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Abstract

Formal response organizations perform rapid damage assess-
ments after natural and human-induced disasters to measure
the extent of damage to infrastructures such as roads, bridges,
and buildings. This time-critical task, when performed using
traditional approaches such as experts surveying the disas-
ter areas, poses serious challenges and delays response. This
paper presents an AI-based system that leverages citizen sci-
ence to collect damage images reported on social media and
perform rapid damage assessment in real-time. Several image
processing models in the system tackle non-trivial challenges
posed by social media as a data source, such as high-volume
of redundant and irrelevant content. The system determines
the severity of damage using a state-of-the-art computer vi-
sion model. Together with a response organization in the US,
we deployed the system to identify damage reports during
a major real-world disaster. We observe that almost 42% of
the images are unique, 28% relevant, and more importantly,
only 10% of them contain either mild or severe damage. Ex-
perts from our partner organization provided feedback on the
system’s mistakes, which we used to perform additional ex-
periments to retrain the models. Consequently, the retrained
models based on expert feedback on the target domain data
helped us achieve significant performance improvements.

Introduction
At disaster onset, humanitarian organizations seek to assess
the impacts of the disaster. One crucial task that they per-
form is rapid damage assessment—preferably in the first 72
hours. The rapid damage assessment task is a prerequisite
of several response operations (FEMA 2021) and helps first
responders understand affected areas for planning immedi-
ate rescue and relief operations. Traditional damage assess-
ment methods require field assessments by experts who lo-
cate damaged infrastructure, interview people, and collect
other relevant data. These experts perform analysis and in-
terpretation of the gathered data before writing a report for
planners and decision-makers. However, this process is usu-
ally challenged by limited human resources and severe con-
ditions in the disaster area. These challenges disrupt data
collection, analysis, damage assessment, and consequently,
delay relief operations.
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The use of technology for rapid damage assessment in-
cludes remote sensing through synthetic aperture radar or
optical imagery (Plank 2014; Barrington et al. 2012; Pe-
saresi, Gerhardinger, and Haag 2007). However, these costly
data sources are time-consuming to deploy and collect rele-
vant data. Furthermore, satellite data is susceptible to noise
such as clouds, especially during weather-induced disas-
ters like hurricanes. This work employs non-traditional data
sources such as social networks to acquire citizen-generated
data during disasters in real-time to address the challenges
mentioned above. More specifically, as opposed to using tex-
tual content for damage detection (Kryvasheyeu et al. 2016),
we utilize imagery content shared during disaster events to
identify scenes that show damages.

Studies show that images shared on Twitter carry informa-
tion pertinent to damage detection and severity assessment
for humanitarian response (Alam, Ofli, and Imran 2018a).
Therefore, this paper presents an AI-based system, called
Rapid Damage Assessment (RDA)1, for real-time analysis
of images shared on Twitter during disasters. Specifically,
the system uses state-of-the-art computer vision models to
perform several image processing tasks. These include im-
age de-duplication, relevant image identification, and dam-
age severity assessment. To test the effectiveness and per-
formance of the damage severity assessment model, we de-
ployed the system during a real-world disaster with an emer-
gency response team. Specifically, we activated the RDA
system during 2019 Hurricane Dorian in collaboration with
Montgomery County, Maryland Community Emergency Re-
sponse Team (MCCERT). The activation focused on identi-
fying damage severity at three levels: (i) severe damage, (ii)
mild damage, and (iii) little-to-no damage (i.e., none).

