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Abstract

Various types of machine learning techniques are available
for analyzing electronic health records (EHRs). For predictive
tasks, most existing methods either explicitly or implicitly di-
vide these time-series datasets into predetermined observa-
tion and prediction windows. Patients have different lengths
of medical history and the desired predictions (for purposes
such as diagnosis or treatment) are required at different times
in the future. In this paper, we propose a method that uses
a sequence-to-sequence generator model to transfer an input
sequence of EHR data to a sequence of user-defined target la-
bels, providing the end-users with “flexible” observation and
prediction windows to define. We use adversarial and semi-
supervised approaches in our design, where the sequence-to-
sequence model acts as a generator and a discriminator dis-
tinguishes between the actual (observed) and generated la-
bels. We evaluate our models through an extensive series of
experiments using two large EHR datasets from adult and pe-
diatric populations. In an obesity predicting case study, we
show that our model can achieve superior results in flexible-
window prediction tasks, after being trained once and even
with large missing rates on the input EHR data. Moreover,
using a number of attention analysis experiments, we show
that the proposed model can effectively learn more relevant
features in different prediction tasks.

Introduction
As more healthcare systems adopt standardized methods
of collecting health data in electronic health record (EHR)
formats, unprecedented opportunities for applying AI/ML
methods on these datasets have been arising. By inform-
ing various types of interventions (from prevention to treat-
ment), the application of such data-driven methods of-
fers great hopes to shift healthcare systems in almost ev-
ery aspect and makes achieving the ultimate precision
medicine goals more promising. A popular application of
EHR datasets is in developing predictive models to estimate
future clinical outcomes of interest. Due to the temporal na-
ture of EHRs, existing predictive models commonly define
one or multiple observations (input period) and prediction
windows (output period) on the data. As an example of such
an approach, consider a popular study by Liu, Zhang, and
Razavian (2018) that uses a 12-month observation window
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and a 6-month prediction window for future disease pre-
diction. Having pre-defined observation and prediction win-
dows creates several challenges that include handling 1) the
EHR data that is not available for the entire length of a de-
fined observation window, 2) the needed predictions at dif-
ferent times for different patients, and 3) having patients
with very different lengths of medical history. Generally,
existing methods involve training separate models for dif-
ferent observation and prediction windows; and for any of
the fixed-time predictions, only samples that have medical
histories of the length of the observation window and have
the output label at the prediction time are used. A possible
solution can be using the rich body of methods for imput-
ing EHRs, by learning to impute the data anywhere inside
the observation or prediction windows and hence achieving
flexible-window predictions, such as the work by Cao et al.
(2018) and Luo et al. (2018). However, the performance of
such methods is not as good as the earlier methods for fixed-
window predictions, as the latter methods are not designed
for prediction tasks. A major gap in the literature remains
in having a clear and explicit strategy for creating flexible-
window predictive models that do not need to be re-trained
separately for different windows. A “flexible-window” pre-
diction design not only has technical advantages but also
has important clinical relevance in studying chronic diseases
that require knowing the disease trajectories at various times
before and following the disease onset.

In this study, we aim to address such limitations by pre-
senting a general method for creating a predictive model
that is trained once and can be later flexibly used for differ-
ent observation and prediction window lengths. Following a
sequence-to-sequence theme, we train a model on the entire
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Figure 1: (A) An example of the observed and missing data
configurations (gray shows missing). (B) Flexible observa-
tion and prediction windows for a patient with 10 yrs of data.
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(training portion of the) EHR dataset, where different pa-
tients have different lengths of medical histories recorded
at irregular intervals. By learning to work with different
lengths of input sequences and predicting output labels at
different times in the future, our model learns to generate
flexible-window predictions at the time of test or deploy-
ment. As an example, consider a scenario where a 10-yr
EHR dataset is available from a cohort of patients. During
training, our model learns to predict the output labels for the
complete 10-yr, while the complete 10-yr sequence might
not be available for all patients at different timestamps (Fig-
ure 1-A). During the deployment, a user can set the observa-
tion window to any length; for instance, by using 2 yrs, the
model only looks at 2 yrs of medical history (using the data
different from the training data) and predicts the next 8 yrs
of output labels. Other observation and prediction window
configurations can be also defined, similarly (Figure 1-B).

