, i.e., maximum signal is extracted from
all available topological information; in a sense, we can say
that we can quantify topological uncertainty. These innova-
tions can make DL tools more attractive for the deployment
onboard and for streaming applications, such in terrain ex-
ploration in space, as we show with the Barefoot dataset ex-
periments.

While the current computational costs of any DL tool, in-
cluding the proposed TCN, are still high for onboard de-
ployment, this project provides a suite of important mes-
sages toward eventually implementing DL within AI solu-
tions for rover systems. In particular, our findings suggest
that topological footprints, especially the topological meta-
representation mechanisms, may bring highly valuable in-
formation about the hidden structural organization of multi-
ple planetary landforms and assist in generalization of DL
results. We believe that the direction toward topological
transfer learning with extensive offline experiments and only
limited onboard updates and matching of topological foot-
prints may be one of the most promising AI solutions for
planetary exploration missions.

Related Work
Research in DL methods for terrain classification utilizes
natural images taken by orbiter cameras (Wagstaff et al.
2018; Rothrock et al. 2016; Kerner et al. 2019) and by au-
tonomous vehicles (Schmidt and Cheein 2019). Terrain clas-
sification is studied in the context of robotic exploration and
operational safety, particularly with the newly found appli-
cability to tactile sensors (Zürn, Burgard, and Valada 2020;
Chen, Rastogi, and Norris 2021). Recent efforts have been
dedicated to extending both ML and DL methods for ter-
rain image classification. For example, Wagstaff et al. (2018)
use a neural network architecture based on an autoencoder
to capture and explain novel features in multispectral im-
ages. Additionally, Marchetti et al. (2020) utilize tree-based
Stochastic Gradient Boosting (SGB) to extract information
from in-situ sensors and train models for terrain type clas-
sification and slip regression. Kerner et al. (2020) com-
pare the performance of four detection methods and detect
novel geology on multispectral images from planetary in-
strument datasets. To incorporate local and global informa-
tion, Chen, Marchetti, and Gel (2021) propose a GCN-based
model to capture geometric and topological features via a
terrain image and its topological summary. Unlike afore-
mentioned DL, our approach is based not on a single topo-
logical summary of a given image, but considers an ensem-

ble of topological summaries, allowing us to enhance topo-
logical knowledge representation and, by virtue of it, im-
prove pattern recognition performance and associated com-
putational efficiency.

Data Description
The Barefoot surface pressure dataset (Lightholder et al.
2021) is a collection of non-traditional images of terrain
collected from experiments with a pressure sensor wrapped
around a prototype tactile rover wheel. These images show
imprints of various terrain types, e.g., rocks, dunes, gul-
lies, as the wheel is rolling over the ground. An example
of such an imprint and the wheel experiment are shown in
Figures 1(a) and (b). For instance, Figure 1(b) shows an ex-
ample of experiment setup where the Barefoot Rover mobil-
ity cart with the tactile wheel mounted on it sits in a metal
trough over regolith with letters Jet Propulsion Laboratory
(JPL) spelled in small rocks on the surface. Background and
details for the Barefoot project, the dataset and data pro-
cessing can be obtained in Marchetti et al. (2020) and Chen,
Marchetti, and Gel (2021).

Figure 1: An example image from the Barefoot surface pres-
sure dataset (Lightholder et al. 2021). A processed image of
the pressure sensor (a) obtained for an experiment with a
rolling wheel that forms letters in rocks (b). Calibrated pres-
sure pad image, with the wheel slipping (c) and resting on a
rock (d). The striping effect is produced by the grousers.

Figures 1(c) and (d) show an example of fully calibrated
pressure sensor imprint for different pressure signatures,
with a wheel resting on top of a rock and with a wheel on
a sandy material, experiencing slippage. Most of the pres-
sure images have calibrated pressure at around 0, since at
any given time the wheel is only experiencing pressure over
a very small area, while the rest of its circumference is
not in contact with the ground. Marchetti et al. (2020) col-
lected over a thousand experiments across different mate-
rials, terrain patterns and slippage values. We use a sub-
set of the experiments (Lightholder et al. 2021) for surface
patterns, including various rock types, to classify pressure
sensor images into eight classes: bedrock, flat, gullies, peb-
bles, rock-above, rock-below, sharpdunes, smoodunes. Fur-
ther pre-processing of the images for classification is cov-
ered in the Experiments section.

