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Abstract

In recent years, companies in the Architecture, Engineering,
and Construction (AEC) industry have started exploring how
artificial intelligence (AI) can reduce time-consuming and
repetitive tasks. One use case that can benefit from the adop-
tion of AI is the determination of quantities in floor plans.
This information is required for several planning and con-
struction steps. Currently, the task requires companies to in-
vest a significant amount of manual effort. Either digital floor
plans are not available for existing buildings, or the formats
cannot be processed due to lack of standardization. In this
paper, we therefore propose a human-in-the-loop approach
for the detection and classification of symbols in floor plans.
The developed system calculates a measure of uncertainty for
each detected symbol which is used to acquire the knowledge
of human experts for those symbols that are difficult to clas-
sify. We evaluate our approach with a real-world dataset pro-
vided by an industry partner and find that the selective acqui-
sition of human expert knowledge enhances the model’s per-
formance by up to 12.9%—resulting in an overall prediction
accuracy of 92.1% on average. We further design a pipeline
for the generation of synthetic training data that allows the
systems to be adapted to new construction projects with min-
imal manual effort. Overall, our work supports professionals
in the AEC industry on their journey to the data-driven gen-
eration of business value.

Introduction
Over the last few years, many companies in the Architecture,
Engineering, and Construction (AEC) industry have started
exploring how artificial intelligence (AI) can be used to im-
prove work processes. However, so far, only a few medium-
and large enterprises have utilized AI, and even fewer have
managed to turn their data into actual business value (Blanco
et al. 2018). At the moment, one of the most promising ap-
plications of AI is its use in augmenting the capabilities
of employees by simplifying time-intensive and repetitive
tasks. The idea is to employ AI to allow their employees to
focus on other value-added activities—often those requiring
human creativity (Dellermann et al. 2019).

The preliminary material take-off of construction
projects, which is required to ensure efficient project
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execution, has high potential to benefit from the adoption of
AI. For example, AI systems can be used to support humans
in determining the bill of materials (BOM) required in all
construction projects—a process also referred to as quantity
determination. The goal of quantity determination is to cal-
culate the actual and target quantities of products required
for a project in accordance with the structure of the BOM
(i.e., the relevant components). This task has widespread
implications for several phases of the construction process.
First, even before a contract is signed, a BOM is drawn up to
document the required work, which affects the planning and
scheduling of companies in the offering process. Second,
the work preparation of the construction company—often
conducted separately for different trades—requires the or-
dering of the correct quantities, which might have changed
in the meantime. Third, for the billing, the actually executed
quantities have to be determined—which once again might
deviate from the target quantities.

Even though digital representations of buildings are in-
creasingly being utilized today, they are far from common
practice as the majority of the existing building stock is not
represented in a digital format. Available data formats are
often not compatible with one another due to the industry’s
high levels of technical fragmentation. Thus, companies are
required to invest manual effort into counting relevant sym-
bols in floor plans for the use case of quantity determination.
This time-consuming task prevents domain experts from ap-
plying their scarce resources to other aspects of the construc-
tion process. To support domain experts with the determina-
tion of quantities for relevant symbols in the scope of BOM,
we propose a human-in-the-loop system that allows compa-
nies to utilize semi-automatic floor plan analysis. The sys-
tem relies on three components.

First, we train a model to detect symbols in floor plans
based on Faster R-CNN architecture (Ren et al. 2017). The
model’s pyramid network including the classifier and bound-
ing box regression heads are extended to a model ensemble
to infer uncertainty estimates associated with the output of
the classification for each symbol detected in the floor plan
(Lakshminarayanan, Pritzel, and Blundell 2017). This en-
ables the model to quantify which symbols are difficult to
classify to seek for human assistance.

Second, symbols that are determined to have a high level
of classification uncertainty are deferred to a human expert
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for revision to minimize the number of incorrectly detected
or classified symbols. We present the detection results to do-
main experts in a so-called Gallery View sorted by descend-
ing uncertainty scores or grouped by predicted classes. The
idea is to allow human experts to seamlessly correct misclas-
sified symbols based on the classes present in the floor plans’
legends which are automatically extracted when uploading
the floor plans of a new construction project. Grouping the
detected symbols by classes accelerates the identification of
incorrectly classified symbols. In this context, we conduct a
simulation study to analyze the effectiveness of several mea-
sures for uncertainty quantification that determine which in-
stances are deferred to human experts. We find that nearly all
considered uncertainty measures outperform random acqui-
sition of human expert knowledge. In general, the acquisi-
tion of human expert knowledge results in an improved per-
formance of up to 12.9% corresponding to an overall system
accuracy of 92.1%.

