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Abstract

With increasing world population and expanded use of forests
as cohabited regions, interactions and conflicts with wildlife
are increasing, leading to large-scale loss of lives (animal
and human) and livelihoods (economic). While community
knowledge is valuable, forest officials and conservation or-
ganisations can greatly benefit from predictive analysis of
human-wildlife conflict, leading to targeted interventions that
can potentially help save lives and livelihoods. However, the
problem of prediction is a complex socio-technical problem
in the context of limited data in low-resource regions.
Identifying the “right” features to make accurate predictions
of conflicts at the required spatial granularity using a sparse
conflict training dataset is the key challenge that we address
in this paper. Specifically, we do an illustrative case study on
human-wildlife conflicts in the Bramhapuri Forest Division in
Chandrapur, Maharashtra, India. Most existing work has con-
sidered human-wildlife conflicts in protected areas and to the
best of our knowledge, this is the first effort at prediction of
human-wildlife conflicts in unprotected areas and using those
predictions for deploying interventions on the ground.

1 Introduction
India is home to some of the world’s most biodiverse re-
gions, housing numerous endemic species (Bharucha 2002).
Most forest areas in India are cohabited – these are not pro-
tected areas (Forest Survey of India 2019). Local communi-
ties maintain and take great care of these forests. High densi-
ties of carnivores and herbivores cohabiting with humans re-
sult in human-wildlife conflicts leading to loss of crops and
cattle for humans, loss of wildlife, and in some cases, loss
of human life (Woodroffe, Thirgood, and Rabinowitz 2005).
The number of human-animal conflicts in recent years in the
state of Maharashtra, India (Pinjarkar 2019) for the years
2014-2018 ranged between 4496 and 8311 for cattle kills,
22568 and 41,737 for crop damage cases.

One such region, which we focus on in this paper as an
illustrative case study, is the Bramhapuri Forest Division
in Chandrapur, Maharashtra, India, which is home to 2.8
tigers and 19000 humans per square kilometer. Studies by
our on-field partner, a non-government organization (NGO),
showed that more than fifty percent of the households in the
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Bharmapuri Forest Division had experienced crop depreda-
tion and livestock loss due to wildlife. Such conflicts impose
an economic and psychological cost on the community. Ad-
ditionally, the costs also spill over to conservation efforts
as in many cases these conflict situations prompt retaliatory
killings of wildlife and burning of forests.

A big bottleneck in the mitigation of these conflicts is the
lack of timely interventions. If one can predict these human-
wildlife conflicts, it can help the government and NGOs ex-
ecute timely interventions to reduce the loss of crops, live-
stock, and human-life. We aim to build AI-based solutions
to help with such interventions. To that end, the main objec-
tive of this paper is to predict the intensity of human-wildlife
conflicts in a particular region as an illustrative case study to
learn lessons that can be utilized in other ecological domains
that grapple with frequent cases of human-wildlife conflicts.
In order to make such predictions, the basic requirement is
the presence of conflict data over the years. Through years
of interactions with the government, and conducting ground
surveys, our partner NGO has collected a detailed human-
animal conflict dataset since 2014.
Contributions. To the best of our knowledge, this is the first
effort at predicting human-wildlife conflicts in unprotected
areas and this results in three main challenges. The first
challenge is the need to identify the “right” features that will
assist in the accurate prediction of conflicts. Based on obser-
vations from the data and consultations with domain experts,
conflicts tend to happen in certain types of areas (near wa-
ter bodies, low elevation areas, etc.) depending on the time
period. Second, the conflicts are very sparse and not evenly
distributed temporally and spatially. For instance, the dataset
used in this paper has only 0.38 conflicts per month per 100
km2. This poses a major challenge while trying to apply tra-
ditional machine learning tools to predict conflicts. Thirdly,
for predictions to be useful, they have to be at a spatial gran-
ularity of a large village or few small villages (≈ 4 km × 4
km), which is challenging.

To address these challenges, we make the following key
contributions: (i) We investigate a wide variety of features
and conclude that simple features (like latitude, longitude,
and terrain elevation) are insufficient in predicting conflicts
successfully; (ii) Therefore, we move to more complex fea-
tures such as satellite images and we provide a novel way
of generating more training data for training Convolutional
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Neural Networks (CNNs) to make intensity predictions; (iii)
To better handle sparse training data, we provide a way to
apply curriculum learning and also provide a novel hierar-
chical classification approach. Finally, on the real test data
set, our methods provide a prediction accuracy of 80.4% for
a spatial granularity of 4 km × 4 km. In addition to the re-
sults on a real data set, we are also in the process of de-
ploying interventions on the ground based on our predictions
(details in Section 6).

