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Abstract

More than US$ 27 billion is estimated to have been paid-out
in farm support in USA alone since 1991 in response to cli-
mate change impacts on agriculture, with costs likely con-
tinuing to rise. With the wider adoption of precision agri-
culture – an agriculture management strategy that involves
gathering, processing and analyzing temporal, spatial and in-
dividual data – in both developed and developing countries,
there is an increasing opportunity to harness accumulating,
shareable, big data using artificial intelligence (AI) meth-
ods, collected from weather stations, field sensor networks,
Internet-of-Things devices, unmanned aerial vehicles, and
Earth observational satellites. This requires smart algorithms
tailored to agricultural data types, integrated into digital so-
lutions that are viable, flexible, and scalable for wide deploy-
ment for a wide variety of agricultural users and decision-
makers. We discuss a novel AI approach that addresses the
real-world problem of developing a viable solution for re-
liably, timely, and cost-effectively forecasting crop status
across large agricultural regions using Earth observational in-
formation in near-real-time. Our approach is based on extract-
ing time-conditioned topological features which characterize
complex spatio-temporal dependencies between crop produc-
tion regions and integrating such topological signatures into
Long Short Term Memory (LSTM). We discuss utility and
limitations of the resulting zigzag persistence-based LSTM
(ZZTop-LSTM) as a new tool for developing more informed
crop insurance rate-making and accurate tracking of changing
risk exposures and vulnerabilities within insurance risk areas.

Introduction
Accurate crop monitoring and forecasting is crucial for en-
suring food security and sustainable development. Agri-
cultural landscapes are highly exposed to extreme weather
events attributed to climate change that are becoming more
frequent and intense such as flooding, heatwaves, and pro-
longed drought. Such events, coupled with underlying cli-
mate change trends, disrupt socio-environmental systems,
which alters nutrient and water availability, invasive and
beneficial pest populations, and soil microbe biodiversity.
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Crop growth is influenced by genotypes, weather dynam-
ics, soil properties as well as agronomic management, that
is, a wide variety of interdependent factors whose sophisti-
cated spatio-temporal dynamics often cannot be jointly ad-
dressed with more traditional methods. In turn, artificial in-
telligence (AI) approaches, including deep learning (DL)
tools, have a potential to more accurately capture such socio-
environmental dependence patterns. The AI implementa-
tions based on DL are increasingly widely applied in agricul-
ture alongside the broader use of diverse data from mobile
and fixed field sensor networks, smartphone and internet-
of-things (IoT) devices for planting, monitoring, assess-
ing, protecting, and harvesting crops and livestock. For in-
stance, such recent studies include DL for cropland classifi-
cation (Jia et al. 2019), crop growth stage estimation (Wor-
rall, Rangarajan, and Judge 2021), analysis of yield expec-
tations (Shoshi et al. 2021), and agricultural commodity
prices (Guo, Woodruff, and Yadav 2020). van Klompenburg,
Kassahun, and Catal (2020) provide a detailed review of ma-
chine learning (ML) in crop yield prediction.

Furthermore, the emerging concept of smart farming
utilizes AI to analyze information collected with sensors,
drones and satellites to improve agricultural production and
management. This automation system must consider varia-
tion in both environmental conditions and crop features to
make timely and robust decisions. Meteorological informa-
tion is often summarized in indices such as growing de-
gree days (GDD) and heating degree days (HDD), which
show strong predictive power in crop yield studies (Jiang
et al. 2019; Zhu, Porth, and Tan 2019). There are also
weather index derivatives traded in some exchanges as well
as over-the-counter markets. The Chicago Mercantile Ex-
change (CME) provides standardized weather futures con-
tracts since 1999 and now extends to nine US cities, two
European cities, and one Japanese city based on weather in-
dexes such as heating degree days (HDDs), cooling degree
days (CDDs) and cumulative average temperature (CAT)1.
With these financial instruments, insurance companies can
potentially hedge climate change and extreme weather risks,
which facilitates further development of index-based agri-
cultural insurance products. Indeed, crop yield data collected