Third, we develop an approach that avoids extensive data
labeling. This is particularly important as the system’s adop-
tion to new symbols or different construction projects likely
requires different symbols to be detected. We reduce the re-
liance on manual labeling by training the model with syn-
thetically generated floor plan data. This works by asking
the user to highlight the required symbols on the floor plans’
legend which are automatically extracted. We further extract
the corresponding name of each symbol (i. e. , its label) by
applying optical character recognition on the legend. The
symbols are then positioned in various angles with different
brightness, color, and contrast on background images from a
set of reference backgrounds generated by domain experts.
Thereby, our approach generates labeled training data with-
out explicitly requiring labeling effort.

To summarize, our contribution is threefold. We propose
a human-in-the-loop system that leverages human-AI col-
laboration in the scope of quantity determination for BOM
in the AEC industry. We demonstrate with a technical ex-
periment how selectively acquiring domain experts’ knowl-
edge can considerably improve the overall system perfor-
mance while reducing the required manual effort. As exist-
ing work analyzing floor plans focuses mainly on residen-
tial construction, to the best of our knowledge, we are the
first to extend AI for quantity determination to more com-
plex large-scale construction plans. Lastly, we address the
low level of standardization in the AEC industry by utilizing
synthetically generated training data to allow the system to
be conveniently adapted to different construction projects.

Related Work
In the following, we elaborate on relevant work regarding
the utilization of AI in the context of floor plans and the
application of human-in-the-loop systems in general.

Computer Vision in Floor Plans
Computer vision was recently leveraged in several studies
to detect and classify symbols in floor plans. In this context,
research developed models to detect several classes of furni-
ture symbols, e.g., doors and tables in living units of residen-
tial buildings (e.g., Goyal et al. 2019, Rezvanifar, Cote, and

Albu 2020, Ziran and Marinai 2018). Another stream of lit-
erature combines the detection of furniture symbols in floor
plans with image captioning to generate textual descriptions
of detected symbols in corresponding rooms of living units
(Goyal, Chattopadhyay, and Bhatnagar 2021). A third field
in prior literature developed models to segment architecture
and furniture symbols in floor plans (e.g., Dong et al. 2021,
Zhu et al. 2020). In this context, Fan et al. (2021) propose
a single approach to both detect and segment furniture sym-
bols in residential buildings. Compared to prior literature,
we specifically design our model to detect professional and
more complex symbols in floor plans based on real-world
data from large industrial buildings. Furthermore, we ac-
count for real-world applicability by developing a human-
in-the-loop system to acquire human expert knowledge in
situations in which our model is uncertain about a specific
prediction.

Applications of Human-in-the-Loop Systems
In machine learning research, human-in-the-loop systems
have emerged as a viable means to acquire human knowl-
edge in situations when the model indicates an increased
uncertainty for the prediction of a specific instance (e.g.,
Amershi et al. 2014, Grønsund and Aanestad 2020). There-
fore, human-in-the-loop systems constitute a critical com-
ponent of deployed machine learning applications in do-
mains where highly accurate model predictions are essential,
e.g., in medicine (e.g., Budd, Robinson, and Kainz 2021,
Holzinger 2016). In such complex settings, human expert
knowledge is usually cost-intensive. Hence, instances that
require human expertise should be selected carefully to limit
the overall costs (e.g., Hemmer, Kühl, and Schöffer 2022,
Jakubik et al. 2022). Due to the inherent complexity of
the construction industry and the significance of highly ac-
curate predictions, human-in-the-loop systems were previ-
ously leveraged in this domain (e.g., Karim et al. 2021). In
this study, we extend the usage of human-in-the-loop sys-
tems to the detection of symbols in real-world floor plans of
large-scale construction projects.

Approach
In the following, we outline our approach, which consists of
a pipeline for synthetic data generation, the object detection
model architecture, and the human-in-the-loop system. The
latter is built on top of our model to acquire human expert
knowledge. Figure 1 displays an overview of the entire pro-
cess pipeline.

