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Abstract
As climate change is increasing the frequency and intensity of
climate and weather hazards, improving detection and mon-
itoring of flood events is a priority. Being weather indepen-
dent and high resolution, Sentinel 1 (S1) radar satellite im-
agery data has become the go to data source to detect flood
events accurately. However, current methods are either based
on fixed thresholds to differentiate water from land or train
Artificial Intelligence (AI) models based on only S1 data,
despite the availability of many other relevant data sources
publicly. These models also lack comprehensive validations
on out-of-sample data and deployment at scale. In this study,
we investigated whether adding extra input layers could in-
crease the performance of AI models in detecting floods from
S1 data. We also provide performance across a range of 11
historical events, with results ranging between 0.93 and 0.97
accuracy, 0.53 and 0.81 IoU, and 0.68 and 0.89 F1 scores. Fi-
nally, we show the infrastructure we developed to deploy our
AI models at scale to satisfy a range of use cases and user
requests.

Introduction
Climate change is increasing the frequency and severity of
extreme weather events, which cause a significant disrup-
tion, financial losses, and risk to life. One of the conse-
quences of such extreme weather events is an increased like-
lihood of flood events (Matgen et al. 2019). These events al-
ready represent the most frequent natural disaster and pose
significant risk to socio-economic systems (e.g. communi-
ties, civil infrastructure, food systems, supply chains, etc.) as
well as a major threat to human life (Willner, Otto, and Lev-
ermann 2018), with projected increases in future exposure
due to socio-economic factors and climate change (Wing
et al. 2018). For these reasons, when these events occur, it
is extremely important to have access to accurate informa-
tion on the flood extent and evolution to design adaptation
and resilience strategies such as organise and plan effective
responses (Nemni et al. 2020). This is particularly important
during the event itself, but also after the event to assess dam-
age and more broadly to prioritise adaptation strategies (e.g.,
maintenance operations) as well as assess future risk.
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Over the last decades, satellite imagery from remote sens-
ing, due to the increased availability and coverage, has be-
come the most used approach to identify water at scale and
identify as well as track flood events. Optical and Radar are
the two main types of satellite imagery that are currently
used for this task (Matgen et al. 2019).

Optical imagery is collected from passive sensors that
measure the reflected energy of the sun against the earth in
a specific area. Examples of this type of optical imagery are
the ones coming from the MODIS (NASA 1999), LandSat
(NASA 1972) and Sentinel 2 (The European Space Agency
2015) satellites. With optical imagery, water is usually iden-
tified based on the calculation of a water index, from one
or multiple frequency bands of the collected imagery (Gao
1996). These indexes have then to be contextualised to a spe-
cific region by picking a threshold that better separates wa-
ter and land in the area of interest. Despite the good perfor-
mance shown by using optical imagery to identify and track
floods, this approach has some key limitations. First, it is
not weather independent, as it is severely affected by clouds
and therefore not usable in some whether conditions. Sec-
ond, being a passive sensor, it requires sun light, therefore it
cannot be used at any time of the day.

The second approach for flood detection is based on radar
imagery. This type of imagery is collected by active sensors,
which emit radiations towards a target area and measure the
radiations reflected back by the target. The most established
source of radar imagery to date is represented by the Sentinel
1 (S1) mission from the European Space Agency (The Euro-
pean Space Agency 2014). S1 has a high resolution (i.e. 10
meters) global coverage and on average cadence of around
a week. One particular advantage of S1 is that it is not af-
fected by clouds and can be used at any time of the day.
However, the identification of water from this data source
is not straightforward. Water detection algorithms from S1
data take advantage of low backscatter signals, which, in
ideal conditions, show water as a distinctly smooth surface
with distinct boundaries (Matgen et al. 2019).