Additionally, to handle the missing EHR data values
(including labeled and unlabeled samples), we train the
sequence-to-sequence model in a semi-supervised manner
by using a generative adversarial network (GAN) archi-
tecture. Accordingly, the complete model presented in this
study has two parts: (a) a sequence generator network, which
generates a sequence of outputs from a sequence of medical
history, and (b) a discriminator network, which distinguishes
between the actual (observed) and fake outputs (missing in
the data and generated by the sequence generator network).
The primary contributions of this paper are as follows:

• We present a sequence-to-sequence model that learns
jointly from the present and missing samples in the EHR
dataset to predict desired clinical outcomes.

• Following the training, our model can be used with any
desired size of observation and prediction windows. This
approach not only reduces the needed resources for de-
veloping and maintaining the models but more impor-
tantly, gives complete flexibility to the end-users (e.g.,
providers) to choose the desired length of windows, fa-
cilitating a more successful deployment of our tools.

• We evaluate our models using two separate EHR datasets
collected from different sites in the US with around
34,000 adult and 70,000 pediatric patients and show that
our model outperforms several other baselines in flexible
prediction tasks.

Related Work
Many studies have used EHR data to predict clinical out-
comes, while machine learning and deep learning techniques
are common choices for building such models. On the tech-
nical side, what our study adds to the current state of the field
is a combination of RNN and GAN, where an RNN-based
sequence-to-sequence model is enhanced to use the genera-
tive adversarial loss to learn from both labeled and unlabeled
samples. RNN-type models have been a popular choice for
creating predictive models using longitudinal data. An early
example is the Deep patient model by Miotto et al. (2016)
that uses RNN autoencoders to learn the patient represen-
tations to predict the disease outcomes at varying predic-
tion windows. Similarly, Chen et al. (2018) used RNNs on

ICU data for multi-task prediction, and Choi et al. (2017)
used several different observation and prediction windows
to predict heart failure using RNNs, among many examples
of this kind (Ramazi et al. 2021). This type of study con-
siders separate models trained for each prediction window
using the labeled samples for that prediction window. In ad-
dition to creating an overhead, this configuration reduces the
ability of the models to learn from all available patterns in a
dataset. There are also some studies that use RNNs for mul-
tivariate time-series imputation tasks, such as using bidirec-
tional RNNs to impute missing values in time-series (Cao
et al. 2018; Luo et al. 2018). These studies also relate to our
work, as they learn from the time-series data and the output
is also in the form of time-series data. Though, these mod-
els are used for imputation and cannot be directly applied in
predictive scenarios.

We also use a GAN-based design in our model to train
our model using semi-supervised learning. GANs have been
widely used on clinical data due to their generative capabili-
ties to generate synthetic EHR longitudinal data (Baowaly
et al. 2019; Lee et al. 2020; Chin-Cheong, Sutter, and
Vogt 2019). For example, ehrGAN (Che et al. 2017) and
SMOOTH-GAN (Rashidian et al. 2020) are used to generate
labeled data by mimicking the real labeled patient records.
Similar to our work, recently the generative capabilities of
GANs have also been explored for semi-supervised learn-
ing. For instance, McDermott et al. (2018) use adversar-
ial loss and cyclical reconstruction loss to predict individ-
ualized treatment effects. Instead of cyclical reconstruction
loss, we use the adversarial loss to distinguish between real
and fake labels for labeled and unlabeled samples.

Problem Setup
EHR datasets can contain various types of elements, includ-
ing static information such as demographics, and dynamic
information such as medical conditions, medications, mea-
surements, and lab tests. While we formulate our problem
using only two more commonly used elements (conditions
and medications), the method should be generalizable to
other EHR configurations, too.
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Figure 2: Our model’s structure. Red arrows show the last
hidden state of the decoder. The yellow arrows show the
weighted vector, given to the decoder, and the purple arrows
show yt, given to the decoder’s linear layer.
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We first define three vectors: C, M , and A. Let C =
{c1, c2 . . . , cT } ∈ RT×N be a multivariate time-series
vector that represents the conditions recorded over a pa-
tient’s visits, where T = (1, 2, . . . .T ) shows the visit times-
tamps, and the t-th condition vector, ct ∈ (0, 1)