Domain experts from our partner organization examined
the output of the system and provided two types of feed-
back. First, they verified the system’s output and reported if
a prediction was correct or not. Second, in case of an incor-
rect prediction, experts provided the correct label. Experts
feedback, i.e., the correct labels for images where the sys-
tem made mistakes, was used to retrain the damage assess-
ment model. We performed several experiments to show the
performance of our existing model when applied to the ex-
perts’ annotated test set. Moreover, new models are trained

1https://rda-aidr.qcri.org/hurricane dorian 2019.php
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with and without data augmentation strategies to demon-
strate their performance degradation due to shift in domain
distributions. The model trained to incorporate images anno-
tated by domain experts outperforms all other models, which
highlights the need and importance of the target domain
data. More details of the deployment in terms of different
kinds of mistakes that the experts identified, challenges that
the models faced, and potential directions to address those
challenges are described in (Imran et al. 2020).

Community Emergency Response Team
Community Emergency Response Teams (CERTs) offer a
consistent, nationwide approach to volunteer training that
professional responders can rely on during disaster situa-
tions (Gov. 2021). CERTs assist formal humanitarian or-
ganizations in a range of disaster response and manage-
ment tasks. For example, CERTs expand their team capa-
bilities to provide virtual assistance that includes social me-
dia analysis. Montgomery County, Maryland CERT applies
a methodological framework as described in (Peterson et al.
2019) when searching for mission-specific content extracted
from Twitter. This includes, but is not limited to, the follow-
ing tasks to find reports of damage:
1. Use hashtags and keywords to manually search for rele-

vant tweets, including tweets containing images showing
some degree of damage.

2. Analyze tweet text for pertinent cues that would qualify it
as valuable (e.g., context, location, user profile, etc.).

3. Download damage images into a team collaborative
working document and determine the applicability of
each image to the mission assignment.

4. Send summary-of-findings report, including appropriate
images, to the respective stakeholder (e.g., FEMA).

5. Repeat above steps throughout operational period.
The above-described methodological framework is effec-

tive for social media analysis during disasters, when the mis-
sion assignment is focused on text. For example, searching
tweets for information indicating road conditions within a
disaster-hit region. Most social media management tools that
Montgomery County, Maryland CERT has used lack the ca-
pability to retrieve only tweets containing disaster images.
This hinders mission assignments related to retrieving visual
data because of complex and time-consuming manual steps.
For example, first, each tweet would need to be individually
checked by a human to determine if an image was included.
Second, if the tweet did contain an image, and that image
was determined to be of value to the mission assignment, it
would need to be extracted and placed within a collaborative
document. Then, another human analyzes the kind of impact
shown in the image and determines the applicability to the
mission assignment.

Manual analysis of a high-volume data source such as
Twitter often leads to information overload (Hiltz and Plot-
nick 2013). Therefore, instead of following the above man-
ual steps, we used an automatic Twitter image collection and
processing system to find reports of damages caused by Hur-
ricane Dorian as it was progressing. Next, we describe the
details of the automatic processing system.

Figure 1: Annotation interface for both tasks

AI-based Damage Assessment System
Analyzing social media image streams in real-time is chal-
lenging due to overwhelming noise, redundant content, and
a high data rate. We built the Rapid Damage Assessment
(RDA) system with several computational components to
deal with the aforementioned challenges. RDA is a major
extension of our existing social media monitoring system,
called AIDR (Imran et al. 2014b). Next, we describe differ-
ent image processing components of the system.

RDA Image Processing Components
The RDA system relies on five components, including one
data collection and four data processing components.

Data Collector The Twitter streaming API is used to col-
lect real-time tweets during a disaster situation. More than
one data collector can be initiated to capture multiple dis-
aster streams simultaneously. Tweet collection match either
keywords/hashtags, geographical bounding boxes, or posts
from specific users—defined per disaster event basis.

Image URL Deduplicator Retweets and re-sharing on
Twitter produce redundant image URLs resulting in high
download time and potentially requiring ample storage. The
image URL deduplicator maintains a hash of unique URLs
through which duplicate links are detected. Specifically,
when a new image URL arrives, the system queries the hash
to determine whether it is a unique URL or not. This hash-
based search time-complexity is O(1), i.e., the search takes
constant time irrespective of the hash queue length. Finally,
images corresponding to the unique URLs are downloaded.