Traditional approaches aim to identify the ideal thresh-
old to separate the water from the background and go from
classic binarization methods like (Otsu 1979) to more com-
plex approaches that for example implement tiling and fuzzy
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logic (Twele et al. 2016). However, due to the negative ef-
fect that topography, land use (e.g. buildings in urban ar-
eas or vegetation) and wind can have on the signal, often an
intervention is still required from the user to tune parame-
ters, limiting their automation and generalisability. To over-
come these issues, artificial intelligence (AI) via the use of
deep neural networks has been used to identify water from
S1 images (Nemni et al. 2020; Bonafilia et al. 2020). Par-
ticularly, Nemni et al (Nemni et al. 2020) and Bonafilia
et al (Bonafilia et al. 2020) both adopted a Unet architec-
ture (Ronneberger, Fischer, and Brox 2015) for this task and
showed great potential of their approach to be used in pro-
duction and at scale. However, these papers reported per-
formances on small out-of-sample sets. They did not assess
whether the use of other data sources relevant to water detec-
tion from S1 could further improve performance. Moreover,
to the best of our knowledge, neither of them developed a
solution that could be easily used globally to track and iden-
tify floods and combining results with other relevant infor-
mation operationally. Not only such solution would be ex-
tremely relevant for near-real time disaster management, but
also as a validation tool for flood risk forecast from simula-
tion models, which are extremely relevant to climate change
but very difficult to validate because of the general lack of
ground truth data.

In this paper, we address the above limitations using AI
on S1 data to detect water and floods with a threefold con-
tribution. First, we investigate whether using a Unet archi-
tecture (Ronneberger, Fischer, and Brox 2015) with the ad-
dition of more input channels containing information rele-
vant to identify water from S1 data (e.g., Digital Elevation
Model (DEM), land use, and permanent water masks) could
increase performance. Second, we perform a comprehen-
sive validation of the sen1floods11 dataset (Bonafilia et al.
2020) with a leave-one-out approach for each of the histori-
cal events included in the dataset, providing the community
with a better idea of the generalizability of AI models in this
domain. Third, we deploy our flood detection models on a
big geospatial data and analytic platform implementing an
infrastructure that allows easy integration of multiple data
sources, AI models incremental development, flood forecast,
and flood extent validation as well as operational contextu-
alisation of computed risk.

Materials and Methods
Data Sources
Sen1floods11 Dataset We used the sen1floods11 dataset
from Bonafilia et al (Bonafilia et al. 2020) to perform our
study and experiments. An in depth description of this
dataset is available at the original paper (Bonafilia et al.
2020), with only its main characteristics that are reported
here. Particularly, the sen1floods11 dataset includes differ-
ent types of labelled data (i.e. water extent) for 11 his-
torical flood events around the world. We included the S1
weakly labeled data, derived by applying the Otsu bina-
rization method (Otsu 1979) on Vertical-Horizontal (VH)
S1 polarisation data for each event. We also considered the
Hand labeled data, which was manually derived based on S1

and S2 data. Overall, the dataset contains 4,385 S1 weakly
labeled tiles and 446 hand labeled tiles, with a shape of
512x512 pixels.

The Copernicus Programme The Copernicus Pro-
gramme is an European Union programme that aims to
achieve global, high quality, and wide-ranging Earth ob-
servation capacity (https://www.copernicus.eu/en). From
this initiative we included: Joint Research Commission
(JRC) Global Surface Water dataset, which includes high-
resolution mapping of global surface water and its long-
term changes at a 30 meters resolution (Pekel et al. 2016);
Global land cover dataset, including classification of land
use around a range of high level categories at 100 meters
resolution (see below for details) (Copernicus 1998); Shuttle
Radar Topography Mission, which provides elevation data
globally at a 30 meters resolution (NASA 2000).

Data Management and Preprocessing
We used the IBM PAIRS Geospatial (Lu et al. 2016) to man-
age our data. PAIRS is an easy-to-use platform that enables
assembly and retrieval of large geospatial datasets, and com-
plex spatio-temporal analytics using these datasets. For ex-
ample, PAIRS aligns geospatial information coming from
different data sources that use different coordinates systems
(as we are using here) to a common coordinate projection
and resolution, making it easier for the user to intersect
across several datasets with a unique query. We used this
approach to bring all datasets to the same coordinate system
and resolution of the sen1floods11 dataset labels.