N is a one-
hot vector for N unique conditions. If the i-th condition is
recorded in the t-th visit, then cti = 1, and 0 otherwise.
Finally, let M = {m1, m2 . . . ,mT } ∈ RT×D be a mul-
tivariate time-series vector that represents the medications
recorded over a patient’s visits, where the t-th medication
vector mt ∈ (0, 1)

D is a one-hot vector for D unique medi-
cations. If the j-th medication is observed in t-th visit, then
mtj = 1, and 0 otherwise. Let A = {a1, a2 . . . , aT } ∈ RT

be a univariate time-series vector that represents the patient’s
age, where at ∈ R is the age at the t-th visit.

Given a patient’s data, C (conditions), M (medications),
and A (age) recorded over T timestamps, during training,
the model learns to predict the sequence of labels (show-
ing the outcome of interest) over T timestamps. However,
during testing, the model only looks at C, M , and A over
observation window timestamps and predicts output labels
for prediction window timestamps. We show the observed
(actual) labels with Y = {y1, y2, . . . , yT }, and estimated
labels as Ŷ = {ŷ1, ŷ2, . . . , ŷT }. We align all the tempo-
ral data of the patients by the maximum length of medical
history in the data and segment the time-series into disjoint
time-periods. As an example, Figure 1-A shows 10 yrs of
data segmented into one-yr bins. As in our semi-supervised
learning setting, not all data samples have labels, we use a
binary mask vector to identify the observed (= 1) and miss-
ing (= 0) labels in the dataset. The model learns to predict
Ŷ , by learning from both the labeled and unlabeled samples.

Model Architecture
The proposed model consists of two parts (as shown in Fig-
ure 2): (1) a sequence generator network (Seq–Gen), which
consists of an encoder (Enc) and a decoder (Dec), that to-
gether generate a sequence of labels, and (2) a discrimina-
tor (Dis), which distinguishes between the observed (actual)
and generated labels.

Sequence Generator Network – The two components of
this network, Enc and Dec, use GRU (gated recurrent unit)
layers, receiving the input time-sequence and generate an-
other time-sequence. The input to Enc is an embedded vec-
tor (V ) obtained by the summation of the embeddings of C,
M , and A, such that:

vt = Emb (ct) + Emb (mt) + Emb (at) , (1)
where, Emb is the embedding layer. V is then given to Enc,
where bidirectional GRU layers are used to produce the out-
put in the forward and backward directions:

−→
ht ,
←−
ht = Enc (vt, ht−1) , (2)

where, ht−1 is the previous hidden state, and
−→
ht , and

←−
ht are

the output of the bidirectional GRU layer in the forward and
backward direction, respectively. This output is then con-
catenated into H (Enc’s output):

ht = |
−→
ht ,
←−
ht |, (3)

H = {h1, h2, . . . , hT } . (4)
The last hidden state hT is passed through a fully con-

nected linear layer and then a Tanh activation, to obtain a
context vector z, creating the first hidden state s0, and is
given to Dec.

An attention mechanism is used to obtain the weighted
sum of the encoded vector H , similar to other studies (Chen
et al. 2018). The attention layer (attn) obtains the attention
scores for the encoded vectors, and learns to assign a higher
weight to the subset of vectors in H that are more important
in predicting the output at each timestamp, as shown below:

attn scoret = Softmax (Tanh (attn (H, st−1))) . (5)

This step calculates attention scores for H with each hidden
state st−1 of Dec. Applying Softmax ensures that the at-
tention scores lie between 0 and 1, and sum to 1. Finally,
the weight vector wt, which is the weighted sum of H , is
obtained by using attn scoret as the weights:

wt = attn scoret �H. (6)

Dec is trained to predict ŷt by using wt, st−1, and the
embedded input at timestamp t− 1, or Emb

(
yt−1

)
:

st = Dec
(
wt, st−1, Emb

(
yt−1

))
, (7)

yt−1 = mask � yt−1 + (1−mask)� ŷt−1, (8)
where, yt−1 is the contextual input obtained by using mask
at timestamp t− 1. According to Eq. 8, yt−1 is equal to the
present label yt−1, if the labels are observed at timestamp
t− 1, and equal to the predicted label ŷt−1, if the labels are
missing. Note that during the test phase, yt−1 will always
be equal to the predicted label ŷt−1, as the model needs to
predict the output sequence without the knowledge of the
ground truth. Eq. 9, shows the calculation of the final output
label ŷt at time t using yt−1, wt, and st, through the fully
connected layer f with a linear activation.

