
CB+NN Ensemble to Improve Tracking Accuracy in Air Surveillance

Anoop Karnik Dasika, Praveen Paruchuri
IIIT Hyderabad, Gachchibowli,

Hyderabad, Telangana, India - 500032
anoop.dasika@research.iiit.ac.in, praveen.p@iiit.ac.in

Abstract
Finding or tracking the location of an object accurately is a
crucial problem in defense applications, robotics and com-
puter vision. Radars fall into the spectrum of high-end de-
fense sensors or systems upon which the security and surveil-
lance of the entire world depends. There has been a lot of
focus on the topic of Multi Sensor Tracking in recent years,
with radars as the sensors. The Indian Air Force uses a Multi
Sensor Tracking (MST) system to detect flights pan India, de-
veloped and supported by BEL(Bharat Electronics Limited),
a defense agency we are working with. In this paper, we de-
scribe our Machine Learning approach, which is built on top
of the existing system, the Air force uses. For purposes of this
work, we trained our models on about 13 million anonymized
real Multi Sensor tracking data points provided by radars per-
forming tracking activity across the Indian air space. The ap-
proach has shown an increase in the accuracy of tracking by 5
percent from 91 to 96. The model and the corresponding code
were transitioned to BEL, which has been tested in their sim-
ulation environment with a plan to take forward for ground
testing. Our approach comprises of 3 steps: (a) We train a
Neural Network model and a CatBoost model and ensemble
them using a Logistic Regression model to predict one type of
error, namely Splitting error, which can help to improve the
accuracy of tracking. (b) We again train a Neural Network
model and a CatBoost model and ensemble them using a dif-
ferent Logistic Regression model to predict the second type
of error, namely Merging error, which can further improve
the accuracy of tracking. (c) We use cosine similarity to find
the nearest neighbour and correct the data points, predicted
to have Splitting/Merging errors, by predicting the original
global track of these data points.

Introduction
Object tracking is one of the most important problems
in computer vision (Ozuysal, Lepetit, and Fua 2009) and
robotics (Andreopoulos et al. 2010). It has a number of ap-
plications in industries such as entertainment (Belka 2019),
security (Lyon 2006) and automobile (Al-Khedher 2012)
among others. In the entertainment industry, tracking is pri-
marily seen in VR applications involving tracking of hands,
legs or even full body. In the automobile industry, tracking
is used by self-driving cars and for enhancing the safety fea-
tures of vehicles where objects such as other vehicles and

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

obstacles are tracked. Tracking is seen in a variety of secu-
rity applications such as surveillance of large areas (land,
sea, airspace or even space applications).

Tracking of objects during air surveillance is typically
performed using radars across most countries of the world
since they work best in long distances and all kinds of
weather.A radar (Ruotsalainen and Jylhä 2017) is an electro-
magnetic system that is useful for large scale surveillance. It
can be viewed as an active sensor that can detect targets by
emitting large power electromagnetic signals and also deter-
mines the targets’ angle, range or velocity.

Given the range, precision and fault tolerance limitations
of a single radar, multiple radars are used for a (wide area or)
countrywide air surveillance, such that at any single point
of airspace, there are multiple radars surveying. Hence, for
each object being tracked (flights in this work), there are
multiple radars tracking it at any single point of time in
the airspace. This flight data from the different radars is
then fused together called Multi Sensor Fusion (MSF), and
the systems which do this are called Multi Sensor Tracking
(MST) Systems.

MSF has received a lot of attention in recent years due to
a significant increase in applications involving the usage of
a wide variety of sensors. Through the integration of data
obtained from the different sensors, the results can, in gen-
eral, be optimized better in terms of having a complete pic-
ture rather than having individual snapshots of a scenario.
Considering the fact that newer radars with different proper-
ties may replace some of the older ones over time, defense
organizations would, in general, need to perform MSF for a
heterogeneous multi radar system. Statistical techniques like
gating, Chi-square testing, Kalman and Advance Kalman fil-
ters are the most frequent techniques used in air surveillance
by most countries as they are known to provide dependable
and fast results. However, due to the differences in sampling
rate of sensors, the communication delay between sensors
and the overlapping regions of observations for the vari-
ous sensors, there can be asynchronicity in the observations
leading to a significant reduction in the tracking accuracy
of an MSF system. There is, therefore, a strong need in the
defense and commercial industry to develop solutions that
improve their tracking accuracy.