1CME Group https://www.cmegroup.com/trading/weather/
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through, and at the end of a growing season, traditionally
has been collected using farm surveys that are expensive,
labour intensive, yet prone to substantial measurement er-
ror, including overestimation bias. The availability of satel-
lite imagery is cost efficient, of high spatial and temporal
resolution, and standardized with higher objectivity being
less dependent on reporting error and biases. Widely applied
satellite-based remote sensing indices include normalized
difference vegetation index (NDVI) (Quarmby et al. 1993),
green chlorophyll vegetation index (GCVI) (Lobell et al.
2015), and normalized difference water index (NDWI) (Satir
and Berberoglu 2016). Such indices provide regular (i.e.,
near-real-time, NRT) information on soil and crop vegeta-
tion status across large agricultural regions, and are used
to assess crop status/condition, and to predict actual crop
yield or as a yield proxy (Lobell et al. 2015). High qual-
ity data from weather and climate monitoring stations, field
sensors and geospatial imagery obtained from Earth-orbiting
satellites, provide a basis for improving crop monitoring
and forecasting, and in turn, improving the robustness, ef-
fectiveness, and reliability of crop surveillance, irrigation,
protection, and insurance programs. Moreover, payoffs of
index products are more flexible, objective, and consistent
than traditional approaches because they are based on the
actual observation or realization of weather variables, e.g.,
rainfall and temperature driving changes in crop condition
and yield. Traditional individual crop insurance policies are
based on the reported crop production loss, which involves
severe moral hazard, adverse selection as well as consid-
erable costs for on-field verification of reported estimates
and administration (Boyd et al. 2019). These benefits both
for farmers and insurance companies have led to an increas-
ing proliferation of index products in agricultural insurance,
and the design of new weather indices and related insurance
products plays a key role at the current nexus of digital agri-
culture and agricultural insurance. As result, precision agri-
culture and digital agriculture insurance are anticipated to
substantially expand in the near future (see, for example,
most recent 2021 the U.S. Department of Agriculture’s Na-
tional Institute of Food and Agriculture (USDA-NIFA) and
the U.S. National Science Foundation (NSF) joint initiative
for investing $220 million to 11 new NSF-led AI Research
Institutes (USDA-NIFA 2021)). As such, we expect to see
such AI tools to be more widely-adopted by farmers in mon-
itoring and managing their crops.

In this paper we bridge the gap between DL and index-
based agricultural insurance, that is, the area where DL tools
have never been applied before. In particular, we discuss
utility and limitations of DL, integrated with time-aware
topological information on weather indices, to predict fu-
ture crop yields. Our key modeling engine is the family of
Long Short Term Memory (LSTM) networks, which is a
special kind of recurrent neural networks (RNNs) for se-
quential data processing. LSTM solves vanishing long-term
gradient problem by self-loops controlling flows of long du-
ration. Since weather indices and, as a result, crop yields
exhibit highly non-trivial nonseparable spatio-temporal de-
pendence structure (by non-separability here we mean that
spatial dependence among two locations depends on time,
and vice versa), conventional (geo)statistical and ML ap-
proaches based on Euclidean distances might not adequately