ŷt = f
(
Emb

(
yt−1

)
, wt, st

)
(9)

Discriminator – By adding the discriminator (Dis) to
Seq–Gen presented so far, we implement a generative ad-
versarial framework, where Seq–Gen acts as a generator
and Dis learns to determine which labels are observed (ac-
tual) or fake (labels generated by Seq–Gen). This discrimi-
nation task amounts to predicting the mask vector (mask):

m̂ask = Dis (yt) , (10)

where m̂ask is the predicted mask values by Dis. Using
this generative adversarial setting improves the performance
of the model by learning the overall distribution of data.

Loss Definitions – For training the entire model jointly
on the labeled and unlabeled data, we define a two-part loss
function. The first part ensures that Seq–Gen’s generated
labels for the observed values are close to the actually ob-
served ones. This is the masked loss (lossM ), which is the
supervised cross-entropy (CE) loss capturing the difference
between the ground truth labels in the EHR data and the cor-
responding labels predicted by the Dec. It is calculated by
masking the unlabeled samples:

lossM = CE (mask � yt,mask � ŷt) . (11)
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The second part of the loss function is the generative ad-
versarial loss, which ensures that the labels generated for
the missing components can ‘fool’ the discriminator by pro-
ducing labels close to the true underlying data distribution.
Through this loss, Dis learns to maximize the probabil-
ity of correctly identifying the observed and generated val-
ues, while (Seq–Gen) learns to minimize the probability
that Dis correctly identifies the generated values. We de-
fine lossD and lossG as follows, and train Dis to minimize
−lossD and Seq–Gen to minimize lossM + lossG.

lossD = mask log
(
m̂ask

)
+(1−mask) log

(
1− m̂ask

)
(12)

lossG = − (1−mask) log
(
m̂ask

)
(13)

Obesity Case Study
To evaluate the performance of the proposed model, we per-
formed a series of experiments on two large EHR datasets
— All of Us and Nemours Pediatric. We used these datasets
to predict the obesity status as indicated by the individuals’
BMI (body mass index) values using the CDC’s definition
of obesity (CDC 2001). Using these datasets, we rigorously
evaluate our models on adult and pediatric populations, both
spanning across different healthcare sites. The entire All of
Us workbench used in this project is available on the All of
Us Research Program’s platform (researchallofus.org) and
can be accessed by any registered user. Processed data files
for the Pediatric dataset can be made available upon signing
a data use agreement. We present a brief overview of the two
EHR datasets and the steps taken for extracting the data, but
we refer readers to other studies for more details about our
cohorts (Gupta et al. 2019, 2021; Gupta and Beheshti 2020)
and our design (Pang et al. 2021).

All of Us – We used the EHR portion of the All of Us
Research Program (Investigators 2019), which is a publicly
available dataset collected from the data donations of over
one million adult participants in the US. We included indi-
viduals over 20 yrs and with a minimum of 10 yrs medical
history. Our final cohort had 11,152 males and 23,074 fe-
males, with 610 and 662 unique condition codes, and 1,099
and 1,279 medication codes, respectively.

Nemours Pediatric – We have also used an EHR dataset
from Nemours Children Health, which is a large pediatric
healthcare system in the US. Our work was approved by a
local IRB. We included any child with a minimum 10-yr of
medical history from the age of 1 to 10 yrs. Our cohort had
36,874 males and 30,904 females with 1,457 and 1,443 con-
ditions, respectively, and 380 medication codes, for both.