Our contribution in this paper involves the development of
a Machine Learning based approach, which acts as a layer

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

12475



Figure 1: Working of MST System

and provide improvements in terms of tracking accuracy.
The rest of this paper is structured as follows: We provide
a brief introduction on radars and MSF based tracking in
Section and define the problem being faced by the defense
industry in Section . We propose our ML approach in Sec-
tion , present the experimental results obtained using our ap-
proach in Section , present the path to deployment details in
section and present the conclusions in Section .

Problem Description
The Indian Air Force uses a Multi Sensor Tracking (MST)
system to detect flights pan India by generating an Air Situa-
tion Picture (ASP). This system is developed and supported
by BEL(Bharat Electronics Limited), a defense agency we
are working with. The sensors used are radars because of
their ability to perform long-range detection and to perform
optimally in all kinds of weather compared to other sensors.
These sensors are located in different parts of the country,
and each radar provides data in local polar coordinate sys-
tem. This data obtained from individual radars is converted
into global geodetic coordinate system in a processing cen-
tre while accounting for parameters like range, bias etc., of
the radar. Each track sensed by each of the radars is assigned
a unique local track number in the processing centre.

Let’s say there are n radars covering m locations, i.e. parts
of the country (many-to-one relation). Each radar ri would
have its own processing center pi (one-to-one relation). The
data processed by all the radars would correspond to one of
the locations mi, and each of the m locations has its own
MST system MSTi (one-to-one relation between location
and MST system).

Each MSTi uses data in its location mi, to generate a sin-
gle global track number gtj for a flight fj , which is to be
used throughout the journey of the flight. In addition, MSTi

also computes the location and velocity coordinates for each

flight throughout its journey. In order to generate a global
track number from multiple local track numbers, the MST
system uses data association techniques like gating and chi-
square testing, where each global track number represents
a single flight. In addition, it uses parameter computation
techniques like Kalman filter to obtain a single location co-
ordinate for each flight from multiple location coordinates,
advanced Kalman filter to compute a single velocity coordi-
nate for each flight from multiple velocity coordinates and
IMM (Interacting Multiple Model) estimator to improve the
results obtained using the Kalman and advanced Kalman fil-
ters. Figure 1 captures the process flow involved.

An operational MST system has a lot of manual engi-
neering involved apart from the above techniques and typ-
ically includes human-generated rules tailored to specific
use cases. As the use cases expand, as heterogeneous radars
get added, as the nature of targets change and as the re-
quirements for accuracy increase, the system becomes more
prone to errors due to the limitations in MST logic. Con-
sider a scenario in which there are, say 4 air targets. Sensors
gather data from these air targets and generate ASP display-
ing the 4 air targets with relevant attributes. However, there
will be times when the actual number of air targets are shown
as 4 + /4− for a certain period and then again shown as 4.
If the MST system observes 4+ air targets (when there are
4 targets in reality), we call the error as a Splitting error
Es, i.e. sensing multiple targets when only a single one is
present. When it observes 4− air targets (when there are 4
targets), we call the error as Merging error Em, i.e. sens-
ing a single target when multiple targets are present. Es can
lead the system or operator looking at the ASP, to assume
that there is an enemy flight in the air even though there is
not any. Em can lead the system or operator looking at the
ASP, to assume that there is no enemy flight in the air even
though there may be one (or more). Both these errors in air

12476



surveillance can result in errors in threat evaluation, result-
ing in wrong action(s) getting taken, thus leading to severe
threats and security issues.