New
floor plan

Symbol
selection

Synthetic
images

Fine-
tuning Prediction User

review

Synthetic data generation Object detection model HITL system

Figure 1: The pipeline of the deployed application. Our ap-
proach includes fine-tuning to detect symbols in new con-
struction projects based on synthetic data, the object detec-
tion model, and the human-in-the-loop system (HITL).

12525



Synthetic Data Generation
The availability of large amounts of labeled data is crucial
for the success of deep learning models in computer vi-
sion However, as the generation of manually labeled data
is cost-intensive and the use of real-world data can lead
to privacy issues, the use of synthetically generated data is
prevalent in recent literature (e.g., Hinterstoisser et al. 2018,
Nikolenko 2021). For object detection, a composition-based
approach is increasingly gaining traction, in which cropped
foreground symbols are positioned on different backgrounds
(e.g., Dwibedi, Misra, and Hebert 2017). We follow this ap-
proach and extend it to the construction domain by extract-
ing symbols and their class label based on optical character
recognition methods (Smith 2007) from the legend of the
floor plans (see Figure 1). The extracted symbols are then
positioned on a set of empty reference background images
generated by domain experts. We further employ the follow-
ing additional data augmentation techniques on the training
data aiming at increasing the robustness of the synthetically
generated data as proposed in recent literature (Dwibedi,
Misra, and Hebert 2017). Symbols are rotated between 0
and 359 degrees with an angle drawn from a discrete uni-
form distribution φ ∼ U(0, 359) before being positioned on
the background. Moreover, blurring based on three differ-
ent filters is applied to the symbols. The probability for the
choice of a specific filter is given by ψ ∼ U(0, 2) drawn
from a discrete uniform distribution before being positioned
on the background. Lastly, modifications in terms of bright-
ness, color, contrast, and sharpness are performed on the
composed plans with an intensity drawn from a continuous
uniform distribution ρ ∼ U(0.5, 1.5). With our synthetic
data generation pipeline, we overcome the problem of in-
sufficient available floor plan training data. Our approach
allows us to create an arbitrary number of synthetic plans
for model training while bypassing costly manual labeling.
Moreover, it can be easily transferred to new floor plans with
different symbols.

Object Detection Model
Following recent literature in the field of object detection
in floor plans (e.g., Goyal et al. 2019, Ziran and Marinai
2018), we employ the Faster-RCNN architecture as the ba-
sis for the symbol detection pipeline (Ren et al. 2017). Addi-
tionally, we leverage the concept of deep ensembles to infer
uncertainty estimates for each identified symbol. This tech-
nique has been demonstrated to generate not only high qual-
ity but also calibrated predictive uncertainty estimates (Lak-
shminarayanan, Pritzel, and Blundell 2017) that are used to
decide which symbols are deferred to a human expert for
subsequent revision in the human-in-the-loop system. Be-
sides the possibility to generate high quality prediction un-
certainty estimates, prior research has demonstrated the abil-
ity of ensembles to positively contribute to improved model
performance (e.g., Kuncheva and Whitaker 2003). Addition-
ally, we benchmark the performance of the described object
detection model against a standard Faster-RCNN object de-
tector that does not leverage uncertainty estimation (Soft-
max) and the approach of inferring uncertainty estimates
through Monte-Carlo Dropout (Gal and Ghahramani 2016).

In detail, we incorporate an ensemble of the feature pyra-
mid network including both the classifier and bounding box
regression heads that consists of five separate models respec-
tively. For each ensemble, the model predictions (i.e., confi-
dence scores of the classifier and bounding box coordinates
of the regression) are calculated separately. The predictions
are then averaged over all ensembles, while the spread of the
predictions implicitly indicates the uncertainty.

Human-in-the-Loop System
Our human-in-the-loop system is tailored to iteratively
present instances with uncertain prediction outcome to-
gether with their predicted classes to a human expert. There-
fore, our approach does not only acquire human expert
knowledge but also interacts with the human expert by sug-
gesting a predicted class.