Image Deduplicator Images downloaded from unique
URLs may not be actually unique. Different URLs point-
ing to the same image, or an image that is cropped, resized,
or re-shared with additional text inserted are some poten-
tial causes of image-level duplication. Therefore, perform-
ing image-level de-duplication by comparing it with exist-
ing images is crucial. The image deduplicator module per-
forms this check by measuring the distance between a newly
collected image and all existing images using the Euclidean
distance on deep features extracted from images. The sys-
tem uses a deep neural network to extract image features
and keeps them in a hash. We use a fine-tuned VGG16
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Figure 2: Task description page with class definitions

model (Simonyan and Zisserman 2014) and extract features
from its penultimate fully-connected (i.e., “fc2”) layer. A
Euclidean distance less than 20 between the features of two
images is considered as the two images are duplicate or near-
duplicate. Determining an optimal distance threshold is an
empirical question, which is not the focus of this work. How-
ever, a distance of 20 worked best for our setting.

Junk Filtering Large quantities of noisy content, even
during disaster events, make it to Twitter. These irrele-
vant and noisy images usually contain cartoons, advertise-
ments, celebrities, and explicit content as trending hashtags
are often exploited for this purpose (Alam, Ofli, and Imran
2018a,b). Disaster decision-makers during response and re-
covery efforts have limited time. Therefore, identifying and
filtering irrelevant content from the system’s output is es-
sential. The junk filtering module detects irrelevant images
using a deep learning model trained to detect irrelevant con-
cepts such as cartoons, celebrities, banners, and advertise-
ments. The F1-score (i.e., the harmonic mean of the preci-
sion and recall) of this model is 98% (Nguyen et al. 2017).

Damage Severity Assessment Finally, images that are
unique and relevant are processed by the damage severity
assessment module, which determines the level of damage.
For this purpose, we fine-tune an existing VGG16 model
pre-trained on the ImageNet dataset. The fine-tuning of
the network is based on the damage-related labeled dataset
with three classes. The distribution of images across the
classes is: severe=11,510, mild=3,762, and none=10,548.
The severe damage class contains images that show fully
destroyed houses, buildings, bridges, etc. The mild damage
class contains images that show partially destroyed scenes
of houses, buildings, or transportation infrastructure. The
model is tested on a held-out test set (20%), and its per-
formance in terms of macro-precision, macro-recall, and

macro-F1 is 0.757, 0.728, and 0.737, respectively2.

Human-in-the-loop Automatic systems are not perfect
and make mistakes. It is essential to have human involve-
ment either to verify the produced results or provide super-
vision to the system if/when needed (Imran et al. 2014a).
Our system uses human-in-the-loop for both verification and
supervision purposes. Data items processed by the system
are used to take samples for humans to verify and guide
the system if a mistake is identified. Such mistakes could
be false positives or false negatives. Human-labeled items
would then be ideally fed back to the system for retraining
a new model for enhanced performance. To involve humans
in the verification and supervision process, we use our Mi-
croMappers crowdsourcing system (Lucas et al. 2014).

RDA Deployment for Hurricane Dorian
The RDA system was activated on August 30, 2019 when
Hurricane Dorian was a Category-2 storm barreling toward
the northern Bahaman Islands and central Florida. In the
next 24 hours, the tropical storm rapidly intensified and be-
came a potential danger. On September 1, it made landfall in
the Bahamas in Elbow Cay. On September 2, the hurricane
remained nearly stationary over the Bahamas as a Category-
5 storm. On September 3, the hurricane began weakening as
it started moving northwestward, parallel to the east coast
of Florida. The hurricane turned to the northeast the next
day and made landfall on Cape Hatteras with a Category-1
intensity on September 6. The keywords and hashtags used
for data collection included “HurricaneDorian, Dorian, Do-
rianAlert, PuertoRico, DorianMissing, DorianDeaths, Do-
rian Found, DorianFound”, among others.