reflect the underlying hidden mechanisms behind formation
and dynamics of crop status. To address this challenge, we
introduce topological data analysis (TDA) and, in particular,
time-aware topological signatures of weather indices con-
structed based on the tools of zigzag persistence to DL mod-
els for spatio-temporal evolution of crop yields. This allows
us to simultaneously extract most salient shape properties
of weather indices and crop yields which are invariant un-
der continuous transformations such as twisting, bending,
and compressing and which tend to consistently manifest
over time and space resolutions. Despite its recent success
in various domains neither TDA, nor zigzag persistence has
ever been applied to agricultural studies or insurance anal-
ysis. We validate the proposed approach, namely, zigzag
persistence-based LSTM (ZZTop-LSTM), in application to
crop yield forecasting in Manitoba, Canada. Our experi-
ments indicate that ZZTop-LSTM can deliver improved ac-
curacy in forecasting crop vegetation status (i.e., crop condi-
tion) using satellite-based indices and shows promise in suc-
cessfully accounting for higher-order interaction between
crop yields, weather indices, and soil types (i.e., latent in-
formation which is not part of the model input). However,
as most DL tools, ZZTop-LSTM tends to require longer ob-
servational samples compared to simpler models as decision
trees. Overall, we find that upon securing a sufficiently long
observational records, ZZTop-LSTM offers a promising di-
rection for developing a more cost-effective, timely and ac-
curate way to forecast crop status or condition across large
agricultural regions, as a part of digital tools in agricultural
insurance.

Related Work
Convolutional neural networks have been used to analyze
more expensive locally sensed data by unmanned aerial
vehicles (UAVs) (Nevavuori, Narra, and Lipping 2019) as
well as less costly and globally accessible remote sensing
data (Khaki, Pham, and Wang 2021) in agriculture. Fur-
thermore, techniques such as Gaussian Process (You et al.
2017), transfer learning (Wang et al. 2018), and attention
mechanisms (Lin et al. 2020) have been recently utilized to
improve crop yield prediction accuracy and the associated
model explainability. For instance, Jiang et al. (2019) re-
port that 76% of heterogeneous regional variability of corn
yield can be explained by RNN-LSTM model, outperform-
ing both LASSO and RF approaches for least end-of-the-
season yield estimation. Although there are many studies
using ML in the agricultural insurance context, there yet ex-
ists none exploring integration of DL along with TDA for
modeling complex relationships between crop yield and en-
vironmental variables.

Background
Topological Data Analysis and Zigzag Persistence TDA
and, in particular, persistent homology (PH) assesses evolu-
tion of various shape patterns in the collected data as we vary
a user-selected (dis)similarity threshold. By shape here we
understand data properties which are invariant under contin-
uous transformations. In case of point clouds in R, as in our
case, we start from constructing a distance graph based on
the observed set and some suitable similarity measure.
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Let G = (V,E, ω) be a representation of the dataset as
the distance graph, where V is a node set, E is an edge
set, and ω is an edge weight based on the user-selected
(dis)similarity measure. Given an increasing sequence of
(dis)similarity thresholds ε1 < ε2 < · · · < εn, we build
a nested filtration of distance graphs such that G1 ⊂ G2 ⊂
· · · ⊂ Gn = G. By equipping each distance graph with a
combinatorial structure of abstract simplicial complex, we
then count which topological patterns (e.g., connected com-
ponents and 1-dimensional holes) appear and disappear as
threshold ε changes, as well as record their lifespans. Topo-
logical features with longer lifespan are said to persist and
are likely to contain valuable information on higher order in-
teractions in the observed data. In turn, topological features
with shorter lifespans are referred to as topological noise. As
abstract simplicial complex, here we select a Vietoris-Rips
(VR) complex due to its computational efficiency.

To extract topological signatures that manifest themselves
over time, we can use the notion of zigzag persistence
based on the quiver theory (Carlsson and de Silva 2010).
Despite its promise for tracking time-dependent topologi-
cal properties, applications of zigzag persistence not only
in spatio-temporal processes but generally, in any domain
beyond mathematics are yet nascent (Adams and Carlsson
2015; Chowdhury, Dai, and Mémoli 2018; Kim, Mémoli,
and Smith 2020; Chen, Segovia-Dominguez, and Gel 2021).
The key idea behind zigzag persistence is to set a threshold
ε and then to consider a time-ordered sequence of simpli-
cial complexes · · · → V R(Gi−1 ∪ Gi, ε) ← V R(Gi, ε) →
V R(Gi ∪ Gi+1, ε) ← V R(Gi+1, ε) → . . . , where arrows
correspond to addition or deletion of simplices indexed by
time. That is, armed with the zigzag diagram, we can now
track which topological features tend to persistently mani-
fest over the sequence of time-ordered snapshots of the data,
where each snapshot i is associated with V R(Gi), i ∈ Z+

Topological signatures produced via zigzag persistence pro-
vide an alternative view of inherent time-conditioned shape
characteristics of the process.