2 Related Work
While human-wildlife conflicts have been studied exten-
sively in recent years, most of the prior work focuses on
causes, mitigation and human perception of such conflicts
(Lute et al. 2016; Goswami et al. 2015; McCleery 2009).
Only recently, there have been developments in successfully
predicting the intensity of human-wildlife conflicts. (Naha
et al. 2019; Sharma et al. 2020) utilize land use/land cover
change and map vegetation, along with other features, to
predict spatial patterns in human-elephant conflicts in North
Bengal and human-wildlife conflicts in eastern Himalayas
respectively. However, both their areas of interest (AOI) in-
cluded multiple protected areas, and their predictions high-
lighted the regions around these protected areas to be most
prone to conflicts. In contrast, our case study does not in-
clude any protected areas in the landscape and because of
this conflicts do not happen only around a few hotspots and
prediction of conflicts is required at the ”right” spatial gran-
ularity in the entire AOI.

(Buchholtz et al. 2020) predict wildlife-conflicts by iden-
tifying high landscape connectivity areas using circuit the-
ory on government records and GPS tracking data from
collared African elephants in Botswana. While their model
works well with different spatial features to establish the cor-
relation over a large time horizon, it fails to account for con-
flicts and their intensity across shorter time periods. In con-
trast, we use governmental data and publicly available satel-
lite imagery directly to predict the conflict intensity, which
is shown to be spatially robust, and also work well when
temporally extrapolated.

Raw satellite imagery has been extensively used to pre-
dict poverty (Jean et al. 2016; Pandey, Agarwal, and Krish-
nan 2018). (Bondi et al. 2020; Behari et al. 2021) use seg-
mentation techniques on satellite imagery to identify roads,
forests, agriculture, etc. to further predict food market acces-
sibility and micro-nutrient deficiency. The key distinguish-
ing contributions of this paper are in handling the sparsity
of data while predicting at the desired level of spatial gran-
ularity. Satellite-based remote-sensing data from public data
providers like Google Earth Engine (GEE) (Gorelick et al.
2017) has been used in several applications (Kumar and Mu-
tanga 2018), from crop mapping to coral reefs and landslide
activity. In the domain of wildlife conservation, remote-
sensing and satellite data has been used to ascertain ter-
rain information to prevent poaching of endangered species,
schedule ranger patrols (Fang et al. 2016; Xu et al. 2020),
and predicting poaching activities (Guo et al. 2020). Unfor-
tunately, we did not have the same data for the Bramhapuri

Forest Division at the desired granularity and hence we em-
ploy satellite imagery to make conflict intensity prediction.
If land use and land cover data were available at the desired
granularity, our contributions are directly applicable.

3 Data Collection and Dataset

(a) (b)

Figure 1: Green dots highlight individual conflicts. (a) Clus-
tered conflicts (highlighted in red) appear near the intersec-
tion of terrains. The darker green areas denote dense forested
areas, while the lighter areas have sparse vegetation. (b)
Conflicts at the boundary of human settlements and forests.

One of the primary challenges with predicting human-
wildlife conflicts is data collection. Since humans are
severely affected during most of these conflicts, collecting
data about the same becomes a sensitive issue. The gov-
ernment keeps records of human-wildlife conflicts through
various departments. Thus accessing the data not only re-
quires several levels of approval but also becomes a time-
consuming process. However, our partnership with an NGO,
accelerated the availability of data since conservation organ-
isations maintain program records through ground surveys,
and Right to Information (RTI) requests. Our partners pro-
vided us with an anonymized conflict dataset. This dataset
comprised of 2628 cattle-animal and human-animal conflict
records from 2014 to 2017, each detailing the cattle or hu-
man being killed or injured, the attacking animal (tiger, boar,
etc.), the approximate GPS coordinates of the conflict oc-
currence, the date of the conflict, the village details (range,
round, beat, village name, and compartment number). Three
animals, namely tigers, leopards, and wild boars, were in-
volved in a majority of the human-animal conflicts.Since
this is a real-world dataset, we had to clean and pre-process
the dataset. After the data cleaning process, we ended up
with 2196 conflict records, each detailing the GPS coordi-
nates of the conflict and date of the conflict, alongside infor-
mation about the animal involved, the cattle or human being
killed or injured, and the village where the conflict occurred.