Next, we set up our MicroMappers platform to involve hu-
mans in the verification and supervision processes. Images
classified by the system were sampled in batches. Prefer-
ably, images with severe and mild damage should be sam-
pled periodically due to two reasons. First, experts’ feed-
back on images from the positive classes is more valuable
for understanding the model’s weaknesses for the types of
images that matter to response organizations. Second, peri-
odic samples will help us get feedback on a diverse set of
images rather than those from a particular day or hour. The
sampling strategy ran every couple of hours during the op-
erational period for Montgomery County, Maryland CERT.
For most samples, severe damage and mild damage images
were selected, however, when they were not available we
also sampled images from none class.

Images in a varying time window of past N -hours formed
a sample set. We did not fix the number of hours, N , as
human processing speed depended on many unknown fac-
tors. The experts then examined sampled images for one
of the three damage levels described above. Images along
with system predictions were shown on a web interface for
experts’ evaluation. The experts either agreed or disagreed
with machine predictions. In case of disagreement, experts
were required to provide the correct label, as well. Figure 1
illustrates the annotation interface, which shows Damage,

2The weighted F1-score of the model is 0.83
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Date Images collected Unique Relevant Mild damage Severe damage
Aug 30, 2019 15,255 7,347 (48.16%) 3,591 (23.54%) 681 (4.46%) 295 (1.93%)
Aug 31, 2019 27,064 9,272 (34.26%) 5,819 (21.50%) 1,281 (4.73%) 549 (2.03%)

Sep 1, 2019 26,612 8,135 (30.57%) 5,804 (21.81%) 1,432 (5.38%) 587 (2.21%)
Sep 2, 2019 43,337 13,859 (31.98%) 9,936 (22.93%) 2,073 (4.78%) 870 (2.01%)
Sep 3, 2019 32,757 10,597 (32.35%) 8,661 (26.44%) 1,768 (5.4%) 1,052 (3.21%)
Sep 4, 2019 29,312 9,662 (32.96%) 8,371 (28.56%) 1,515 (5.17%) 1,033 (3.52%)
Sep 5, 2019 33,630 18,054 (53.68%) 10,018 (29.79%) 2,506 (7.45%) 1,354 (4.03%)
Sep 6, 2019 24,545 14,557 (59.31%) 7,864 (32.04%) 1,705 (6.95%) 1,484 (6.05%)
Sep 7, 2019 14,030 8,820 (62.87%) 4,685 (33.39%) 813 (5.79%) 881 (6.28%)
Sep 8, 2019 8,900 5,229 (58.75%) 3,768 (42.34%) 545 (6.12%) 704 (7.91%)
Sep 9, 2019 7,709 4,653 (60.36%) 3,068 (39.80%) 384 (4.98%) 706 (9.16%)

Sep 10, 2019 5,666 3,289 (58.05%) 2,110 (37.24%) 210 (3.71%) 439 (7.75%)
Sep 11, 2019 3,923 2,203 (56.16%) 1,379 (35.15%) 139 (3.54%) 334 (8.51%)
Sep 12, 2019 3,424 1,940 (56.66%) 1,233 (36.01%) 151 (4.41%) 441 (12.88%)
Sep 13, 2019 2,929 1,829 (62.44%) 974 (33.25%) 116 (3.96%) 246 (8.40%)
Sep 14, 2019 726 321 (44.21%) 299 (41.18%) 23 (3.17%) 69 (9.50%)

Total 279,819 119,767 (42.8%) 77,580 (27.73%) 15,342 (5.48%) 11,044 (3.95%)

Table 1: Daily distribution of images collected and identified as unique, relevant, and with mild or severe damage.

No Damage, and a Don’t know or can’t judge options. If an
expert selects the Damage label, the interface asks to select
one of two severity levels (Mild, Severe), shown on the right
side of the screen. Experts were allowed to provide addi-
tional comments using a text box on the interface.