Methodology
Persistence Homology over Surface Pattern Image To
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study the underlying shape of data, we invoke the machinery
of persistent homology (PH), a rapidly emerging research
subfield at the interface of data science, machine learning
and algebraic topology (Chazal and Michel 2017; Otter et al.
2017; Wasserman 2018). Let X be the observed data (in our
application, X is a 2D image. X can also be a graph or point
cloud lying in a Euclidean n-dimensional space En or more
generally, functional metric space M ).

The main goal of PH is to retrieve structural properties
about topology and geometry lost during sampling. To ex-
tract topological and geometric information in a system-
atic and efficient manner, we build abstract simplicial com-
plexes, i.e., mathematical objects that are both topological
and combinatorial, on top of the observed data X. As men-
tioned in Chen et al. (2019), since images are made of pixels,
ideally persistent homology on images shall account for rep-
resentation of images as a pixel grid. As such, using cubical
complexes over grid structures, instead of simplicial com-
plexes over point clouds, appears as a more feasible choice
to extract topological summaries of images.

Definition 1 Define an elementary cube C as
a finite product of elementary intervals, i.e.,
Q = I1 × I2 × · · · × Id ( Rd, where an elementary
interval is a subset I ∈ R such that either I = [l, l + 1] or
I = [l, l], l ∈ Z>0. Then, the cubical complex K in Rn is a
collection of elementary cubes.

Armed with the notion of cubical complexes, we can
now track how topological properties of an image evolve
as we vary, for example, pixel intensity (of a grayscale im-
age). Such analysis allows us to get a deeper understand-
ing of hidden higher order properties of the image (Edels-
brunner and Harer 2010) which we cannot extract other-
wise. Indeed, it is challenging, if not impossible, to distin-
guish images in the upper panel of Figure 2. However, we
find the corresponding topological footprints of these im-
ages (see the lower panel of Figure 2) to be quite distinct.
Formally, the idea is to consider a filtration of cubical com-
plexes induced by some user-selected function on image pix-
els (i.e., vertices of K). In particular, let f be a real-valued
function which maps every simplex to the maximum func-
tion value of its vertices (e.g., the grayscale value as in our
case) and let Kr = f−1(−∞, r], r ∈ R. Then, we can set
an increasing sequence of (dis)similarity thresholds r, i.e.,
r1 < r2 < . . . rm, and construct a nested sequence of cubi-
cal complexesKr1 ⊂ Kr2 ⊂ . . .Krm associated with evolv-
ing thresholds r. Such a nested sequence is called lower-star
filtered cubical complex (Edelsbrunner and Morozov 2014).

As (dis)similarity threshold r changes, some topological
features are born, while others disappear. Topological fea-
tures which tend to span longer over r1 < r2 < . . . rm
are called persistent, while features with shorter lifespans
are referred to as topological noise. The most popular topo-
logical summary under the PH framework is a persistence
diagram (PD). PD is a multi-set of points in a 2D plane that
records the birth-time and the death-time (as x- and y- co-
ordinates, respectively) of each topological feature, e.g., the
number of independent components or loops over filtration
Kr1 ⊂ Kr2 ⊂ . . .Krm . Figure 2 shows PDs for four differ-
ent surface pattern images.

Topological Convolutional Networks The architecture

of our proposed Topological Convolutional Networks (TCN)
is shown in Figure 3. The key idea is that TCN is able to
capture both local topological features and (visual) image
information via learning two specific embeddings and com-
bining them. Furthermore, in order to enhance the capabil-
ity of learning the ring of algebraic information from PDs,
we conduct transformation/rotation on target PD and employ
the generalized locally periodic (GLP) kernel to kernelize
rotated PDs. Besides, TCN utilizes an attention mechanism
to adaptively fuse the topology-based embeddings with the
learned importance weights. Lastly, we combine the learned
embeddings from topological and image spaces for final
classification tasks.

Figure 2: Examples of the image representation of each class
and its corresponding topological footprint (i.e., persistence
diagram) in the surface pattern dataset.