Proposed Solution
Figure 2 presents a block diagram of our proposed ML so-
lution, which helps to improve the tracking accuracy using
the data obtained from the output of MSF. Our proposed so-
lution takes inspiration from (Dasika and Paruchuri 2020),
which deals with a similar but significantly smaller dataset
and builds upon it. This data from MSF is used to train two
separate models that can predict the data points with Split-
ting and Merging issues, respectively. Please note that the
dataset includes flight code that helps obtain the target vari-
ables for Splitting and Merging models, while the real-time
data does not contain flight code. The Splitting model Ms

would provide Splitting confidence Cs, i.e. probability of
Splitting. When a data point has more than 0.5 Cs, it is con-
sidered to have a Splitting error, else it is considered to be
Real, i.e. only a single track is present. We identify the orig-
inal Global Track number Gt for all the data points, which
have Splitting Error. Similar to the Splitting model Ms, the
trained Merging model Mm provides the Merging confi-
dence Cm, i.e. probability of Merging.

Our approach comprises of the following 3 steps as shown
in Figure 3: In the first step, we train a Neural Network
model and a CatBoost model and ensemble them using a
Logistic Regression model to classify all the data points into
Splitting or Real (i.e., single track in reality although shown
as multiple in operator screen), which can help to improve
the accuracy of tracking. In the second step, we train a sec-
ond Neural Network model and a CatBoost model and en-
semble them using a Logistic Regression model to classify
all the data points into Merging or Real (i.e., multiple tracks
present in reality although shown as single flight in opera-
tor screen), which can improve the accuracy of tracking fur-
ther. The third step uses cosine similarity to find the nearest
neighbour to correct the data points classified as Splitting
and Merging by finding the real global track from which the
split track was obtained or finding the track which joined
with the current track.

Step 1/2: Splitting/Merging Classification Model
Based on our understanding of the dataset, we identified the
following features to use for training of Splitting/Merging
model Ms/Mm – latitude, longitude, altitude, speed and
direction of an object detected by the MST system at each
time step precise to a millisecond, number of radars, one-hot
encoding of all the radars used and not used in the creation
of this data point, time of day, 3 features formed using k-
means clustering of latitude and longitude into 10, 100 and
1000 cluster centres respectively and a unique id depicting
the specific combination of radars used in the MST system
for the creation of individual data points. Using the input
data provided by individual radars, the MST system assigns
a global track number Gt to each of the newly detected ob-
jects. If for a particular flight, a new Gt is assigned even
though there is an existing one, all the data points detected

with this new Gt are a result of Splitting from the original
Gt of the flight and will be classified as Splitting(data points
created as a result of Splitting error (Es). If for a particular
global track Gt , a new flight is associated even though there
is an existing one, all the data points with this Gt associ-
ated with this new flight are a result of Merging of multiple
flights and will be classified as Merging(data points created
as a result of Merging error (Em).

As part of the ensemble model for the classification of
Splitting/Merging, we first train a Neural Network with the
train dataset. We then train a CatBoost algorithm with the
train dataset. Next, we create a new train dataset using the
predictions obtained from the above two models. We then
train a logistic regression model on this new dataset, which
determines the ratio to combine the outputs of the trained
Neural Network and CatBoost so as to obtain the best (f1)
score. The parameters obtained from training both the mod-
els are stored in a server and are used to check for Split-
ting or Merging issues whenever a new data point comes up.
During real-time, this server listens to a socket in the MST
system server. As soon as this server receives new data, it
prepossesses the data by modifying and creating features re-
quired for the Splitting/Merging models. The preprocessed
features are then passed to the model to obtain the Split-
ting/Merging prediction and their confidence values.

Step 3: Finding Original Global Track Number
In the previous steps, we identified the data points
which have Splitting/Merging errors. Identifying the Split-
ting/Merging error alone is not sufficient to correct it, and
we cannot just delete the data points which have Split-
ting/Merging errors, as we may lose important tracking in-
formation of targets. The third step, therefore, helps in cor-
recting/retaining the data points, which were classified as
Splitting/Merging. This step does not involve ML algo-
rithms, hence it works directly in real-time without any train-
ing involved. Even in real-time, this step is only for those
data points classified as Splitting by the Splitting Model and
Merging by the Merging Model. In real-time, we keep stor-
ing the previous 1000 data points (pt−1000 to pt−1) which
are not classified as Splitting/Merging. For each new data
point pt classified as Splitting/Merging, we find the cosine
similarity between this data point and the stored previous
data points (pt−1000 to pt−1) . We then pick the pt−k pre-
vious data point that provides the highest cosine similarity
with our data point pt. We assign original global track num-
ber Gt of this point pt to the global track number Gt−k of
the picked previous data point pt−k.