Lower panel of Figure 1 depicts a toy example of ap-
plying zigzag persistence on a dynamic network. Barcodes
in the center and bottom diagrams trace dynamics of topo-
logical structures. Bottom barcode-diagram shows one long
connected component, i.e. 0-dimensional feature, lasting for
the whole time period, except at time t = 3 when the net-
work splits into two connected components. Center barcode-
diagram depicts the lifespan of holes, i.e. 1-dimensional fea-
tures. The dynamic network mainly has two holes which
appear and disappear at different timestamps. Notice that
zigzag persistence homology tracks disappearance of lower
hole at time t = 3 and posterior reappearance at time t > 5.

Long Short-Term Memory Networks LSTM consists of
a chain like structure with repeating modules, where each
unit is composed of a cell ct and three transition func-
tions, namely, input gate it, output gate ot and forget gate
ft. The following equations present a forward pass it =
σi(Wi · [ht−1, xt] + bi), ot = σo(Wo · [ht−1, xt] + bo),ft =
σf (Wf · [ht−1, xt] + bf ), gt = σg(Wg · [ht−1, xt] + bg),
ct = ft ◦ ct−1 + it ◦ gt, ht = ot ◦ tanh ct, where activation
functions σ’s introduce non-linearity to the linear forms of
output vector from previous hidden layer ht−1 and current
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Figure 1: Architecture of ZZTop-LSTM.

input data xt. We update cell state ct by forgetting part of
previous memory and adding new information gt. Cell in-
formation passes next LSTM unit through output gate.

Proposed Framework: ZZTop-LSTM
Our proposed Zigzag Persistence-based LSTM framework,
ZZTop-LSTM, models the spatio-temporal dynamics of
crop yields and introduces time-aware topological signa-
tures of weather variables yielded by zigzag persistence, as
complementary information into the LSTM model.

Forecasting Problem To predict yield and crop growth,
we aim to discover hidden relationships in the data by
inferring spatial and temporal patterns simultaneously. In
this paper, we learn a function F(·) that maps histori-
cal data Xt−p, . . . , Xt−1 and geographical dynamic infor-
mation Gt−p, . . . , Gt−1 to future responses Yt, . . . , Yt+h.
We represent connection among locations, at time t, as a
weighted undirected graphGt = (V,E, ωt), where V andE
are the node set, respectively, and ωt is an adjacency matrix
with entries ωij

t > 0. Here, p represents the windows size
of historical signals and graphs, whilst h is the time ahead
horizon.

Dynamic Network and Features Extraction Let Z =
{Zijt : i = 1, . . . , n; j = 1, . . . ,m; t = 1, . . . , T} be a
multivariate time series of m weather variables over n lo-
cations of interest and time points t. We build a sequence
of weighed undirected graphs Gt = (V,E,wt), where wt :
E → R>0 defines time varying edge weights based on dis-
similarity measures of weather variables Zt. Connectivity of
each graph is constructed in such a way that extracts essen-
tial spatio-temporal dependence structures at each week. For
instance, municipalities in the same neighbourhood tend to
be influenced by local weather events. Hence, we use ge-
ographic distance base on latitude & longitude via haver-
sine formula (Winarno, Hadikurniawati, and Rosso 2017),
and normalized Euclidean distance between weather vari-
ables to select edges in each network and assign its weights;
where quantile-based parameter γ controls the number of
edges. Hence, low values of γ help to reduce the compu-
tational burden of generating too many topological struc-
tures. Since we consider a sliding window approach, zigzag
persistence is calculated on simplicial complexes of net-
works in the time window of size p via VR constructions,
V R(Gtk , ε) → V R(Gtk , Gtk+1