Below we report on the main preprocessing steps that we
undertook to create our dataset.

Sentinel 1 Data Pre-processing and Color Composite
Creation The sen1floods11 dataset included S1 input data
that were originally downloaded from Google Earth Engine
(Google 2014). In our study, we used VV and VH S1 po-
larisation layers (e.g. which represent how the radar sig-
nal is transmitted and received by the antenna) acquired in
Interferometric Wide Swath (IW) and provided as Level-1
Ground Range Detected (GRD) downloaded directly from
ESA and uploaded to the PAIRS platform. The following
preprocessing steps were applied: apply orbit file; GRD bor-
der noise removal; thermal noise removal; radiometric cali-
bration; terrain flattening and terrain correction.

For each label tile from the sen1floods11 dataset we cre-
ated the related VV and VH S1 polarisation tiles from
PAIRS. These were then used to create a RGB color com-
posite by using the VV and VH as the Red and Green chan-
nels, respectively. The Blue channel was calculated as the
division between the absolute values of the VV and VH po-
larisations. This was done to take full advantage of transfer
learning when training our models (see below).

Land Use Categorisation The land use dataset from
Copernicus includes 23 different categories. Considering the
difference in resolution between the S1 data and this input
data as well as the similarities between some of the land
use categories, we decided to introduce a more high level
categorisation, collapsing some of the categories together.
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The final categories were: Closed forest; Open forest; Other
vegetation; Agricultural land; Urban. The Corpernicus land
cover dataset includes also a permanent water layer, which
we discarded. This was done because we included the JRC
Global Surface Water dataset for characterising this piece of
information, which is also openly available and with a higher
resolution.

Joint Research Commission Global Surface Water Cat-
egorisation We selected the seasonality layer of the JRC
Global Surface Water dataset, which represent the presence
of water over a single year. The values of this data layer
range from 0 to 12, with 0 being an area where no water
was detected at any time during the year while 12 is an area
where water was selected consecutively for 12 months over
the year. We therefore binarized this data layer with all areas
with a value equal to 12 representing permanent water, and
considered all other pixels as background.

Implementation Details
Training, Validation and Test Datasets We followed a
leave-one-out cross validation approach to structure our
training, validation and test datasets. Particularly, we used
each of the 11 events in the sen1floods11 dataset as an exter-
nal hold out set (e.g. completely unseen data to the model),
while training, validating and testing each time with a ran-
dom 60:20:20 split on the rest of the data (e.g. data per-
taining to the remaining 10 events). This means that if the
hold out set would be the event in Bolivia, we would ex-
clude this event completely, and use 60% of the remaining
data for training our model, 20% for validation while train-
ing and 20% for testing on the training completed, alongside
the data about the event in Bolivia. This is similar to the ap-
proach followed by Bonafilia et al (Bonafilia et al. 2020)
in the original sen1floods11 paper, however they only used
one of the events as a hold out set (i.e. historical event in
Bolivia). We instead decided to use all events as a hold out
sets to provide a more comprehensive evaluation of perfor-
mance.

Model Structure and Training We used Pytorch (Paszke
et al. 2019) via the fastai Python library (Howard and Gug-
ger 2020) to perform all our analysis. Fastai provides mod-
ular components that can be easily taken out-of-the-box and
customised to achieve state of the art results in standard deep
learning domains. As Bonafilia et al (Bonafilia et al. 2020)
and Nemni et al (Nemni et al. 2020), we used a Unet model
architecture (Ronneberger, Fischer, and Brox 2015), with a
Resnet backbone (He et al. 2016), as our model architecture.
Conversely to what they did, we used the above mentioned
S1 RGB color composite as our main input layer (i.e. S1
model), to which we added each of the extra input data lay-
ers described above in isolation (i.e. S1 + DEM model, S1
+ Land use, S1 + JRC) and combination (i.e. S1 + all oth-
ers). Heuristically, we derived a learning rate of 5 ∗ 10−4,
which we used across all analysis, alongside a weight de-
cay of 0.1. We used a batch size of 16, and took advantage
of the fit one cycle policy implemented by the fastai library
(Howard and Gugger 2020). This has been shown to speed
up training and increasing performance for small training