In addition to the labeling interface, we established two
other pages, one for showing the task details (Figure 2) and
another for a detailed tutorial3 with concrete examples for
each class. Each human expert was instructed to go through
the tutorial before labeling.

Deployment Results
The joint activation of the RDA system started on August
30, 2019 and ran for almost two weeks. The system collected
6,890,106 tweets, out of which 280,063 unique image URLs
were obtained. The total number of downloaded images was
279,819. Around 244 images failed to download for various
reasons, such as the tweet author deleted the actual tweet, the
image host server was down, or the connection timed out.

Automatic Image Classification Results
RDA is a real-time image processing system, which pro-
cesses items as they are collected from Twitter. Images
downloaded from unique URLs are immediately fed to the
image deduplicator to ensure the newly captured images are
not duplicate of some previously captured images. The junk
filtering component then checks unique images. Finally, the
damage severity assessment component ingests unique and
potentially relevant images where damage severity is deter-
mined. Table 1 presents the daily distribution of collected
images and those which were identified as unique, relevant,
and containing mild or severe damage.

Throughout the activation period, the system captured and
analyzed 279,819 images. Out of which, 119,767 (42%)

3https://ibb.co/DztXbTy

Figure 3: Severe damage images found by the RDA system

were found as unique images by the image-based dedupli-
cation module. Due to the high retweet/re-sharing ratio on
Twitter, 58% of the images were identified as exact or near-
duplicate by the system even during a large-scale natural
disaster. At this stage, automatically filtering out duplicate
images has already substantially reduced the chance of in-
formation overload affecting human experts.

Furthermore, out of the 279,819 images, 77,580 (27%)
were identified as relevant by the system. These images do
not contain cartoons, celebrities, banners, advertisements,
etc. Among the relevant images, some contained damage
scenes while others did not.

Around 26,386 (10%) images were identified as contain-
ing some damage where 11,044 (4%) contained severe and
15,342 (6%) mild damage. Filtering out ∼90% of the im-
ages as potentially not containing any damage content by
the system is a significant reduction in the risk of informa-
tion overload for humans. Figure 3 shows example images
with severe damage while Figure 4 with mild damage.
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Figure 4: Mild damage images found by the RDA system

N=28,050
Machine

Damage No Damage

Human
Damage 7.44% 2.54%

No Damage 21.23% 68.79%

Table 2: Damage detection task confusion matrix—system
vs. human judgments

N=28,050
Machine

Severe Mild None

Human

Severe 2.53% 1.37% 1.27%

Mild 0.40% 3.14% 1.27%

None 2.57% 18.66% 68.79%

Table 3: Damage severity assessment task confusion
matrix—system vs. human judgments

Human Verification and Image Labeling Results
In total, 28 experts from the response organization exam-
ined the evolving samples taken from the system processed
image stream over 42 hours from 8pm on September 6 to
2pm on September 8. Since our annotators are trained emer-
gency managers, we trusted their judgments without asking
multiple assessors. However, at the end of the operational
period, the team lead of the experts reviewed about 2,000 of
the completed tasks for quality assurance.

Table 2 reports results of the first task (i.e., damage detec-
tion). The experts verified and provided their feedback for
29,136 images. Recall, these images were initially processed
by the system and contained scenes of both damage and
no damage. Moreover, an image with damage content is la-
beled with one of three damage severity levels (severe, mild,
none). In total, 1,086 images were considered “Don’t know
or can’t judge” by the experts due to several reasons, includ-
ing blurred/low-quality images, close-up shots, too dark/s-
mall, or an image containing text. Out of the remaining im-
ages (i.e., 28,050), the experts agreed with the system pre-
dictions for 21,384 images. We show the details of experts’
agreement and disagreement with the system in Table 2. We
observed that in 2,088 (7.44%) cases, both system and hu-

man agreed that the images show damage, and for 19,296
(68.79%) cases, no damage is visible. Nonetheless, the ex-
perts did not agree with the system predictions for 6,666 im-
ages (∼25%). The RDA system yields an accuracy of 76%
based on the experts’ analysis.