, ε) ← V R(Gtk+1
, ε) →

· · · ← V R(Gtk+p
, ε), which can be presented by barcode
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plots and persistence diagram. Our feature extraction mod-
ule computes summary statistics of birth, death and lifespan
of zigzag barcodes at 0 and 1 dimensional features. As a
result, we extend the concept of total persistence (Carrière
et al. 2020) to the domain of zigzag persistence.
Capturing Temporal Dependencies LSTM is a standard
tool to model temporal dependencies of multivariate time
series with DL. Although LSTM is well suited to track a
temporal structure of sequential features (Yu et al. 2019), the
default LSTM architecture is not constructed to capture spa-
tial information. Our proposed ZZTop-LSTM framework
addresses this gap and introduces topological spatial infor-
mation along with raw weather variables into LSTM. That
is, the input series Xt consist of lagged weather variables
Zt as well as topological features Ut generated from corre-
sponding window climatic dynamic networks {Gt} with ge-
ographic connectivity constraints. Figure 1 shows a graph-
ical representation of the main modules in our proposed
ZZTop-LSTM framework. First, multivariate time series are
used to construct a dynamic network. Second, we compute
the zigzag persistence on the sequence of networks and ex-
tract summary statistics from zigzag barcodes. Third, agri-
culture monitoring variables, i.e. NDVI, weather variables
and topological summaries serves as input to a series of
three-stack LSTM layers. Finally, we obtain a weekly fore-
casting of NDVI values on each municipality of Manitoba.
Therefore, ZZTop-LSTM complements conventional agri-
culture monitoring information with distinctive and persis-
tent topological signatures, in order to introduce higher-
order dependency properties which are otherwise inacces-
sible with conventional methods.
Computational Complexity To calculate the computational
complexity of ZZTop-LSTM, we analyze the two main al-
gorithmic components: Zigzag persistence and the LSTM
architecture. Extraction of topological summaries from at-
mospheric variables depends upon applying a filtration func-
tion on simplicial complexes of time series of graphs. Let η
be the number of simplices in the complex, and λ be the size
of the largest simplicial complex. Current Zigzag persistence
computation requires O(λ2) memory space and the compu-
tational time complexity is O(ηλ2) (Carlsson, de Silva, and
Morozov 2009). We alleviate the computational complex-
ity through controlling the sparsity of graphs as described
above. On the other hand, LSTM has time complexity per
time step and weight O(1), hence, its complexity is O(τω),
where ω and τ are the numbers of weights and time steps, re-
spectively (Hochreiter and Schmidhuber 1997). Hence, the
resulting total complexity of ZZTop-LSTM is calculated as
the sum of Zigzag and LSTM complexities asO(ηλ2+τω).

Experimental Results
Canadian Data Normalized difference vegetation index
(NDVI) is widely used in agriculture literature, which re-
flects green plant coverage and health via plant photo-
synthetic activity. Green plants absorb photosynthetically
active radiation (400-700 nm wavelengths) while re-emit
near-infrared spectral region radiation (700–1300 nm wave-
lengths). Time-series data of normalized difference vegeta-
tion index (NDVI) derived from MODIS (Moderate Reso-
lution Imaging Spectroradiometer) satellite imagery at the

250m resolution were acquired (Statistics Canada). The
MODIS sensor’s red and NIR channel ranges are 630–670
nm and 841–876 nm, respectively, and lie within the red
and NIR spectrum bands of 600–700 nm and 700–1300
nm indicated earlier. The NDVI data is quality-controlled
weekly data (i.e., 7-day composites, Monday to Sunday)
during 2000–2018 (i.e., 19 growing seasons) from April to
mid-October (or Julian weeks 14 (April 9–15) through week
41 (October 8–14)). The aggregation into weekly compos-
ites reduces error due to cloudy days among other error
corrections required for the satellite imagery. A boundary
file (LCSD00a16a ESRI shapefile) available from Statistics
Canada is used to delineate the municipalities (counties) as
census subdivisions. Centroids of each municipality (i.e.,
shapefile polygon) are references to obtain values of the cli-
mate variables for each region.