sets (Smith and Topin 2019). To avoid overfitting and max-
imise information of our training set, to each of the input lay-
ers we applied a range of data augmentation transformations
(i.e. random horizontal and vertical flip, random shift and
scaling and random brightness contrast) via the albumenta-
tions library (Buslaev et al. 2020). Finally, we used the fastai
Ranger optimiser, which has also been proven to outperform
more classical optimizers in a range of scenarios (Wright
2019), and a Cross Weighted Entropy Loss function. This
was used due to the higher prevalence of background pixels
(i.e. 89.6% and 83.4% in the Hand labeled and S1 Weakly
labeled), to which a lower weight was given following the
approach from Nemni et al (Nemni et al. 2020).

For each model, we trained by using transfer learning
from the Resnet Imagenet model provided by fastai for the
weights of the first three data layers input (e.g. S1 RGB color
composite) for 30 and 20 epochs for the models trained on
the Hand Labeled and S1 Weakly labeled data, respectively.
At the end of these epochs, the model scoring the best perfor-
mance on the validation set was selected, and further trained
for a following 15 and 10 epochs for the Hand labeled and
S1 Weakly labeled data, respectively. We performed anal-
yses on a single node with 4 GPUs and 16 cores, with an
epoch time of around 90 seconds.

We calculated model performance in terms of accuracy,
Intersection over Union (IoU) and F1 score, which for each
iteration of the leave-one-out cross validation was assessed
on the test set and hold out set. For each metric we calculated
a weighted mean based on the number of pixels that each test
and hold out set had. These metrics will be defined as All
Water (AW) results. Furthermore, we used the JRC Global
Surface Water dataset to stratify our results by Permanent
Water (PW) and Flood Water (FW).

Model Deployment Infrastructure
Figure 1 shows the high-level pipeline services we devel-
oped to operationalise our AI-based flood detection models.
The solution can be used as a stand-alone flood extent map
generator or to validate predictions from other models (e.g.
flood risk forecast) against historical events or third-party
ground truth. Users submit their requests via a REST API
service in the form of jobs that run on a Red Hat Openshift
cluster. Each job request consists of geospatial and tempo-
ral information about the area and time period of interest.
First, the system always produces the flood map extent. This
is done via a Docker container that implements a three-step
workflow: preprocess with data coming directly from IBM
PAIRS, inference and postprocess. This approach allows to
easily swap one of these steps (e.g. because a better model is
available or a different architecture is tested) for fast devel-
opment and prototyping. The workload to produce the flood
maps varies across use cases (e.g. because of the spatio-
temporal requirements). The system deals with fluctuating
computing requirements by implementing a batch process-
ing architecture and on-demand scaling in Openshift. Sec-
ond, the system stores the output to IBM PAIRS for down-
stream applications such as IBM Environmental Intelligence
Suite (EIS) (IBM 2021) and IBM Cloud Object Storage
(COS) for further processing, or to run a validation task.
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Figure 1: The high-level architecture for the REST API service for inference with temporal and spatial partitioning.

Each validation task can use the generated ground truth as a
target against the output of another flood risk model or user
provided ground truth to test the performance of the flood
extent map generator.

To showcase this infrastructure and further validate the
generalizability of the developed models, we tested our AI
models on a completely unseen historical event (i.e. not part
of the sen1floods11 dataset), and calculated performance
against ground truth obtained from the Copernicus Emer-
gency Mapping Service (European Commission 2021). This
event pertains to the area around Aude (France) on the 15
October 2018, and it was chosen because of its topological
variety and presence of different types of flood during the
event (e.g. pluvial and fluvial). In line with Copernicus that
excludes PW areas, we focused only on the FW areas.