In case, that the predicted class does not match the ground
truth class, the human expert corrects the model prediction
by discriminating the ground truth from the predicted class.
This has shown to be an effective approach in recent litera-
ture (e.g., Liu et al. 2013, Wang et al. 2016). Central to the
human-in-the-loop system is (1) the meaningful selection of
instances and (2) the sequence in which they are queried to a
human expert to acquire knowledge. We address both chal-
lenges with so-called instance selection mechanisms. Each
mechanism includes a specific acquisition function a(·) to
measure the model uncertainty. Based on the model uncer-
tainty, the mechanism selects the instance with the maxi-
mum uncertainty and passes this instance to the human ex-
pert. Specifically, we select an instance x? to be labeled next
by the human expert by maximizing the acquisition func-
tion x? = argmaxx a(x). In our experiments, we study
the effects of a range of acquisition functions on the over-
all model performance. We introduce the utilized acquisi-
tion functions in Table 1, where P(y = c|x) denotes a like-
lihood model over the set of classes c ∈ C. Note that we re-
sort to the ground truth labels for the symbols passed to the
human expert during the human-in-the-loop system evalua-
tion. This is in line with real-world quantity determination
where a very high labeling quality is required to precisely
estimate costs. Furthermore, only detected symbols can be
presented to the human, whereas undetected symbols remain
incorrectly classified as background in our simulations.

Experimental Setup
In the following, we describe our experimental setup. We in-
troduce the dataset, the evaluation metrics, and provide de-
tails on our implementation.

Data
Our experiments are based on a real-world industry dataset
that was gathered by an industry partner and labeled by nine
domain experts over the span of three weeks. The dataset
consists of 44 two-dimensional floor plans with symbols
from a total of 39 different classes. The domain experts an-
notated a total of 5,907 symbols in the floor plans. In gen-
eral, the classes are construction project-specific depending
on the corresponding legend included in floor plans. We
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Selection Description
Mechanism

UPPER BOUND AND BASELINE
- Oracle Select the instance that accelerates overall

model accuracy most strongly
- Random Select a random instance

UNCERTAINTY MEASURES
- Margin Select the instance with the smallest margin

between first and second prediction:
a(x) = −(P(y = c1(x)|x)

−P(y = c2(x)|x))
with ci being the class with i-th highest con-
fidence of x

- Confidence Select the instance with the lowest confi-
dence:
a(x) = −maxcP(y = c|x)

- Entropy Select the instance with the highest entropy:
a(x) = H[y|x]

= −
∑

c P(y = c|x) log(P(y = c|x))

- BALD Select the instance with Bayesian Active
Learning by Disagreement (BALD) (Houlsby
et al. 2011):
a(x) = H[y|x]− Ep(ω)[H[y|x, ω]]
with ω denoting a model in the ensemble

- Mean Std. Select the instance with the highest standard
deviation averaged over all classes:
a(x) = 1

|C|
∑

c

√
V arω[P(y = c|x, ω)]

with ω denoting a model in the ensemble

- Var. Ratio Select the instance with the highest ratio
of ensemble predictions not being the mode
class (Gal, Islam, and Ghahramani 2017):
a(x) = 1−maxyP(y|x)

Table 1: Instance selection mechanisms for the human-in-
the-loop system evaluated in this study.

present a small excerpt of one of the floor plans in Figure 2.
We use these floor plans as the test set. By leveraging our
synthetic data generation pipeline, we generate 20,000 syn-
thetic images, which we use for training and validation.

Metrics
We evaluate our system in two stages, with the object de-
tection model in stage 1 and the human-in-the-loop system
in stage 2. Following common practice, our object detec-
tion model is evaluated based on the mean Average Preci-
sion (mAP). We set an intersection-over-union (IoU) thresh-
old of 0.5 for the Average Precision (AP) computation as in
the PASCAL VOC Challenge (Everingham et al. 2015). The
mAP metric then refers to the averaged AP calculated for
each class, that is quantifying the area under the precision-
recall curve. For details on the calculations of the mAP, we
refer to Everingham and Winn (2011). In the second stage,
we evaluate the human-in-the-loop system. Note that our
human-in-the-loop system is tailored to the classification of

Figure 2: Small excerpt from a real-world floor plan.

detected regions of interest. As the detection of symbols it-
self is not corrected in our system, the recall will not change
significantly, which implies that mAP would not adequately
represent the performance of the human-in-the-loop system.
Therefore, we measure the performance of the human-in-
the-loop system with classification accuracy. This metric
refers to the percentage of correct predictions given the num-
ber of detected and undetected symbols.