For the damage severity task that determines level of dam-
age severity in an image, we show results in Table 3. In terms
of experts’ agreement with the system, we observed that for
20,887 images, experts agreed with the system predictions.
However, there are 7,163 images where experts disagreed
with the system prediction for a particular severity level.
Based on the human analysis, the RDA system yields an ac-
curacy of 74% in this task.

Retraining Models Using Expert Annotations
Prior studies report model inefficiencies when applied in the
wild. Several reasons could potentially harm models’ per-
formance, including differences in the data distributions of
source and target domains. Although the damage severity
assessment model used in this activation was trained on so-
cial media images from past disasters, quantifying its per-
formance in different evaluation metrics (e.g., F1-score) is
essential to understand potential weaknesses in the target
domain (i.e., Hurricane Dorian). Moreover, as the annota-
tions obtained from experts constitute a precious dataset that
strictly follows the definition of damage and its severity lev-
els, we sought to determine performance gains by retraining
our existing model with the expert annotations.

To this end, the expert annotations (i.e., 28,050 images)
are divided into train, development, and test sets with 70%,
10%, and 20% ratios, respectively. Table 5 shows the distri-
bution of expert annotations into three sets. Next, we per-
form four types of experiments. Since our existing model
was trained without using any data augmentation strategies,
we designed two new experiments that ignore data augmen-
tation to make the obtained results directly comparable with
the existing results. However, two additional experiments
are designed to use data augmentation strategies as they tend
to positively impact models’ performance.

Table 4 reports results from four models trained using dif-
ferent training sets. We used a combination of old (Oldtrain)
and new (HDoriantrain) data, and trained models with and
without data augmentation. We tested all four models on
the new test set (HDoriantest). Not surprisingly, Model-
1, which is trained on old train set without data augmen-
tation, yields low performance (i.e., F1=0.570) when ap-
plied on the new Hurricane Dorian test set. Next, Model-2 is
trained using the old training set but with data augmentation.
Strangely, the data augmentation did not help, and conse-
quently, the model’s performance dropped (i.e., F1=0.547).

To determine whether the new training set from Hurri-
cane Dorian deployment has any positive impact on model
performance, next we train two new models using both old
and new training sets. Model-3 is trained without data aug-
mentation whereas Model-4 uses data augmentation. Again,
both models are tested on the same Hurricane Dorian test set.
Even though no data augmentation was used for Model-3,
it clearly shows substantial improvement over Model-1 and
Model-2. Furthermore, Model-4 outperforms all other mod-
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Models Data Aug. Training set Test set Macro-Prec. Macro-Rec. Macro-F1

Model 1 No Oldtrain HDoriantest 0.526 0.684 0.570
Model 2 Yes Oldtrain HDoriantest 0.510 0.650 0.547
Model 3 No Oldtrain +HDoriantrain HDoriantest 0.669 0.691 0.678
Model 4 Yes Oldtrain +HDoriantrain HDoriantest 0.716 0.721 0.718

Table 4: Results obtained from four models trained with and without Hurricane Dorian training set (i.e., HDoriantrain) and
data augmentation. All four models are tested on Hurricane Dorian test set (i.e., HDoriantest).

Class Train Dev Test Total

Severe 1,016 148 287 1,451
Mild 944 138 267 1,349
None 17,675 2,575 5,000 25,250

Total 19,635 2,861 5,554 28,050

Table 5: Data splits of Hurricane Dorian annotated images.

els and achieves a plausible macro F1-score of 0.718. These
experiments evidently show that the training data from the
target event helps minimize discrepancies between source
and target domain distributions. Moreover, closing the loop
by using expert feedback to retrain the system is important
from the emergency managers’ point of view to use a better
model during future disasters.