4 Problem Definition
We have filtered past data of conflicts, C, where each conflict
i ∈ C occurs at a location, li (latitude, longitude) and during
a time period, ti (e.g., Feb 2015). Using the past conflict data
for training, the objective is to predict conflict intensity, yr
(e.g., low, medium, high), in a given region r (defined as a
continuous area of land covering a large village or few small
villages) of size roughly m km × n km, during a different
time period than the one for which conflict data is provided.
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In order to predict conflict intensity, we first convert the
given conflict data into a learning problem with R training
examples {(< xr, tr >, yr)r∈R}, where xr represents the
features corresponding to a region r of size m km × n km,
tr is time period of interest (e.g., February of 2015) in the
training data, and yr is the intensity of conflicts given by
f(
∑

i∈C Ili,r). f(.) maps the number of conflicts to an in-
tensity (e.g., low, medium, high in case of classification and
the actual number of conflicts in case of regression) and I is
the indicator function that is 1 if li ∈ r and 0 otherwise.

Formally, the objective is to build a predictor, P so as to
minimize the loss between the predicted intensity, P(xr, tr)
and ground truth intensity, yr for a test data set (where tr
will be for the time period of test dataset). There are three
key challenges in building such a predictor: Challenge 1:
Identifying the features to be considered for each region,
i.e., xr to accurately predict yr; Challenge 2: Predicting ac-
curately with a few training examples and a significant class
imbalance; and Challenge 3: Predicting conflict intensities
for regions at the right spatial granularity (≈ 4 km × 4 km).

5 Prediction of Conflict Intensity
Towards addressing the three challenges, we first investigate
different types of features and identify the ones that provide
the highest accuracy. We then provide our key technical con-
tributions that handle the sparsity of training examples and
provide predictions at the desired spatial granularity of re-
gions. To address challenge 1, we work through a progres-
sion of features from simple to complex. We begin with a
fixed set of regions (obtained through clustering of conflicts)
and use the region identifier (cluster number) as xr. This
is described in the first part of Section 5.2. However, since
having just a region identifier does not capture the connec-
tivity between regions, we compute an embedding for a re-
gion determined based on the connections to other nearby
regions in the later part of Section 5.2. Then, to evaluate
the importance of terrain properties, we use the elevation of
the region (only data available at the right level of granular-
ity) in Section 5.3. Finally, in Section 5.4, we employ satel-
lite imagery for a given region to not only capture context
(e.g., forests, water sources, croplands, settlements, roads,
etc.), but also the neighborhood of the region. The features
that are common for all sections (train and test datasets) are
mentioned below and the specialized features for each pre-
diction method are mentioned in the corresponding sections.
Depending on whether we are training or testing, tr is dif-
ferent. tr is the month and year for a specific example in
training/testing data. For training and testing, we used data
from 2014-2016 and 2017 respectively.

5.1 Implementation Details
The models used in this paper were trained and evaluated on
a machine with an Intel Xeon E5-2630 v4 processor, 256 GB
RAM, and 8 RTX 2080 Ti GPUs, running Ubuntu 18.04.2
LTS. All the experiments were run on python 3.8. We used
scikit-learn for regression tasks, while we used pytorch for
training CNN-based methods. All the regression and simple
classification methods were trained and evaluated in under a

few minutes. All the CNN-based methods were trained and
evaluated in under 48 hours.
The models and their implementations used in this paper can
be found here: https://bit.ly/31Z95mW. We do not provide
any conflict data, or any trained model, as the real data is
classified, and the trained models would easily give away
the distribution of endangered animals involved in conflicts
(since the AOI is mentioned in the paper). However, we do
add dummy csv files with some dummy conflict data, which
can be filled with the real data to replicate the results.