Results
Model Performance
Table 1 presents the results from testing the Resnet Unet
models across the different sen1floods11 labels and input
combination over the hold out sets (e.g. one event left out
from training each time). Overall, adding more input layers
did not improve performance of the baseline model for the
Hand Labeled data, which in same cases had the best perfor-
mance. For the S1 Weakly labeled data, some improvement
could be seen by adding the PW layer to the S1 data that
led to a 1% improvement for accuracy and F1 score and 2%
for IoU. For context, our best model IoU performance on
the same hold out set used by Bonafilia et al (Bonafilia et al.

2020) (i.e. historical event in Bolivia) was 0.59 and 0.80 in
AW detection for Hand and S1 labeled data, respectively. All
results pertaining to the other analyses we performed (e.g.
on 20% test set) confirmed the trends described above, with
performance on the test set that was generally higher than
the one in the hold out sets. All results are available on re-
quest.

Model Deployment
Figure 2 shows the comparison between the ground truth
data coming from Copernicus and our S1 only AI model
for the Aude event, obtained by running our model. Over-
all, there is good correspondence between the two flood ex-
tent plots, with the AI model that seems to identify more
continuous water areas and the Copernicus one being more
fragmented. In terms of quantitative performance on FW, ac-
curacy was 0.98, IoU 0.49 and F1 score 0.66. Figure 3 shows
the AI model prediction used as a filter on the IBM EIS plat-
form, where affected areas that are more densely populated
can be easily identified in red.

Discussion
We investigated the added value of including additional
geospatial datasets input layers to detect flood from S1 data
using AI. These extra input layers only improved prediction
marginally and for only one type of data labels we analysed.
Overall, we showed that out of bag best performance across
the 11 locations ranged between 0.93 and 0.97 accuracies,
0.53 and 0.81 IoU, and 0.68 and 0.89 F1 scores. Finally, we
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Label Metric Type S1 S1 + DEM S1 + Land use S1 + PW S1 + all others

Hand labeled Accuracy PW 0.95 (0.08) 0.93 (0.06) 0.95 (0.06) 0.95 (0.07) 0.96 (0.06)
FW 0.93 (0.04) 0.92 (0.03) 0.93 (0.03) 0.91 (0.04) 0.90 (0.05)
AW 0.93 (0.04) 0.92 (0.03) 0.93 (0.03) 0.91 (0.04) 0.91 (0.05)

IoU PW 0.94 (0.09) 0.93 (0.06) 0.95 (0.06) 0.95 (0.08) 0.95 (0.06)
FW 0.43 (0.16) 0.4 (0.15) 0.40 (0.14) 0.37 (0.17) 0.37 (0.18)
AW 0.53 (0.14) 0.5 (0.14) 0.52 (0.13) 0.47 (0.19) 0.47 (0.19)

F1 Score PW 0.97 (0.06) 0.96 (0.04) 0.97 (0.04) 0.97 (0.04) 0.98 (0.04)
FW 0.58 (0.15) 0.56 (0.15) 0.56 (0.14) 0.52 (0.18) 0.51 (0.2)
AW 0.68 (0.13) 0.66 (0.12) 0.67 (0.11) 0.62 (0.18) 0.62 (0.19)

S1 weakly labeled Accuracy PW 0.94 (0.04) 0.97 (0.02) 0.97 (0.02) 0.97 (0.02) 0.97 (0.02)
FW 0.97 (0.02) 0.97 (0.02) 0.96 (0.02) 0.97 (0.02) 0.96 (0.02)
AW 0.96 (0.02) 0.97 (0.02) 0.96 (0.02) 0.97 (0.02) 0.96 (0.02)

IoU PW 0.94 (0.04) 0.97 (0.02) 0.97 (0.02) 0.97 (0.02) 0.97 (0.02)
FW 0.73 (0.13) 0.72 (0.18) 0.71 (0.14) 0.74 (0.13) 0.72 (0.13)
AW 0.79 (0.09) 0.79 (0.13) 0.79 (0.08) 0.81 (0.08) 0.80 (0.08)