Topological Meta-Representation Given the input PD
D, we consider multiple transformed variants of D for topo-
logical signature learning instead of only using the orig-
inal D, which enables the representation to be invariant
to position and orientation of signatures in the PD. As
a result, we no longer a-priori need to subjectively de-
fine which topological features contain signal and which
ones are topological noise. The persistence diagram trans-
formation (PDT) function is designed to extract the hidden
prominent topological information from all features via the
PD rotation. The PDT can be formulated as Rθ(xi, yi) =
{(cos (θ)xi + sin (θ)yi, cos (θ)yi − sin (θ)xi)}, where xi
and yi denote the birth time and death time of the i-th
persistence point in D = (p1, . . . , pi, . . . , pn) ∈ Rn×2
(where n is the total number of persistence points), i.e.,
pi = (xi, yi) ∈ R2 ∈ D, θ ∈ (0, π) represents the ro-
tation angle, and the Rθ(·, ·) is the PDT function. We use
Dθ = (pθ1, . . . , p

θ
i , . . . , p

θ
n) ∈ Rn×2 to denote the rotated

PD, where pθi = (xθi , y
θ
i ) is the i-th rotated persistence point.

Such rotation augmentation also allows us to learn the ring
of algebraic functions on PDs and to quantify uncertainty in
the topological knowledge representation. To further model
the long-range spatial relationships of topological features
in the rotated PD, we apply the generalized locally periodic
(GLP) kernel F(·, ·) on the rotated PD Dθ. Specifically, for
i-th rotated persistence point pθi

F(xθi , y
θ
i ) = σ2e

{
−2 sin2

(
π(xθi−α1)2

p1

)
− (xθi−µ1)2

2l21

}
×e
{
−2 sin2

(
π(yθi−α2)2

p2

)
− (yθi−µ2)2

2l22

}
,

where pi, li, µi, αi ∈ R, i = 1, 2 are hyperparameters of
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GLP kernel and the output of GLP kernel forDθ is F(Dθ) ∈
Rn×1.

Suppose we consider m different rotation angles ΘR =
(θ1, . . . , θm), then we can obtain m kernelized topological
signature representations {F(Dθ1), . . . ,F(Dθm)}. To extract
the topological information encoded in topology space, we
utilize m multilayer perceptrons (MLPs) (Rosenblatt 1957)
to extract topological signature embedding from a series of
kernelized topological signature representations with m dif-
ferent rotation angles as Zk = fψi(F(Dθk)), where F(Dθk)
is the k-th kernelized topological signature representation
(k ∈ [1,m]), fψk is a neural network with parameter set ψk,
and the output embedding representation is Zk ∈ Rn×dc .
(where dc is the dimension of kernelized topological signa-
tures.)

Persistence-based Attention Mechanism Now we
have m kernelized topological signature embeddings
{Z1, . . . , Zk, . . . , Zm}. Considering the correlation be-
tween topological signature representations with differ-
ent rotation angles, we use the attention mechanism
to automatically learn the importance of weights (i.e.,
{α1, . . . , αk, . . . , αm}) for different kernelized topological
signature embeddings. Inspired by the weighting function
for PD (Kusano, Hiraoka, and Fukumizu 2016), we first cal-
culate the persistence-weighted measures for all the persis-
tence points in the PD. The weight ω(pθki ) represents the im-
portance weight for each rotated persistence point pθki in PD
Dθk , and is defined as ω(pθki ) = arctan (C(yθki − x

θk
i )q),

where arctan is a bounded, continuous function, and C and
q are the hyperparameters.

Hence, we can get the persistence-weighted measure
W (Dθk) = (ω(pθk1 ), . . . , ω(pθki ), . . . , ω(pθkn )) ∈ Rn×1
for Dθk . For the sake of notation, we denote Wk as the
persistence-weighted measure of Dθk . We next apply a lin-
ear transformation to Wk to get the corresponding atten-
tion vector Sk = Wk · Θk, where Θk ∈ R1×1 are train-
able weights. By performing a dot-product, we can obtain
the attention vector Sk = (s1, . . . , sn) ∈ Rn×1, where
si is the attention value. Similarly, we can get the atten-
tion vectors {S1, . . . , Sk−1, Sk+1, . . . , Sm} for rotated PDs
{Dθ1 , . . . ,Dθk−1

,Dθk+1
, . . . ,Dθm}, respectively. Then, we

normalize these attention vectors with a SoftMax function
to get the final attention vectors αk = SoftMax(Sk) =
eSk/

∑m
k=1 e

Sk ∈ Rn×1. Finally, we combine m embed-
dings with attention vectors to obtain the final embedding
Z, i.e., Z = α1 · Z1 + · · ·+ αm · Zm =

∑m
k=1 αk · Zk.