Experiments
Dataset
Our dataset contains 16 million data points obtained as part
of 12 days of continuous data from the output of MST sys-
tem. The raw data provided contains 121 columns with col-
umn names in bold and sample data in italicised font (for
illustration purposes) -
1. Time (Discretized precise to a milisecond) - 66599204
2. Latitude - 27.299

12477



Figure 2: Proposed AI Methodology

3. Longitude - 80.1836
4. Speed - 234.95
5. Course - 311.049
6. IFF - flight code (would not be present in real time) -

31747
7. GeoAltitude - 10683
8. CTN - global track number - LE660
9. Call-Sign - signal used to recognize type of flight -

SEJ7263
10. No of Radars - No of radars whose sensor data was fused

together to generate the current data point - 5
11. SAC - first identifier of first radar - 4
12. SIC - second identifier of first radar - 1
13. TrackNo - local track number of the flight identifier by

the first radar - 748
14. SAC1 - first identifier of second radar - 8
15. SIC1 - second identifier of second radar - 3
16. TrackNo1 - local track number of the flight identifier by

the second radar - 4434
17. 17-121) SAC(2-n), SIC(2-n) and TrackNo(2-n) first

and second identifier and local track number of third to n
radars if used in the generation of current data point.

It is post-processed by us as per the technique provided in
section , since the data does not contain Splitting and Merg-
ing values. After preprocessing this raw data, we obtain the
following preprocessed data which we use in our model
training as shown in Figure 3 -
1. IFF - 31747
2. flight encoding (encoding of IFF variable used for get-

ting the target variables of splitting, merging and track
cluster) - 4

3. CTN- LE660
4. track encoding (encoding of CTN variable used for get-

ting the target variables of splitting, merging and track
cluster) - 10

5. Time - 66599204
6. Time of day - which hour of the day it is - 15
7. latitude - 27.299
8. longitude - 80.1836
9. altitude - 10683

10. speed - 234.95
11. direction - 311.049
12. Call sign - SEJ7263
13. number of radars - 5 The area under consideration is

divided into states, cities and districts but that division is
not helpful as a feature in air so we use k cluster with k
as 10,100 and 1000 to make the below 3 features.

14. location cluster1 - 4
15. location cluster2 - 24
16. location cluster3 - 501
17. 4-1 (if this radar with SAC 4 and SIC 1 is used in the

creation of a particular data point) - 1
18. 8-3 (if this radar with SAC 8 and SIC 3 is used in the

creation of a particular data point) - 1
19. 6-3 - 0
20. 3-7 - 0
21. Splitting (Target variable which tells if a particular data

point is created because of splitting error) - 1
22. Merging (target variable which tells if a particular data

point is created because of merging error) - 0

12478



Figure 3: Proposed Machine Learning Models

23. Track Cluster (target variable which tells the correct
CTN of the points with splitting and merging error) -
SEL8764

24. 24-72) SACn - SICn

About 1.1 million data points in this preprocessed data are
classified as Splitting (i.e., formed as a result of Splitting
error) and about 400k data points classified as Merging (i.e.,
formed as a result of Merging error). This translates to an
error rate of 9 percent (i.e., tracking accuracy of 91 percent)
where 6.5 percent is due to Splitting error and 2.5 percent is
due to Merging error. We use 80 percent of stratified random
sampled data for training and 20 percent for testing.

Training
For the prediction of Splitting and Merging target variables,
we experimented with several Machine Learning algorithms
and created an ensemble using the ones which provide the
best and unique results. We used a server with 1 RTX 2080
Ti GPU and 40 2GB RAM CPUs’ for hyperparameter tuning
and training. We used 3-fold cross-validation in the train-
ing set for identifying hyperparameters for each of the algo-
rithms.