Method m,n (km) xr yr
Regression 18 × 18 Clusters Count of conflicts
CNN-based 10 × 10 Sat 5, 3 classes

CL 10 × 10, 8 × 8, 4 × 4 Sat 3, 2 classes
Hierarchical 10 × 10, and 4 × 4 Sat 3, 2 classes

Table 1: Summary of settings for prediction methods

5.2 Prediction with Region Identifiers
First, we employ region identifiers as xr. The actual regions
can either be obtained by equally dividing the overall area
into regions or by clustering conflicts. In this section, we de-
scribe and provide regression results (f(.) maps to the actual
count of incidents) for the latter case as it performed better
than equal size regions.

We applied K-Means on the GPS coordinates of the con-
flicts and generated an elbow curve. After looking at the el-
bow curve and analyzing the performance, we and set the
number of clusters as k = 38 and labeled all the data points.
Using this labeled data, we group conflicts for each cluster,
for each month. We generated a dataset using this cluster in-
formation, which we refer to as NWA. We then applied dif-
ferent regression methods, namely linear regression (Ken-
ney and Keeping 1962), ridge regression (Hoerl and Ken-
nard 1970), stochastic gradient descent (SGD) based lin-
ear regression (Zhang 2004), and Multi-Layer Perceptron
based regression to solve our prediction problem (using de-
fault hyper-parameters provided in scikit-learn). We used
the number of conflicts as our target variable yr, the month
and year as the temporal variables tr, and the region iden-
tifier (cluster number obtained using lat, long of conflicts)
xr. Since our models are going to be used to predict for the
future, throughout the paper, we evaluate our methods by
extrapolating the data. To that end, we train on the conflict
data from 2014-16, and test on the conflict data from 2017.
Table 2 (Standard column) compiles the best R2 scores for
each regression model on the test set.

Regression
Type

Standard Node2Vec Node2Vec-
Elevation)

Linear -0.050 0.050 0.082
Ridge -0.050 0.025 0.082
MLP -0.045 -0.017 -0.355
SGD -0.053 0.000 -0.021

Table 2: R2 scores for regression methods
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Model Node2Vec Node2Vec-
Elevation

5 3 5 3
Logistic Regression 48.2 57.0 60.9 59.0

MLP 46.4 56.1 59.5 58.9
SVM 50.8 60.5 60.9 61.9

Table 3: Accuracy (%) for classification models

The low R2 scores indicate our zone representation did
not capture the adjacency information, which would es-
sentially capture the possibility of animals migrating to
nearby areas. We therefore employed node2vec (Grover and
Leskovec 2016) and generate embeddings (of size 128). We
retrained all the regression models using this new represen-
tation, where xr is the embedding of the region. Table 2
(Node2Vec column) summarizes the R2 scores of the models
with node2vec representation, which shows improvement in
performance with scope for improvement.

We also tried including the wild animal involved as a fea-
ture to predict conflicts. However, this results in 90% of re-
gions having a total of zero conflicts, which biases the re-
gression models to predict zero most of the time. In contrast,
our initial NWA dataset had 58% of the dataset full of zeros.
Citing this imbalance, we decided against using wild animal
information in our future experiments.

5.3 Prediction with Terrain Features
We also explored terrain features, which play an important
role in the location and movement of animals. Since land-use
and land cover data was unavailable at the required granu-
larity, we incorporated elevation data and ran the clustering
technique with GPS coordinates and elevation data, and re-
labelled the datasets. m,n and xr are the same as in Sec-
tion 5.2, but yr is classification with 3 and 5 classes. Table 2
shows that including elevation data improves R2 scores in
most cases.

However, due to the poor performance of regression meth-
ods and the feedback from our on-field experts that a class-
based prediction for conflict areas (like low, medium, or high
conflict areas) was sufficient (predicting the actual num-
ber of conflicts was not as crucial), we move away from
regression-based methods and explore classification meth-
ods. We bucketed the total conflicts for each record in our
NWA dataset into five ([0], [1-3], [4-6], [6-9], [10+]) and
three classes ([0], [1-9], [10+]). We then applied logistic
regression (Hosmer Jr, Lemeshow, and Sturdivant 2013),
support vector machine (SVM) (Suykens and Vandewalle
1999), and multi-layer perceptron (MLP) (Glorot and Ben-
gio 2010) based classifiers on this dataset. Table 3 summa-
rizes the accuracy of the three classifiers. Highest accuracy
of 60.5% is observed when using node2vec without eleva-
tion data, on the dataset having three classes. Including el-
evation data during clustering in the classification task did
positively impact the accuracy of the models, without sig-
nificant boost in performance of the models.