Image representation learning To learn the features of
an input surface pattern image, we can use any CNN-based
model fcnn. Given the input surface pattern image X of res-
olution r× r, we can obtain the corresponding feature maps
fcnn(X). After that, we employ the MLP fφ to obtain image-
level feature representation Q = fφ(fcnn(X)).

Topological-based Convolutional Neural Networks Fi-
nally, we combine the topological-based embedding repre-
sentation Z and the image-level feature representation Q to
obtain a joint embedding H = π1 × Z + π2 × Q, where
π1, π2 are hyperparameters encoding importance of the two
factors.

Experiments
We now evaluate performance of our TCN model on the
Barefoot surface pattern dataset (Lightholder et al. 2021), a
challenging collection of surface pattern terrain images col-
lected onboard a real rover. We first introduce the baselines
and parameter settings for all experiments, and then present
the quantitative classification results.

The surface pattern image dataset consists of 328 ob-
jects Xpg = {Xpg1 , . . . , Xpgu , . . . , Xpg328} and each ob-
ject Xpgu = {X(1)

pgu , . . . , X
(τ)
pgu , . . . , X

(Nu)
pgu } contains Nu

timestamps, where u ∈ [1, 328], τ ∈ [1,Nu], and Nu ∈
[199, 860]. For the object Xpgu , each timestamp X(τ)

pgu con-
sists of 1,920 pixel values. Figure 4(a) shows a sample object
in the surface pattern image dataset. The shapes of the object
u and each timestamp observation X(τ)

pgu are (Nu, 1920) and
(1, 1920), respectively. Since each object (e.g.,Xpgu ) has its
own class c`, each observation X(τ)

pgu in the object at times-
tamp τ has the same class c`. To incorporate more inputs
into the model, each object is aggregated into 30-unit win-
dows. We can the obtain bNu/30c observations per object
with class c`. Overall, we generate

∑328
u=1bNu/30c observa-

tions from the original 328 objects, where the shape of each
observation Xi is (240, 240) (i.e., reshaped from (30, 1920)
to (240, 240); see Figure 4 (b)). To reduce the computational
complexity and memory cost, we convert the higher reso-
lution image to a lower resolution of (60, 60) and, hence,
the shape of the final image fed into the model is X̃i ∈
R60×60 (see the bounding box in the green rectangle in Fig-
ure 4(c)). Moreover, here we consider two multi-label classi-
fication tasks: (i) rock-flat classification (i.e., covering three
classes {0 : “flat”; 1 : “rock-above”; 2 : “rock-below”})
and (ii) pattern classification (i.e., covering eight classes
{0 : “bedrock”; 1 : “flat”; 2 : “gullies”; 3 : “pebbles”; 4 :
“rock-above”; 5 : “rock-below”; 6 : “sharpdunes”; 7 :
“smoodunes”}). Thus, rock-flat and pattern datasets contain
3,297 and 5,754 observations, respectively.

Baselines and Implementation Details We use the
following four methods as baselines: (i) MLP (Rosen-
blatt 1957); (ii) LeNet (LeCun et al. 2015); (iii)
AlexNet (Krizhevsky, Sutskever, and Hinton 2012); and (iv)
TOPO-GCN (Chen, Marchetti, and Gel 2021). We imple-
ment our TCN with Pytorch framework on a single NVIDIA
GeForce RTX 3090 GPU. Further, for the dataset, TCN is
trained by the Adadelta optimizer with an L1 loss function.
For our model, TCN consists of 3 layers whose hidden di-
mensions are 1, 32, 64 respectively. The learning rate is 0.95
and the batch size is set as 32. In addition, the dropout rate
is 0.1. We split the surface pattern image dataset into train-
ing and testing sets and the split ratio is 8:2. We use accu-
racy to evaluate performances of models. We run 5 times
with the same partition and report the average results with
standard deviations. The data and codes are available at
https://github.com/TopoCN/TCN.git.

Surface Pattern Classification Table 1 compares TCN
against four baselines on surface pattern image datasets with
different numbers of classes (rock-flat detection and pattern
recognition). TCN achieves the top performance on both
rock-flat detection and pattern recognition, and outperforms
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Figure 3: Overview of our TCN framework. The upper part is the diagram of image representation learning. The lower part is
the diagram of topological representation learning.