For algorithms with few parameter choices such as
Logistic Regression (Kleinbaum et al. 2002), Gaussian
Naive Bayes (Rish et al. 2001), Support Vector Machines
(Scholkopf and Smola 2018) and K Nearest Neighbours
(Liao and Vemuri 2002), we use grid search (Liashchyn-
skyi and Liashchynskyi 2019) for hyperparameter tuning.
For Algorithms, which have medium level of hyperparam-
eter choices like CatBoost (Prokhorenkova et al. 2018) and
XGBoost (Chen and Guestrin 2016), we use random search
(Liashchynskyi and Liashchynskyi 2019). For Neural Net-
works, which have a high level of parameter choices, includ-
ing the number of layers and their sizes, we use Bayesian

optimization (Snoek, Larochelle, and Adams 2012) for hy-
perparameter tuning.

We present in table 1 and table 2, the Splitting and Merg-
ing results we obtained for the different ML algorithms. The
best results were obtained for XGBoost, CatBoost and Neu-
ral Networks. While an ensemble of these models is likely
to provide the best results, XGBoost and CatBoost are both
tree-based non-parametric algorithms whose results overlap
significantly, with CatBoost providing better results.

Hence, we use an ensemble of CatBoost and Neural Net-
work, which have lesser overlap (with the former being a
non-parametric algorithm while the latter is parametric). Us-
ing grid search, we identify the best hyperparameters for lo-
gistic regression - penalty type:l2 regression and C:1. Using
Random Search, we find best hyperparameters for catboost
- learning rate:0.1, max depth:8 and n estimators:200. Us-
ing Bayesian optimization, we find best hyperparameters for
neural network - number of hidden layers:2, hidden layer
sizes:(30,10), activation function : relu, optimization func-
tion : sgd, batch size:auto, learning rate initialization:0.1,
learning rate:adaptive, max iterations:2000, early stopping
True and alpha:0.0001. Our experiments show that we in-
deed obtain better results using the ensemble with the iden-
tified hyperparameters than using each of the techniques in-
dividually as shown in table 3 and 4.

Path to Deployment
The model and the corresponding code for both training and
getting the model to work in real-time were transitioned to
BEL, which has been tested in their simulation environment
with a plan to take forward for ground testing. Our mod-
els were trained on 7 days of data and were tested on the
dataset corresponding to the next 5 days. Per initial test-
ing, the trained model seems to lose effectiveness after a
period of time. Ground testing is planned to be performed

12479



Sr No Algorithm Tracking Accuracy Error Identification Accuracy
1) Logistic regression 0.943 0.13
2) Gaussian Naive Bayes 0.944 0.14
3) Support Vector Machines 0.943 0.12
4) K Nearest Neighbours 0.941 0.1
5) Random Forest Classifier 0.946 0.17
6) XGBoost 0.955 0.3
7) Stacking Logistic Regression with XGBoost 0.956 0.33
8) Neural Networks 0.949 0.22
9) CatBoost 0.961 0.41
10) Ensemble - CatBoost with Neural Networks 0.964 0.45

Table 1: Different Algorithm Results for Splitting Error

Sr No Algorithm Tracking Accuracy Error Identification Accuracy
1) Logistic regression 0.979 0.15
2) Gaussian Naive Bayes 0.978 0.1
3) Support Vector Machines 0.975 0
4) K Nearest Neighbours 0.981 0.23
5) Random Forest Classifier 0.982 0.28
6) XGBoost 0.984 0.35
7) Stacking Logistic Regression with XGBoost 0.984 0.36
8) Neural Networks 0.98 0.18
9) CatBoost 0.986 0.44
10) Ensemble - CatBoost with Neural Networks 0.988 0.5

Table 2: Different Algorithm Results for Merging Error

Predicted : 0 Predicted : 1
Actual : 0 2.79M 10k
Actual : 1 107k 88k

Table 3: Confusion Matrix of Splitting

Predicted : 0 Predicted : 1
Actual : 0 2.92M 5K
Actual : 1 37k 38k

Table 4: Confusion Matrix of Merging

to identify the optimal time after which we may need to re-
train the model, which may be periodical or when changes
like bias, range, etc are made to any radar. Ground testing
would also be used to determine, if each zone should have
its own model(s) or if all the MSF data from pan India should
be assembled together to train a single Splitting and Merg-
ing model. The best course of action to take and steps for
production deployment will be identified after this phase of
ground testing, which is likely to take several months.