F1 Score PW 0.97 (0.02) 0.99 (0.01) 0.98 (0.01) 0.98 (0.01) 0.98 (0.01)
FW 0.84 (0.09) 0.82 (0.13) 0.82 (0.11) 0.84 (0.09) 0.83 (0.1)
AW 0.88 (0.06) 0.88 (0.09) 0.88 (0.05) 0.89 (0.05) 0.88 (0.05)

Table 1: Performance from the different tested models on the hold out sets. In bold models that performed best performance for
a specific metric and analysis. (PW: Permanent water; FW: Flood water; AW: All water)

Figure 2: Comparison between the ground truth data coming from Copernicus (a) and our S1 only AI model (b) for the Aude
event. Purple indicates background, while yellow indicates water. White areas identify PW areas, which have been mapped out
from the results.
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Figure 3: AI Model output used as a filter to identify highly populated areas affected by the flood on the IBM EIS. More intense
red colour represents higher populated areas.

showed how we deployed our model at scale to meet require-
ments for a range of use cases.

Despite not leading to major improvements in perfor-
mance, to the best of our knowledge, this is the first study
assessing the introduction of additional open access input
layers an AI model to detect water from S1 data satellite im-
agery. Although optimal performance was not their goal, our
results improve on the performance reported by Bonafilia et
al (Bonafilia et al. 2020) on the sen1floods11 dataset, where
they reported an IoU of 0.35 and 0.39 in detecting all water
for the Hand labeled and S1 weakly labelled data for their
hold out set that was only based on the event in Bolivia.
In addition to explore new approaches to improve perfor-
mance, our study provided a more comprehensive overview
of the models performance and their generalizability by im-
plementing a full leave-one-out cross validation procedure.

The system we deployed via the IBM EIS provides some
advantages over platforms that are currently available to map
flood extent from satellite images. First, it uses S1 data at 10
meters resolution, which is higher than systems like Flood-
Scan ran by the US company Atmospheric and Enviromen-
tal Research (i.e. 90 meters resolution) or NASA via the
MODIS surface water product (i.e. 250 meters). Second, the
infrastructure we adopted allows scalability as well as AI
models incremental development. This is obtained by mod-
ularising each step of the AI flood detection model (i.e. pre-
processing, model inference and postprocessing) that can be
therefore easily be swapped for an improved version or an
entirely different strategy (e.g. traditional remote sensing ap-
proach) being still part of the same overall system. Third,
the system provides the possibility of easily validating flood
risk forecast against flood extent for historical events, which
is something that, to the best of our knowledge, is not avail-

able elsewhere. Finally, the deployment of the AI model as
part of the IBM EIS enables the integration of additional data
sources, both to improve model prediction accuracy and to
better quantify flood impact: for example, by integrating the
areas affected by the flood with specific assets location, pop-
ulation density or others via a user-friendly dashboard.

Despite the comprehensive validation of AI models to de-
tect water and flood we provided, the addition of extra in-
put layers did not substantially improve the performance of
models using only S1 input data. One of the reasons why
this might be is the difference in resolution between the S1
data itself and the extra input layers we added (e.g. 30 meters
and 100 meters versus 10 meters), which led to information
repetition in the AI model inputs. In principle, this should
lead to a more significant impact on performance. Although
such higher resolution extra layers are not available glob-
ally, refined versions of our approach could be implemented
where they are present. Furthermore, additional features that
are relevant to flood risk analysis could be added to the in-
put layers. For example, slope or topographic wetness in-
dex could be explicitly derived from the DEM and passed
to the model as an input or used as a post-processing tool
to decrease false positives. Moreover, completely new in-
formation could be added to the input layers. This could be
flood risk specific like soil type, which provides key infor-
mation on the likelihood of an area to flood. Finally, differ-
ent learning algorithms or deep network model architectures
for semantic segmentation different from the Resnet-Unet
could be tried and adapted to work with more than just three
channels. For the future, we will pursue these avenues, and,
thanks to the modular architecture we implemented, aim at
deploying an improved model to increase impact on real
world industrial applications.
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