Implementation Details
We use the 20,000 synthetically generated images and as-
sign 14,000 to the training set and 6,000 to the validation
set. The images have a resolution of 1,024×1,024 pixels.
We evaluate the model performance on the real-world floor
plans. As their resolution is larger than 1,024×1,024 pixels,
we cut each plan into individual overlapping images, each
with a resolution of 1,024×1,024 pixels. As a result, we ob-
tain 3,995 floor plan crops for the evaluation (i. e. , test data).
The model is trained for 500 epochs with Stochastic Gradi-
ent Descent as optimizer while performing early stopping
on the validation set. We train the model with a learning rate
of 0.001 and use a ResNet-50 as the model backbone. For
further details on the Faster-RCNN architecture, we refer to
Ren et al. (2017).

Experimental Results
In this section, we first present the performance of our ob-
ject detection model on the real-world industry dataset. Sec-
ond, we show how the acquired human expert knowledge
enhances the overall model performance.

Evaluation of Object Detection Model
Overall, the object detection model achieves high perfor-
mance in both the detection of symbols and the subse-
quent classification of detected symbols. This is indicated
by a mAP score of 82.7% for a given IoU threshold of
0.5. The corresponding interpolated precision-recall curve
in Figure 3 represents the trade-off between the precision
and recall for different levels of model confidence (i. e. ,
confidence thresholds). Moreover, we compare our deep
ensemble-based model with a standard Faster R-CNN (Soft-
max) and one that infers uncertainty estimates through
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Monte-Carlo Dropout (Gal and Ghahramani 2016) (see Fig-
ure 3). In line with prior literature on classification (Laksh-
minarayanan, Pritzel, and Blundell 2017), deep ensembles
yield the best performance. Due to space constraints, we
refrain from reporting results on Monte-Carlo Dropout and
Softmax uncertainty calculations in the following sections.
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Softmax (mAP = 71.9%)
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Deep Ensemble (mAP = 82.7%)

Figure 3: Interpolated precision-recall curve of the object
detection models over the set of classes (IoU threshold: 0.5).

Evaluation of Human-in-the-Loop System
In the following, we present the results of our model when
acquiring human expert knowledge with the human-in-the-
loop system. For this, our model calculates uncertainty
scores for all detected and subsequently classified symbols.
The model then presents the detected symbols given a de-
scending uncertainty score to the human expert. By correct-
ing the symbols in descending order proposed by our sys-
tem, the accuracy finally increases by 12.9% to 92.1% as
displayed in Table 2. The accuracy difference to 100% can
be attributed to the symbols remaining undetected by the
model. In this context, budget refers to the deferred share
of detected symbols per floor plan. For a labeling budget of
100%, the resulting performance is independent of the in-
stance selection mechanism. Furthermore, the evaluation in
Table 2 demonstrates that the increase is primarily driven by
the correction of background areas incorrectly detected as
symbols which has a larger impact on precision compared
to recall. On average, the model detects 14.7 (i. e. , 10.7% of
the detected objects) background areas as symbols per floor
plan compared to 3.4 incorrectly classified symbols (2.5%)
and 119.7 correct predictions (86.9%).

Our results further suggest that all evaluated instance se-
lection mechanisms support the overall model performance.
The detailed performances of the mechanisms are presented
in Figure 4 and Table 3, where the accuracy is evaluated over
the percentage of detected symbols per floor plan that are de-
ferred to the human expert. Our simulation indicates that all
evaluated selections mechanisms, except for Variation Ra-
tio (Var. Ratio), outperform random selection (e. g. , 2.5%
to 3.0% higher accuracy at 50% budget for all mechanisms
except Variation Ratio). For a limited labeling budget, these
mechanisms attain similar performances. With an increasing
budget, BALD and Mean Standard Deviation (Mean Std.)

achieve a slightly better performance than the remaining
mechanisms. However, these differences are subject to un-
certainty. Given a higher labeling budget above 75%, Varia-
tion Ratio has a similar performance as the other methods.

Lastly, the results indicate different capabilities of mech-
anisms to identify misclassified background objects or in-
correctly classified symbols, as the latter has a particular in-
fluence on the recall. Variation Ratio is the only selection
mechanism that outperforms random selection on recall at
50% Budget by a large margin. Thus, in contrast to the re-
maining mechanisms, Variation Ratio enhances the identi-
fication of incorrectly classified symbols compared to mis-
classified background objects.

Metric 0% Budget 100% Budget

Accuracy 81.6 92.1
Precision 88.1 100.0
Recall 90.3 92.1

Table 2: Averaged results (in %) from 44 floor plans without
and with full acquisition of human expert knowledge.
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Figure 4: Experimental results for the human-in-the-loop
system. Budget refers to the proportion of detected symbols
that are deferred to the human expert. The accuracy is aver-
aged over 44 floor plans and visualized with the variance.