For both datasets, all the conditions and medications were
one-hot encoded. We segmented the 10 yrs of data into dis-
joint 3-month windows, obtaining 40 timestamps per pa-
tient. We combined all observations within each window
and took the maximum BMI values for each of the seg-
mented windows (as max-BMI carries more clinical infor-
mation than other comparable aggregation methods). If a
patient did not have any visit over a certain 3-month period,

All of Us Nemours Pediatric
Male Female Male Female

Total 446,080 922,960 1,474,960 1,236,160
w/ Ob. 13,953 33,603 52,993 44,038
w/o Ob. 19,698 33,738 236,460 200,648

Table 1: Number of timestamps with obesity (w/ Ob.) and
without obesity (w/o Ob.)

that period’s timestamp entries were marked as missing. Ta-
ble 1 shows the configuration of the timestamps for the data.
Note that some remaining timestamps did not have corre-
sponding BMI information. We use this data to predict the
patients’ obesity status for all 40 timestamps.

We perform our experiments using 5-fold cross-validation
with 80:20 train:test data ratio and report the average perfor-
mances using the lossM (Eq. 11), which is the loss calcu-
lated for the prediction labels for the timestamps with exist-
ing labels in the data. We fix the best model on the validation
data (5% of training data) and report the AUROC (area un-
der the receiver operating curve) and AUPRC (area under the
precision-recall curve) on the test data. AUROC represents
the model’s capability of distinguishing between classes and
the AUPRC is a useful performance metric for imbalanced
data. We also report the AUPRC baseline (ratio of the pos-
itive over total instances) which is a baseline performance
for a random estimator. Higher the AUPRC score above its
baseline better is the performance. Our code is available on
GitHub at https://github.com/healthylaife/FlexPrediction.

Prediction performance analysis — For the classifica-
tion task described above, we have compared our model
to several popular predictive models for analyzing EHR
datasets. These baseline models are built to learn from the
labeled samples with fixed observation and prediction win-
dows. The baseline models included RETAIN (Choi et al.
2016), tLSTM (Baytas et al. 2017), Dipole (Ma et al. 2017),
and StageNet (Gao et al. 2020). We used Python library im-
plementation of these baseline models (Zhao et al. 2021).

We compare the performance of our proposed model
against the baselines for an observation window of 3-yrs
and a prediction window of 7-yrs, where the target label
is predicted for all timestamps in the 7-yr prediction win-
dow. All baseline models are built to make a one-time pre-
diction (having or not having obesity). Therefore, to have a
fairer comparison between the baselines and the sequence-
to-sequence predictions in our proposed model, we train the
baselines to predict the outputs at each timestamp in the
prediction window. To do this, we train the baselines 28
times (for the predictions at each 3-month timestamp in the
7-yr window), collect the prediction results for all times-
tamps in the prediction window, and calculate the overall
performance metric. Moreover, following an ablation anal-
ysis theme, we include another baseline (Seq-Gen) in our
experiments, by leaving out the discriminator and remov-
ing lossG and lossDis from our model. The results in Table
2 show that our proposed model outperforms the baselines.
Additionally, the ablation analysis shows that the discrimi-
nator helps improve the performance of our model.
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All of Us Nemours Pediatric
Model Male Female Male Female

Variations AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

RETAIN 0.60 0.52 0.60 0.60 0.50 0.22 0.53 0.25
(0.002) (0.001) (0.001) (0.002) (0.01) (0.02) (0.02) (0.02)

tLSTM 0.62 0.55 0.60 0.61( 0.52 0.22 0.55 0.24
(0.002) (0.002) (0.002) (0.002) (0.01) (0.02) (0.01) (0.02)

Dipole 0.63 0.56 0.62 0.63 0.52 0.23 0.59 0.27
(0.004) (0.001) (0.002) 0(0.003) (0.01) (0.01) (0.01) (0.01)

StageNet 0.62 0.55 0.63 0.62 0.53 0.24 0.59 0.27
(0.003) 0.55(0.002) (0.004) (0.003) (0.02) (0.01) (0.01) (0.01)

Seq-Gen 0.71 0.64 0.70 0.70 0.56 0.24 0.56 0.26
(0.001) (0.001) (0.001) (0.001) (0.02) (0.01) (0.02) (0.02)

Proposed 0.70 0.64 0.71 0.71 0.59 0.26 0.62 0.31
(0.001) (0.001) (0.004) (0.005) (0.01) (0.01) (0.01) (0.01)

Table 2: Performance comparison, using 0-3 yrs observation and 3-10 yrs prediction window. Mean (Std).