In conclusion, our first contribution goes to highlight that

simple features (like latitude, longitude, and elevation) are
not sufficient to predict conflicts with a high degree of accu-
racy, either using classification or regression. This coupled
with certain patterns in conflicts (as observed in Figure 1)
motivates us to employ satellite imagery to capture terrain
and adjacency information to improve prediction accuracy.

5.4 Prediction with Satellite Imagery
As indicated, our focus is on identifying conflicts in unpro-
tected areas and this can result in conflicts at many different
places including but not limited to intersections of different
terrains, lower elevation regions, water bodies, boundaries
of villages and forests, etc. We incorporate this by using
available true-color satellite imagery. We use ESRI’s Satel-
lite Imagery API (ESRI 2021) and Google Static Maps API
(Google 2021) to get the base maps for our AOI. This allows
predicting conflicts for regions of our choice, instead of only
static cluster regions generated by clustering methods with
previous methods.

Given their effectiveness in dealing with image data, Con-
volutional Neural Networks (CNNs) (LeCun, Bengio, and
Hinton 2015) trained on sufficient size grids (to capture the
context of the region) of the satellite imagery would present
themselves as a natural option. Unfortunately, given a total
AOI of approximately 132 km × 121 km, either the num-
ber of training examples is small or the size of the region
is too small for CNNs to identify the context (forests, water
sources, croplands, settlements, roads, etc.).

To address challenge 2, a key insight (and our second con-
tribution) that we employ is to divide the satellite imagery of
AOI into overlapping equal-sized grids. By controlling the
overlap (explained in detail below), it is feasible to generate
more images to train the CNN.

Generating Dataset There are two major issues related to
challenge 2. First, if the satellite image is just partitioned
into square regions once, it would result in a few images
- not enough to train a CNN-based network. Second, since
most of these regions are likely to have zero conflicts, they
would skew the dataset, as seen in Section 5.2.

We address the first issue by taking overlaps on the satel-
lite imagery i.e. by shifting the square regions by some off-
set after one round of partitions. This potentially allows the
creation of an unlimited number of images (or data points).
However, we limit it to five offsets along the longitude and
latitude, creating five times the number of images from one
pass of partitioning over the full satellite image. The dataset
thus created, referred to as SAT0(k), has records that con-
tain the satellite image of an AOI in a k km × k km radius
(xr), the temporal features - month and year (tr), and the
corresponding number of conflicts in that AOI during that
month and year (yr). To address the second issue, we create
new versions of our dataset SAT0(k) by removing all areas
where conflicts haven’t been reported in the entire three-year
time frame (2014-17). We label this dataset as SAT1(k) and
use it in our experiments.
Solutions Overview: Now that we have a dataset with suf-
ficient satellite images, we provide a series of approaches
to address challenge 2 and challenge 3. First, we provide
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(a) N1 (b) N2 (c) N3 (d) N4 (e) N5 (f) N6

Figure 2: CNN-based network architectures used in Section
5.4 [(a)-(d)], Section 5.4 [(e)-(f)] and Section 5.4 [(e)-(f)].
The notation: conv (d × d) refers to a convolutional layer
with d×d filters; max-pool (s×s) denotes max-pooling op-
eration with stride s; FC(n) denotes a fully connected layer
with n output features; R is the relu activation function.

a CNN based learning model (for SAT1(10)) that is able to
achieve high accuracy, precision and recall values. However,
it achieves less than 60% accuracy on SAT1(4), which is the
granularity of interest. To address this, we propose a cur-
riculum learning method that reduces the granularity gradu-
ally (SAT1(10)→SAT1(8)→SAT1(4)) while training, rather
than directly going to SAT1(4). Such an approach is shown
to learn better due to understanding the contour of the solu-
tion space in easier problems first. This improves the accu-
racy substantially, however, the precision and recall values
are very low for SAT1(4) due to the data sparsity for non-
zero conflicts. To address this, we propose a hierarchical
classification approach that not only employs the decrease
in granularity while training, but also explicitly emphasizes
training on non-zero conflict areas. This ensures better over-
all training and as shown in our results (Table 7) achieves
high accuracy, precision and recall values.