Figure 4: Examples of (a) one pattern object in surface pat-
tern image dataset, (b) the observation Xi ∈ R240×240

in above pattern object, and (c) its corresponding low-
resolution representation X̃i ∈ R60×60.

the runner-ups (LeNet and TOPO-GCN) by 1.25% for rock-
flat detection and 4.87% for pattern recognition. Moreover,
Figures 5 and 6 present confusion matrices of TCN and top
three competitors separately for each landform class. As Fig-
ure 5 shows, results of TCN are consistently better than the
runner-up across all three classes (flat, rock-above, and rock-
below), indicating the advantage of using topological infor-
mation on rock types of landforms. Figure 6 suggests that
TCN outperforms the runner-up over bedrock, flat, gullies,
pebbles, rock-above, and smoodunes classes. Specifically,
TCN yields relative gains of 31.23%, 13.87%, and 7.28%
compared to the runner-up across pebbles, rock-above, and
smoodunes respectively. On rock-below and sharpdunes, the
runner-up outperforms TCN. For rock-below, this might be
due to the limited ability of CNN to capture below surface
information. However, we currently cannot find interpreta-
tion for results on sharpdunes. Overall, the results of our
TCN model across different tasks consistently demonstrate
that the combination of information from image and topo-
logical spaces exhibit better performance than image-based

neural networks.

Method Rock-Flat Detection Pattern Recognition
MLP 62.50 ± 1.75 44.05 ± 1.13
LeNet 72.10 ± 1.59 46.67 ± 1.96
AlexNet 71.62 ± 2.63 56.25 ± 1.78
TOPO-GCN 71.17 ± 1.89 56.68 ± 2.00
TCN (ours) 73.01 ± 1.35 59.58 ± 1.15

Table 1: Classification accuracy (%) with standard devia-
tions. Best results are in bold.

Figure 5: Confusion matrices of (a) TCN (accuracy:
74.49%), (b) runner-up (LeNet) (accuracy: 72.50%), (c)
AlexNet (accuracy: 71.41%), and (d) TOPO-GCN (accu-
racy: 71/19%) for rock-flat detection task. Labels: (I) Flat,
(II) Rock-above, and (III) Rock-below.

Computational Costs Table 2 shows the running times,
i.e., per-epoch training times of our TCN model and base-
lines across both rock-flat detection and pattern recognition
datasets. Note that in the topological representation learn-
ing of our TCN model, we directly use PD to learn the local
topological information; as an alternative, although TOPO-
GCN attains comparable results, it utilizes persistence image
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Figure 6: Confusion matrices of TCN (accuracy: 60.09%)
for pattern recognition task. Labels: (I) Bedrock, (II) Flat,
(III) Gullies, (IV) Pebbles, (V) Rock-above, (VI) Rock-
below, (VII) Sharpdunes, and (VIII) Smoodunes.

(PI) via vectorizing PD, which suffers high computational
time and memory cost. Similarly, compared with AlexNet
(CNN architecture with many parameters), our TCN is more
efficient and faster. Besides, although LeNet has a faster
training time, it performs significantly worse on the pat-
tern recognition task. Note that the input image of our TCN
model only involves 6.25% information, TCN can still ex-
hibit superior accuracy on rock-flat detection and pattern
recognition, and this means that TCN still has much room
for the improvement of multi-label classification accuracy.
Finally, we can conclude that TCN is simple to implement
and provides significant gains in run-time and memory effi-
ciency.

Method Rock-Flat Detection Pattern Recognition
MLP 0.49 s 0.76 s
LeNet 1.80 s 2.65 s
AlexNet 8.19 s 14.01 s
TOPO-GCN 9.15 s 15.99 s
TCN (ours) 4.39 s 8.29 s

Table 2: Running time (training time per epoch).

Lessons Learned
The current findings on surface pattern classification with
DL provide a variety of lessons for further integration of AI
to onboard learning and exploratory missions:

• DL tools, such as CNNs and GCNs, show promising re-
sults for learning complex planetary terrain classes. How-
ever, further enhancement of such DL models with topo-
logical footprints can boost not only model accuracy, but
also reduce variability and computational costs.