Implications for Practitioners
Our work includes several implications for the development
and application of real-world object detection models and
human-in-the-loop systems. First, our evaluation suggests
that, apart from one exception, all consulted acquisitions
of human expert knowledge support the model in classify-
ing detected symbols. Second, for varying levels of labeling
budget, we observe differences in the performance of the in-
stance selection mechanisms with different effects on pre-
cision and recall. Therefore, our work informs practitioners
about the meaningful choice of the instance selection mech-
anism. Third, our work demonstrates that object detection
can successfully be leveraged in complex construction set-
tings of large-scale projects. Furthermore, synthetic training
data can be a suitable means to reduce intensive labeling
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Selection Accuracy at Precision at Recall at
Mechanism 50% Budget 50% Budget 50% Budget

UPPER BOUND AND BASELINE
- Oracle 92.1 100.0 92.1
- Random 86.6 94.1 91.0

UNCERTAINTY MEASURES
- Margin 88.9 96.4 90.9
- Confidence 88.9 96.4 90.9
- Entropy 88.8 96.3 90.9
- BALD 89.2 96.7 91.1
- Mean Std. 89.1 96.6 91.0
- Var. Ratio 86.3 93.4 91.5

Table 3: Averaged results (in %) from 44 floor plans with
50% budget for the acquisition of human expert knowledge.

efforts while achieving remarkable performance results on
real-world floor plans. Nevertheless, as with any other re-
search, our work is not free of limitations as it builds upon a
specific object detection model (i. e. , Faster R-CNN) which
requires fine-tuning for the detection of additional symbols.
Therefore, practitioners should take into consideration that
the model needs to be customized to specific symbols in
real-world settings. Thus, we particularly incorporate the
generation of synthetic training data in our approach, such
that the model adoption can be executed automatically.

Path to Deployment
We developed our approach for object detection in floor
plans towards real-world application with a focus on the
acquisition of human expert knowledge through interaction
mechanisms. For the design of the mechanisms, we identi-
fied and incorporated specific industry needs by involving
a large-scale construction partner (Drees & Sommer) in the
development process right from the beginning of our work.
The overall design of the interaction mechanisms aims at
providing guidance during the process of correcting mis-
classified symbols to ensure that domain experts see merit
in including our application in their daily business. Specif-
ically, we developed two interaction mechanisms which are
depicted in Figure 5. That is, (a) the Gallery View which
aims at correcting misclassifications (see Figure 5a) and (b)
the Plan View that allows to correct errors in the detection
of our model (see Figure 5b). The Gallery View visualizes
classifications with uncertain prediction outcomes. Here, we
utilize our acquisition functions to measure the model confi-
dence and sort the detections accordingly. Thus, the goal of
the first mechanism is to identify and correct symbols that
were incorrectly classified into another class. In contrast, in
the Plan View, human experts are guided throughout the plan
to draw bounding boxes for symbols that the model did not
detect in the first place. Note that this interaction mechanism
is necessary to achieve an overall classification accuracy of
100%, as the Gallery View only allows to correct symbols
that were previously detected. Undetected symbols are not
part of the Gallery View and, therefore, require the human
expert to inspect the floor plan for undetected symbols. As

a next step, we will deploy our application prototype on-site
at the case company to evaluate both mechanisms with end
users as part of the human-centered development of our ap-
plication. More specifically, we aim at analyzing the overall
impact of our application in real-world usage regarding time
savings and costs. The ongoing evaluation of the interaction
mechanisms in daily business is therefore subject to future
research on human-AI collaboration.

(a) Gallery View

(b) Plan View

Figure 5: Interaction mechanisms for human-AI collabora-
tion on the task of quantity determination.

Conclusion
In this paper, we propose a human-in-the-loop system for
object detection in the context of quantity determination in
the AEC industry. The model acquires human expert knowl-
edge for detected symbols which are characterized by high
prediction uncertainty resulting in considerable performance
improvements in terms of accuracy.

We further account for the real-world applicability of our
approach by proposing a pipeline for the generation of syn-
thetic training data to reduce costs and effort for manual la-
beling. Thus, our work is tailored to supporting practitioners
in the AEC industry to generate data-driven business value.
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