Model (Classes) N1 (5) N2 (3) N3 (5) N4 (3)
Accuracy 66.3 % 82.2 % 62.8 % 73.1 %
Precision 0.44 0.73 0.38 0.58

Recall 0.38 0.81 0.44 0.69

Table 4: Results for non-zero conflict classes on SAT1(10)

CNN-based Learning Model We use the datasets gener-
ated above to predict the nature of conflicts in a particular
AOI. To do so, we first bucket and label the conflicts into
multiple classes (we use two variants - 5 and 3 classes, sim-
ilar to the ones described in Section 5.2). Then we take the
images as grayscale input (1 channel) and pass the temporal
features tr (month and year) after normalization in the other
two channels - making it a 3-channel image. The images are
then passed to train CNN-based prediction networks. The
corresponding networks labeled N1 (for 5 classes) and N2

(for 3 classes) are described in Figure 2a and 2b.
We also train two multi-headed networks labeled N3 (for

five classes) and N4 (for three classes), described in Fig-
ure 2c and 2d. These take only the original grayscale 1-
channel images as input to the convolution layers, and later
concatenate the temporal features of month and year with
the output of convolution layers, before passing it to the fully
connected layers. For training all our networks, we use the
Adam optimizer (Kingma and Ba 2014), with a learning rate
of 0.0001. We use weighted cross-entropy loss, and we train
for 300 epochs. The performance of our CNN-based models
on these datasets are summarized in Table 4. We find that our
N2 model reaches an accuracy of 82.2% on the SAT1(10)
dataset. We highlight this model, as it has high precision and
recall values. We also observe that networks trained for five-
class classification tasks perform poorly; hence we do not
show five-class classification results in our future sections.

Offset O1 O2 O3
Accuracy 73.7% 74.0% 80.0%
Precision 0.63 0.65 0.71

Recall 0.71 0.71 0.80

Table 5: Results on SAT1(10) with offsets (non-zero classes)

In order to test the robustness of our trained N2 based
model with respect to a spatial shift, we generated a new set
of data containing images with offsets that were not used
during training, namely O1, O2 and O3. O1 is a testing
dataset generated with an offset of 1.11 km, while O2 and
O3 are generated with offsets of 2.77 km. They utilize all
the conflict data from 2014 to 2017, except for O3, where
we take only the conflict data from 2017 to generate the data
points. We report our test results in Table 5. The good per-
formance of our model showcases that our trained model is
robust to spatial change in input satellite imagery.

Unfortunately, even with the N2 model, we do not cross
60% accuracy on the SAT1(4) dataset (challenge 3). This
is mainly due to the sparsity of medium or high conflict in-
tensities in the dataset. Towards addressing this drawback,
we introduce our third set of contributions on curriculum
learning and an extension of curriculum learning to deal with
sparse data and class imbalance.

Curriculum Learning Curriculum Learning (CL) (Ben-
gio et al. 2009) employs a curriculum where predictors are
trained initially on easy examples and then moved to dif-
ficult examples. As highlighted in the paper (Bengio et al.
2009), a well-chosen curriculum can serve as a continuation
method (Allgower and Georg 2012), i.e., can help to find
a better local minima of a non-convex training criterion. It
has been shown to improve not only training accuracy but
also generalization ability. In this paper, we train the neu-
ral network by employing a curriculum of region sizes. We
first create three subsets of regions in a sequence, with each
subsequently numbered subset having images that cover a
smaller area as compared to the previous. We hypothesize
that it is easier to predict conflicts in a much larger area (i.e.
at a macro-level) than in a smaller area (i.e. at a micro level),
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due to the sparsity of non-zero conflict regions. With that
belief, we start training with the images covering larger ar-
eas of 10km × 10km (SAT1(10)), and later include images
which cover a 8km × 8km area (SAT1(8)) and finally we
consider images which cover a 4km× 4km area (SAT1(4)).
During the training process, we add the subsequent subsets
(with smaller regions) to our training dataset when the val-
idation accuracy of the model on the previous set does not
continuously increase for five epochs (determined empiri-
cally). We evaluate the performance of the curriculum learn-
ing model for both three-class and two-class classification
problems. To that end, we utilize three networks, namely N2
(3 class), N5 and N6 (2 class), as detailed in Figure 2b, 2e,
and 2f respectively. Table 6 summarizes the performance of

Model (Classes) N2 (3) N5 (2) N6 (2)
4×4 Accuracy 77.3% 77.9% 82.2%
4×4 Precision 0.24 0.26 0.32