• Local topological information of surface patterns is an im-
portant signal for terrain classification and could be useful
in not only fetching rich information about image topol-
ogy, but also in discovering higher-order connectivity pat-
terns in the collected heterogeneous data and matching
them to previous records. As such, comparative analysis of
these topological footprints can help to better understand

geologic history of the planet, including higher order inter-
actions among its geophysical properties and potential for
life. In turn, the proposed topological attention mechanism
might be particularly valuable for accurate classification
of objects, collected in heterogeneous sensing scenarios,
including nonrigid shapes.

• Although TCN yields a promising multi-label classifica-
tion accuracy (especially in rock depth detection), it shows
limited ability to detect gullies. The reason may be due to
incorrect estimation of topological properties of a gully
(i.e., V-shape with sloping heads and sides). To remedy
this issue, we may need to consider not one filtered cubical
complex, but filtrations along multiple geometric dimen-
sions.

• Compared to rock-flat detection, we observe a decline in
performance for pattern recognition, which may be due
to insufficient representation of certain types of patterns,
e.g., bedrock and gullies. This issue can be tackled by fur-
ther topological data augmentation and topological sub-
sampling within the meta-representation mechanism.

Path to Deployment
Development of DL tools for onboard applications in earth
and spaces sciences is one of the primary interests for NASA
(see, for example, the most recent August 2021 call for
early-stage concepts from NASA’s Advanced Information
Systems Technology Program (NASA 2021)). Indeed, the
DL methodology enables for accurate modeling of sophis-
ticated nonlinear spatial and spatio-temporal patterns, in-
cluding, but not limited to terrain classification and explo-
ration, and exhibits better performance compared to hand-
crafted methods. As a result, DL has a higher potential for
feature detection and tracking in the data gathered from het-
erogeneous sensing. In turn, topological descriptors of plan-
etary surfaces can bring an invaluable insight on local terrain
characteristics and their similarities at multiple resolutions,
which are otherwise inaccessible with standard Euclidean-
based approaches. Equipping DL models with topological
footprints of terrain has the potential to improve model gen-
eralizability and transferrability, which are of particular im-
portance in onboard applications.

Finally, the application of DL and topological methods
in onboard exploration tasks is currently largely obstructed
by prohibitive computational costs. Our project presents an
early-concept approach which aims to make a step in bridg-
ing the power of DL with onboard exploration of planetary
terrain, by substantially reducing computational and storage
costs, while maintaining the high classification accuracy. In
particular, compared to Marchetti et al. (2020), in our model,
we use the low resolution surface pattern image for image
representation learning and representation learning based on
local topological information, i.e., using only 6.25% im-
age information for multi-label classification tasks. Another
benefit of TCN is that the topological signatures can be
computed offline from images, which substantially reduces
online computation time necessary. It is worth mention-
ing that TCN requires a much lower number of parameters
compared to GCNs (i.e., TOPO-GCN) (Chen, Marchetti,
and Gel 2021), e.g., TOPO-GCN (with #4,293,959) has 40
times more than TCN (with #104,468 parameters). More-
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over, computational complexity of graph convolutions is a
major limiting factor, with complexity of O(N 3), where N
denotes number of nodes in the graph.

TCN is not limited to analyzing terrain characteristics on-
line, and can also readily be extended to images of terrain
from the orbit. Images from current and future missions,
e.g., Mars Reconnaissance Orbiter or Europa Clipper, would
be an interesting application of TCN for better accuracy of
identification of topological features on surfaces from re-
mote sensing. Thus, deployment can also be extended to
analysis of terrain images on the ground.

Conclusion and Future Work
Multi-class classification of surface patterns is a very chal-
lenging problem, compared, e.g., to a simpler task of bi-
nary classification of rock. Good classification performance
is challenging to achieve with conventional ML techiques
due to the sophisticated structure of landforms. Thus, ad-
vanced DL tools such as TCN are needed to handle more
complex terrain patterns exhibited in planetary exploration
missions. Our work underscores the importance of DL with
topological footprints such as TCN for terrain recognition,
especially given that the diversity and complexity of the ter-
rain patterns is much more present in real life situations. The
ability to adaptively re-train onboard classifiers given new
information from a sensor would also be critical since new
classes need to be discovered and existing classes need to
be updated. In the future, we will extend TCN with capa-
bilities to re-train on demand, hence, making its integration
with onboard and embedded systems more competitive. We
will also explore applicability of TCN to other types of data,
such as 3D modeling or video analysis, which also have pro-
hibitively high computational costs.
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