Daily climate data for the Province of Manitoba, Canada,
were acquired from Daymet (https://daymet.ornl.gov/), pro-
viding spatially-interpolated estimates of daily maximum
and minimum temperatures (◦C), and precipitation (mm) at
1 km spatial grid resolution. Daily maximum and minimum
temperatures are aggregated into weekly means, and daily
precipitation is aggregated into weekly total precipitation, to
correspond to the weekly timescale of the NDVI.

Experimental Settings ZZTop-LSTM is compared with
the LSTM baseline model without topological signatures as
well as statistical and ML methods which are currently the
accepted benchmarks in agricultural practice, i.e., least ab-
solute shrinkage and selection operator (LASSO), support
vector regression with radial basis function kernel (SVR),
and decision tree (DT) (You et al. 2017; Lin et al. 2020;
Porth et al. 2020; Khaki, Pham, and Wang 2021). We use
standard root mean square error (RMSE) and mean absolute
error (MAE) as the main evaluation metrics in agriculture.

For the studied historical panel data (2000-2018), the last
four years observations are reserved as test set. Since weeks
in the crop growing seasons (14th week to 36th week) are
of interest, the target is to predict 92 weeks ahead based
on a month history information by setting number of lags
p = 4. Zigzag persistence homology is computed from dy-
namic networks with time varying weights and connectivity
over 37 municipalities of interest. We calculate topological
signatures in the 434 sliding windows of size 4. Note that
zigzag persistence homology is a pairwise operation and we
can extract topological features from windows with arbitrary
size over the same zigzag persistence of the whole time pe-
riod. Hence, the input of training set contains 250 observa-
tions of four lagged sequences of underlying weather vari-
ables and topological summary statistics over the four-week
window while output is corresponding a vector for 37 mu-
nicipalities four years later.

Our zigzag persistence computations are based on Diony-
sus, which provides implementations of various persis-
tent homology concepts2. Deep learning models are imple-
mented in TensorFlow via Keras and those conventional ap-
proaches are developed with the scikit-learn library. Our
source codes and datasets are online3.

2Dionysus 2 https://mrzv.org/software/dionysus2/
3https://github.com/paper-code21
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Model parameters The architecture of our LSTM model
consists of three stacked LSTM layers with 256, 128 and
128 units, and a densely connected layer 37 outputs for con-
sidered municipalities or rural municipalities of Manitoba
province, Canada. The input matrix consists of 4 weeks of
weather variables and topological features aggregated, based
on a sliding window. Zigzag persistence is determined from
dynamic networks of the aggregated 4-week intervals of
weather variables for each municipality with a connectiv-
ity threshold of 2/3. Topological features include summary
statistics of barcodes on both ends of the sliding window
in addition to those conventional topological signatures in
general persistence homology analysis, which reflect some
informative between-window dynamics of topological struc-
ture besides within-window characteristics. We used a 20%
dropout probability to avoid overfitting, training the model
using 8000 epochs and an early stopping condition of 800
epochs. Model performance is measured on the 92 weeks
test set (growing seasons in 2015-2018).

Results Model validation statistics are summarized in Ta-
ble 2 for a 4-year forecast window, 2015-2018 based on
10 runs due to randomness from initialization and dropout
technique of deep model. The ZZTop-LSTMmodel reduces
both the mean and variance in prediction error (i.e., lower
RMSE and MAE), outperforming the LSTM model at sig-
nificance level 10% and 5% (one-sided t-test), respectively.
ZZTop-LSTM also improves over all other competitors cur-
rently accepted in agricultural practice.