4×4 Recall 0.25 0.27 0.17
FCL Accuracy 75.1 % 76.4% 77.2%
FCL Precision 0.49 0.54 0.60

FCL Recall 0.46 0.57 0.35

Table 6: Results at the 4 km × 4 km level with CL and FCL.

the models. Key observations: (a) Across all the models, the
best accuracy obtained with a CNN model on 4km × 4km
was less than 60%. However, with CL, this improves to at
least 77.3% for N2, N5 and N6 models for SAT1(4). (b) The
full system results (averaged over all granularities), referred
to as FCL are also quite high with respect to the accuracy,
and moderate to low with respect to the precision and recall.
(c) Unfortunately, the higher accuracy values are obtained
at the cost of lower precision and recall values (maximum
of 0.32) for SAT1(4). The poor precision and recall values
are due to a significant class imbalance (significantly many
zero-conflict regions ≈90%-95% and few non-zero conflict
regions) in SAT1(4). Next, we provide a hierarchical classi-
fication approach that builds on the idea of gradual decrease
in granularity.

Hierarchical Classification To address the class imbal-
ance issue, the first key insight we employ is to train sepa-
rately on the sparse non-zero conflict regions, so that the pre-
dictor weights do not get overwritten when learning from the
many zero-conflict regions. To explicitly focus on the non-
zero conflict regions, we propose a step-wise hierarchical
prediction framework, which uses a combination of CNN-
based predictors trained at different granularities to predict
conflicts. Specifically, in this case, we first train on a higher
granularity dataset, SAT1(10) or macro level, and focus the
training for SAT1(4) or micro level on those 10km× 10km
regions with high conflict intensity. It is important to note
that only a subset of the SAT1(4) dataset is used to train the
micro-level network due to this hierarchy.

This hierarchy enables us to make use of our best perform-
ing N2 network at the macro-level. For the micro level, we
train a host of CNN-based prediction networks, namely N2,
N5 and N6 (detailed in Figure 2b, 2e, and 2f respectively),

and AlexNet (Krizhevsky, Sutskever, and Hinton 2017). The
dataset is only generated using satellite imagery, and the im-
ages are clipped at a resolution of 224 × 224 pixels.

We test our hierarchical classification model on the con-
flict data from 2017, and the results obtained are summa-
rized in Table 7. Key observations: (a) N6 model provides
the best results for both 4x4 and full system accuracy, pre-
cision, and recall. The results are substantially better than
those obtained with CL (b) The best model for 3 classes,
N2 has low precision and recall values for SAT1(4) (c) We
achieved ≈ 61% accuracy with AlexNet, with very low pre-
cision and recall for non-zero classes; hence we omit it.

In summary, due to the sparsity of the data and class im-
balance, we were unable to get good accuracy, precision, and
recall values for greater than or equal to three classes. Since
our partner agency is interested primarily in knowing about
high conflict regions at 4x4 granularity, 2 classes are suffi-
cient. With the hierarchical classification method, we have
been able to achieve 75.7% accuracy for 4x4 and accuracy
of 80.4% for the full hierarchical model with high precision
(≥ 0.76) and recall (≥ 0.66).

Model (Classes) N2 (3) N5 (2) N6 (2)
4×4 Accuracy 60.3 % 62.6 % 75.7 %
4×4 Precision 0.22 0.78 0.85

4×4 Recall 0.40 0.43 0.66
HM Accuracy 71.2 % 76.9 % 80.4 %
HM Precision 0.49 0.74 0.76

HM Recall 0.68 0.69 0.76

Table 7: Results for the (4 km × 4 km) level and the full HM

Figure 3: The ”Bumbb” water heater

6 Pilot Deployment
We are in the process of safely testing and deploying our
AI models on the field and gradually scaling our operations.
Clusters of villages that surround zones/grids with high pre-
dicted conflicts (according to our methods) were identified
and shortlisted. The shortlisted villages will receive inter-
ventions to reduce human wildlife conflicts. The first inter-
vention is the provision of a water heater (Figure 4) to elim-
inate the need to go into the forest for fetching firewood (an
extremely high-frequency activity with a high probability of
conflict with wildlife). We will monitor whether such inter-
vention help to reduce trips to the forest for villagers via
qualitative surveys and evaluate the effects of this interven-
tion.
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