All of Us Nemours Pediatric

Obs/Pred Male Female Male Female
AU- AU- AUPRC AU- AU- AUPRC AU- AU- AUPRC AU- AU- AUPRC
ROC PRC Baseline ROC PRC Baseline ROC PRC Baseline ROC PRC Baseline

3/7 0.70 0.64 0.42 0.71 0.71 0.47 0.59 0.26 0.17 0.62 0.31 0.18
5/5 0.70 0.64 0.40 0.74 0.71 0.46 0.63 0.38 0.18 0.67 0.45 0.20
7/3 0.81 0.79 0.49 0.80 0.79 0.49 0.68 0.46 0.20 0.74 0.60 0.22

Table 3: The performance of our model in three scenarios of flexible observation (Obs) and prediction (Pred) windows.

Flexible-window evaluations — We also evaluate the
performance of our method for flexible-window predictions,
by varying the observation and prediction window sizes as
shown in Table 3. We use observation window sizes of 3, 5,
and 7 yrs, and corresponding prediction window sizes of 7,
5, and 3 yrs. After the (one-time) training and during the test
phase, we delete all data in the prediction window, and the
model predicts the labels in the prediction window by look-
ing only at the data in the observation window. We also eval-
uate the performance of our model for short- to long-term
prediction using a fixed observation and varying prediction
window sizes. In Table 4, we compare the performance of
the model by keeping the observation window fixed at 3 yrs,
and using different prediction window sizes ranging from 1
to 7 yrs ahead of the observation window. For the All of Us
female dataset, the original cohort did not have any samples
with labels for the 4th and 5th prediction yrs. These results
demonstrate the capability of the model to reasonably de-
liver its anytime prediction promise. This is also shown by
the performance boost compared to the AUPRC baselines.

Attention Analysis — Following a practice used in sim-
ilar studies (Luo et al. 2020), attention analysis was per-
formed to study the “reasonableness” and increase the inter-
pretability of our model. An example of local attention anal-
ysis is shown in Figure 3, where we study whether adding
and removing medical codes that are known to be clinically
relevant indeed change the probability of becoming obese
or not. We analyze learned attention weights for one ran-
dom sample (having obesity) from the All of Us dataset.
For this case, we selected the visit with the highest atten-

tion weights and print the probability of the case being pos-
itive at different time points. We then remove several con-
ditions and medication codes one at a time and check how
the removal of the codes affects the probability of the case
being positive. We observe that by removing the ‘cardiovas-
cular finding’ and ‘disorder of endocrine system’ conditions
from this sample, the model’s estimate of predicting obesity
decreases. In adults, cardiometabolic comorbidities is often
associated with obesity (Alpert and Hashimi 1993; Isomaa
et al. 2001). On the contrary, when we remove the medica-
tion code ‘labetalol,’ which is a treatment for the conditions
‘cardiovascular finding,’ the probability of predicting obe-
sity increases. We have also performed a global attention
analysis, where we visualize the normalized attention scores
for all timestamps in the observation window of 3 yrs to pre-
dict the output for the next 7 yrs for all true positive samples.
As Figure 4 shows, higher attention is given to the times-
tamps at the start of the observation window in the All of
Us dataset, and towards the end of the observation window
in the pediatric dataset. This may be related to the fact that
the All of Us dataset contains mostly individuals above 40
yrs of age, where the progression of obesity is more gradual
as compared to the pediatric dataset, where obesity develops
rapidly due to more body changes (Ward et al. 2017).