Our AI system is currently deployed in a separate server,
called AIMSF, different from the existing server which has
the MST system in BEL. Following are the steps which oc-
cur in real-time:

• A UDP socket connection is set between the existing
server and the AIMSF server.

• Whenever a new datapoint enters the existing server, it

gets sent to the AIMSF server.
• The AIMSF server processes this data and identifies the

Splitting confidence, Merging confidence, Splitting pre-
diction, Merging prediction and the original global track
using the trained Splitting and Merging models. It then
sends back these results to the existing server.

Simulation of scenario and results would be visible on the
operator screen, who can determine a suitable course of ac-
tion to take.

Conclusion
In this paper, we focus on improving the tracking accu-
racy of a real-world Multi Sensor (Radar) Tracking Sys-
tem used in the context of tracking flights across the Indian
airspace. Several errors happen during the fusion process,
primarily categorized into Splitting and Merging errors. We
introduced a three-step ML approach to improve the confi-
dence in tracking and reduce the errors observed. In partic-
ular, we trained models to predict the Splitting or Merging
of tracks and used cosine similarity to identify the nearest
neighbour and correct the Splitting and Merging errors. Us-
ing this three-step process, we are able to improve the ac-
curacy of tracking from 91 percent to about 96 percent on
anonymized real-world data.

Acknowledgments
We would like to thank BEL (Bharat Electronics Limited),
Ghaziabad, for their generous support of this work.

12480



References
Al-Khedher, M. A. 2012. Hybrid GPS-GSM local-
ization of automobile tracking system. arXiv preprint
arXiv:1201.2630.
Andreopoulos, A.; Hasler, S.; Wersing, H.; Janssen, H.;
Tsotsos, J. K.; and Korner, E. 2010. Active 3D object lo-
calization using a humanoid robot. IEEE Transactions on
Robotics, 27(1): 47–64.
Belka, R. 2019. An indoor tracking system and pattern
recognition algorithms as key components of IoT-based en-
tertainment industry. In Photonics Applications in Astron-
omy, Communications, Industry, and High-Energy Physics
Experiments 2019, volume 11176, 111765P. International
Society for Optics and Photonics.
Chen, T.; and Guestrin, C. 2016. Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data
mining, 785–794.
Dasika, A. K.; and Paruchuri, P. 2020. An Ensemble Learn-
ing Approach to Improve Tracking Accuracy of Multi Sen-
sor Fusion. In International Conference on Neural Informa-
tion Processing, 704–712. Springer.
Kleinbaum, D. G.; Dietz, K.; Gail, M.; Klein, M.; and Klein,
M. 2002. Logistic regression. Springer.
Liao, Y.; and Vemuri, V. R. 2002. Use of k-nearest neigh-
bor classifier for intrusion detection. Computers & security,
21(5): 439–448.
Liashchynskyi, P.; and Liashchynskyi, P. 2019. Grid search,
random search, genetic algorithm: a big comparison for
NAS. arXiv preprint arXiv:1912.06059.
Lyon, D. 2006. Theorizing surveillance. Routledge.
Ozuysal, M.; Lepetit, V.; and Fua, P. 2009. Pose estimation
for category specific multiview object localization. In 2009
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 778–785. IEEE.
Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush,
A. V.; and Gulin, A. 2018. CatBoost: unbiased boosting with
categorical features. In Advances in neural information pro-
cessing systems, 6638–6648.
Rish, I.; et al. 2001. An empirical study of the naive Bayes
classifier. In IJCAI 2001 workshop on empirical methods in
artificial intelligence, volume 3, 41–46.
Ruotsalainen, M.; and Jylhä, J. 2017. Learning of a tracker
model from multi-radar data for performance prediction of
air surveillance system. In 2017 IEEE Congress on Evolu-
tionary Computation (CEC), 2128–2136. IEEE.
Scholkopf, B.; and Smola, A. J. 2018. Learning with ker-
nels: support vector machines, regularization, optimization,
and beyond. Adaptive Computation and Machine Learning
series.
Snoek, J.; Larochelle, H.; and Adams, R. P. 2012. Practi-
cal bayesian optimization of machine learning algorithms.
Advances in neural information processing systems, 25.

12481