Related Work
The importance of imagery content for disaster response has
been reported in a number of studies (Turker and San 2004;
Chen et al. 2013; Plank 2014; Feng et al. 2014; Fernan-
dez Galarreta, Kerle, and Gerke 2015; Attari et al. 2017;
Erdelj and Natalizio 2016; Ofli et al. 2016). These studies
dominantly analyze aerial and satellite imagery data. For
instance, (Turker and San 2004) analyze post-earthquake
aerial images to detect damaged infrastructure caused by
the August 1999 Izmit earthquake in Turkey. Another study
provides a comprehensive overview of multi-temporal Syn-
thetic Aperture Radar procedures for damage assessment
and highlights the advantages of SAR compared to the opti-
cal sensors (Plank 2014).

On the other hand, there are studies that report the im-
portance of images captured by Unmanned Aerial Vehicles
(UAV) for damage assessment while highlighting the limi-
tations of remote sensing data (Fernandez Galarreta, Kerle,
and Gerke 2015; Attari et al. 2017). These studies propose
per-building damage scores by analyzing multi-perspective,
overlapping and high-resolution oblique images obtained
from UAVs. In (Ofli et al. 2016), the authors also highlight
the importance of UAV images while addressing the limi-
tations of satellite images, and propose a methodology that
enables volunteers to annotate aerial images, which is then
combined with machine learning classifiers to tag images
with damage categories.

Very recently, the study of social media image analy-
sis for disaster response has received attention from the re-
search community (Daly and Thom 2016; Mouzannar, Rizk,

and Awad 2018; Alam, Ofli, and Imran 2018b). For exam-
ple, researchers analyze images extracted from social media
data collected during a fire event (Daly and Thom 2016).
Specifically, they analyze spatio-temporal meta-data associ-
ated with the images and suggest that geo-tagged informa-
tion is useful to locate the fire-affected areas. Another study
investigates damage detection by focusing on human and en-
vironmental damages (Mouzannar, Rizk, and Awad 2018).
The study includes collecting multimodal social media posts
and labeling them with six categories such as (1) infrastruc-
tural damage (e.g., damaged buildings, wrecked cars, and
destroyed bridges) (2) damage to natural landscape (e.g.,
landslides, avalanches, and falling trees) (3) fires (e.g., wild-
fires and building fires) (4) floods (e.g., city, urban and rural)
(5) human injuries and deaths, and (6) no damage.

While many of the past works on rapid damage assess-
ment need expensive data sources, some of which are also
time consuming to deploy such as UAVs, satellites, our work
highlights the usefulness of Twitter images and utilizes an
image processing pipeline proposed in (Nguyen et al. 2017).
The RDA system filters irrelevant content, removes dupli-
cates, and assesses damage severity for real-time damage
assessment using deep learning techniques.

Conclusions
Information about the impacts, particularly damages, caused
by a disaster event is essential for response organizations’
timely actions. Rapid damage assessment is a crucial task
that formal response organizations perform through field as-
sessments and remote sensing methods. Research studies
demonstrate that citizen-reported data as text messages and
images on social networking platforms contain valuable in-
formation about situational awareness and disaster impacts.
This work presented RDA, a system to perform rapid dam-
age assessment from Twitter image streams. Together with
a response organization, we deployed RDA during a real-
world disaster (i.e., Hurricane Dorian) where human ex-
perts examined the system’s output and provided feedback.
In addition to reporting the system’s performance during
the activation, we performed several experiments to quan-
tify the strengths and weaknesses of our damage assessment
model on a test set formed from experts labels. Moreover,
we trained several damage assessment models using a com-
bination of old and new training images and data augmenta-
tion variations. The results obtained from the model that was
trained on combined training data with augmentation outper-
formed all existing models. This highlights the importance
of target domain data for training more robust models.
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