The municipality-scale model comparison results
are presented in Figure 2-Top. Overall, ZZTop-LSTM
tends to consistently outperform all other benchmarks.
ZZTop-LSTM is worse at the significance level of 10%
than the baseline LSTM only in 3 counties (see Table 1). For
conventional ML algorithms, SVR tends to be outperformed
by ZZTop-LSTM at statistically significant level in all
counties, and comparing to LASSO and decision trees,
ZZTop-LSTM yields statistically significant improvement
in the majority of counties, though spatial distribution of
the results is more mixed. Gains in model accuracy for
municipalities that contain very strongly to extremely cal-
careous (EC) parent matter (Figure 2-Bottom) are apparent.
This needs to be further investigated. It is well known
that calcareous soils have a high potential for crop yield
increases (and high crop status) where adequate water and
nutrients are available, so crop condition in such regions
may be more resilient to weather and climate variability.

ZZTop-LSTM versus
Significance LSTM SVR LASSO DT
Improve at < 1% (∗∗∗) 12 36 23 18
Improve at 1% − 5% (∗∗) 5 1 0 1
Improve at 5% − 10% (∗∗) 2 0 2 1
Improve at > 10% 9 0 2 4
Decline at > 10% 7 0 2 2
Decline at 5% − 10% (∗) 3 0 0 0
Decline at 1% − 5% (∗∗) 0 0 1 1
Decline at < 1% (∗∗∗) 0 0 7 10

Table 1: Number of municipalities in which an improvemen-
t/decline is found using ZZTop-LSTM vs. its competitors.

Model RMSE MAE
ZZTop-LSTM 0.1482 ± 0.0017 0.1142 ± 0.0014

Competitors
SVR-RBF 0.2034∗∗∗ 0.1736∗∗∗

LASSO 0.1561∗∗∗ 0.1243∗∗∗

Decision Tree 0.1519∗∗ 0.1156∗∗

LSTM 0.1508∗ ± 0.0019 0.1170∗∗ ± 0.0016

Table 2: Validation statistics for benchmark and our
ZZTop-LSTM, based on 4-year prediction window (2015-
2018). Training data comprised 15 years starting from 2000.

Utility and Limitations
The topological LSTM approach is especially useful for de-
ploying as a tool for forecasting crop status and yield. It of-
fers a flexible method whereby assumptions regarding spa-
tial dependencies, essential variables, different forecast win-
dows and scenarios can be evaluated using big data stream-
ing in from weather/climate stations, weather forecasts, and
remote-sensing satellite data. Data at the field scale, in ad-
dition to the regional-scale, could also be potentially inte-
grated from crop monitoring (e.g., drone imagery). While
the current findings are promising, generalization of the new
topological-based DL approach for operational crop yield
forecasting and the associated insurance premium analysis
require data from more regions and years for more compre-
hensive evaluation of all advantages and limitations, partic-
ularly, space-time uncertainty quantification of the derived
forecasts. Also, additional explanatory variables (i.e. predic-
tors of crop status and yield) need to be incorporated into the
current model relating crop health and growth to environ-
mental factors, such as soil water drainage, and important
chemical and physical properties of different soil types. A
well-drained soil retains water long enough for roots to ab-
sorb what the plant needs, and dries out sufficiently between
rains or waterings so that roots can take up oxygen during
high levels of soil moisture. Multiple interacting chemical,
biological, and physical factors affect soil fertility, crop sta-
tus and resultant crop yield. For example, soils can become
acidic through rainfall and leaching, acidic parent material,
organic matter decay, and harvest of high-yielding crops.
Geospatial data for expanding the current study to include
other important predictors is available through the Canadian
Soil Information Service (CanSIS) as an authoritative source
of soil data and land resource information for Canada.