Clinical Relevance and Deployment
Clinical implications of our proposed method can be signif-
icant and the technique is potentially applicable to a variety
of healthcare domains beyond obesity for both short- and
long-term predictions. Flexible-window prediction not only
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All of Us Nemours Pediatric
Prediction Male Female Male Female

Year AU- AU- AUPRC AU- AU- AUPRC AU- AU- AUPRC AU- AU- AUPRC
ROC PRC Baseline ROC PRC Baseline ROC PRC Baseline ROC PRC Baseline

4th 0.72 0.66 0.42 - - - 0.59 0.25 0.15 0.62 0.30 0.14
5th 0.70 0.66 0.43 - - - 0.56 0.23 0.15 0.59 0.30 0.17
6th 0.65 0.62 0.42 0.76 0.72 0.44 0.57 0.25 0.17 0.59 0.30 0.18
7th 0.68 0.64 0.40 0.72 0.68 0.45 0.58 0.28 0.18 0.55 0.30 0.20
8th 0.70 0.59 0.42 0.72 0.70 0.48 0.56 0.26 0.20 0.56 0.32 0.22
9th 0.78 0.64 0.31 0.74 0.77 0.50 0.56 0.29 0.22 0.53 0.30 0.23
10th 0.71 0.55 0.36 0.67 0.72 0.49 0.57 0.29 0.24 0.48 0.25 0.24

Table 4: Our model’s performance with a fixed observation window of 3 yrs and varying prediction windows of 4th to 10th yrs.

Codes in the visit with the highest attention Probability of predicting obesity

Conditions Medications
Cardiovascular finding

Digestive system finding
Disorder of digestive system
Disorder of endocrine system

EKG finding
Stomach finding
Weight finding

Carvedilol
Labetalol
Morphine

Oxycodone
Paracetamol

0.9498 0.9413 0.9414 0.9525

0.9499 0.9414 0.9415 0.9526

0.9500 0.9415 0.9416 0.9527

Remove
Cardiovascular 

finding

Remove
Disorder of
Endocrine 

system

Remove
labetalol

Figure 3: Attention analysis on one positive sample. Each
row of numbers on the right shows the predicted probability
of obesity. Removing the factors positively associated with
obesity (show in red), decreases the probability of obesity.
An opposite is seen when medication is removed (green).

Figure 4: Average global time attention scores for the 12
timestamps in the 3-yr observation window.

can reduce the needed resources for developing and main-
taining the predictive models (as it is trained once), but also
offers flexibility to the end-users to run the queries of inter-
est based on different lengths of available data. Short-term
predictions alert clinicians about the need to intervene more
quickly and with more intensive interventions. On the other
side, long-term predictions allow providers to intervene as
early as possible, increasing the likelihood of success.

We have started taking the necessary steps for deploy-
ing our models in actual clinical settings in Nemours Chil-
dren Health. These steps include performing a preliminary
outcome-action-pairing analysis based on the generated pre-
dictions of the model and studying the feasibility of the
needed interventions for different scenarios. We are also de-
veloping a clinical decision support tool prototype to iden-
tify the primary care patients at risk for the development

of obesity. This includes adding a small software module
to the providers’ dashboards, generating on-demand predic-
tions. While our model can be used to create the common
‘best practice alert’ popups, we avoided such design, due to
the concerns about the frequency of similar alerts in the clin-
ical settings. This step will focus on capturing the providers’
feedback, and in another similar thread, we are forming a
small patient engagement group to assess the patients’ view-
points on the relevance of the generated predictions. Another
remaining step relates to evaluating our models in a prospec-
tive (versus retrospective) setting. This step would be also
related to a golden last step before the system-wide deploy-
ment that involves a small clinical trial to evaluate the effec-
tiveness of the tool, by comparing the outcomes between a
small group of patients that the tool was used on them versus
the control group.

Conclusion
In this study, we presented a flexible-window model for
obtaining anytime predictions using EHR data. To ad-
dress EHR irregularities and missingness, we used a semi-
supervised and adversarial design to improve the model’s ef-
ficiency. Using two large EHR datasets from separate adult
and pediatric populations in a case study aimed at predicting
obesity, we showed that our proposed model outperforms
several other popular baselines. Due to the flexibility of our
model, it only needs to be trained once to then predict the de-
sired output labels for all timestamps. After the training and
during the deployment, the observation and prediction win-
dow can be set for any length and our model only looks at
the data from the timestamps in the observation window of
deployment data and then predicts the output label for each
timestamp in the prediction window. While other existing
methods are applicable to this problem, our method offers
a more natural and effective way to study chronic diseases,
where knowing the disease trajectories across various future
periods can inform earlier and more effective interventions.
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