Path to Deployment
The Government of Canada (Agriculture and Agri-Food
Canada (AAFC) and Statistics Canada, StatCan) have devel-
oped and deployed a model-based, operational framework
for forecasting the yield of major crops across Canada’s agri-
cultural area at a regional scale. This framework currently
integrates weather, climate, and remote-sensing (i.e., EO)
information (Newlands et al. 2014) and uses the Random
Forest (i.e. decision tree) algorithm within a Bayesian mod-
eling framework to forecast end-of-season crop yield. There
is a critical need to improve the accuracy of such yield es-
timates and to extend the forecast window beyond a single
growing season. Our findings reported here demonstrate that
ZZTop-LSTM and, more generally, topologically-enhanced
DL could improve yield estimation, compared to currently
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Figure 2: [Top] Regional-scale performance of Topological LSTM with respect to benchmarks. Improvements from Topological
LSTM are shown in green, while declines are shown in red. Municipalities with no data are indicated as NA. The color bar on
the right presents levels of significance. [Bottom] General physical and chemical characteristics for all of the soils identified in
Manitoba’s geographic region. Left. Soil drainage. Level: Very rapidly (VR), Rapidly (R), Well (W), Moderately well (MW),
Imperfectly (I), Poorly (P), Very poorly (VP), Not applicable (-). Center. Water. Level: Always (YB), Growing season (YG),
Non growing season (YN), Unspecified period (YU), Never (NO), Not applicable (-). Right. Parent material chemical property.
Level: Undifferentiated (UD), Extremely / Strongly Acidic (EA), Medium Acid to Neutral (AN), Weakly Calcareous (WC),
Moderately / Very Strongly Calcareous (VC), Extremely Calcareous (EC), Calcareous and Saline (SA), Not Applicable (-)

deployed methodology, while also providing 4-year look-
ahead forecasts (with associated uncertainty) for guiding
agricultural policy and insurance rate-making decision mak-
ing under climate change. By incorporating spatial and tem-
poral dependency between crops and their environment, the
exposure and vulnerability of different crops to extreme
weather and a changing climate conditions can be better rep-
resented and accounted for. Future work will seek to further
validate and evaluate the Topological LSTM method within
the existing Canadian Crop Yield Forecaster (CCYF) oper-
ational forecasting framework. The path to deployment will
require several key steps: 1) validation using multi-spectral
satellite indices and optimization for different crop types, 2)
integrating Canada’s crop inventory geospatial data provid-
ing high-resolution delineation of crop types over time, 3)
uncertainty quantification and its impact on forecasting un-
der different simulated extreme weather events and future
climate scenarios, 4) integration of model-based weather
forecast scenario output available out to 14 days (open data
provided by Canadian Meteorological Service (MSC) of En-
vironment and Climate Change Canada, ECCC), and 5) ac-
tuarial rate-making analysis to evaluate pricing mechanisms
and risk premium payouts. In the future, it could become the
method deployed in this national operational tool used by
agricultural stakeholders (e.g., farmers, crop advisors, pol-
icy analysts, crop insurers/re-insurers). More generally, for
better implementation, it is important to coordinate efforts
among all stakeholders, i.e., insurance and reinsurance com-
panies, agriculture departments and regulatory bodies, as
well as institutions collecting and distributing weather and

climate data. This pilot project is the first step of the broader
AAFC research initiative to unify such efforts.

Conclusions
Our findings for wheat in Canada (Manitoba), support those
highlighted by Jiang et al. (2019) on the potential of an
LSTM approach as a methodology for operational prediction
of regional-scale crop yield. Scaling up the current study by
applying ZZTop-LSTM in Canada using a larger data set
would enable expanded training and validation of this ap-
proach. This is similar to the data requirements of other DL
methods for scaling up. The ZZTop-LSTMmodel generates
greater accuracy estimating crop status but with less vari-
ance. This has implications for crop insurance, as it offers
reduced variance in estimating crop status and end-of-season
yield. This, in turn, reduces basis risk in crop insurance,
thereby offering a more reliable estimate of a farmer’s actual
crop losses in weather- and/or NDVI-based index insurance
schemes. Indeed, more accurate pricing resulting from DL
tools similar to ZZTop-LSTM facilitates low sum insured
and low rate products with online purchase and automatic
settlement, especially for small size farms, hence, promot-
ing regional economic development, especially, in develop-
ing countries.
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