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Abstract

Driver’s anxiety about the remaining driving range of elec-
tric vehicles (EVs) has been quite improved by mounting
a high-capacity battery pack. However, when EVs need to
be charged, the drivers still feel uncomfortable if inaccurate
range prediction is provided because the inaccuracy makes it
difficult to decide when and where to charge EV. In this pa-
per, to mitigate the EV range anxiety, a new machine learn-
ing (ML) method to enhance range prediction accuracy is
proposed in a practical way. For continuously obtaining the
recent traffic conditions ahead, input features indicating the
near-future vehicle dynamics are connected to a long short-
term memory (LSTM) network, which can consecutively uti-
lize a relation of neighboring data, and then the output fea-
tures of the LSTM network with another input features con-
sisting of energy-related vehicle system states become an-
other input layer for deep learning network (DNN). The pro-
posed LSTM-DNN mixture model is trained by exploiting the
driving data of about 160, 000 km and the following test per-
formance shows that the model retains the range prediction
accuracy of 2 ∼ 3 km in a time window of 40 min. The test
results indicate that the LSTM-DNN range prediction model
is able to make a far-sighted range prediction while consider-
ing varying map and traffic information to a destination.

Introduction
For internal combustion engine (ICE)-powered vehicles
there are lots of gas stations throughout the country and the
ICE vehicle owners can fill fuels easily and rapidly. How-
ever, easygoing refueling is a different story to electric ve-
hicles since there is still a lack of charging stations and
it takes a long time to charge. Concerns for EV charging
schedule still make customers uneasy when considering pur-
chasing an electric vehicle. A part of the concerns, generally
known as range anxieties, has been quite improved and the
recently released EVs can drive longer distances on a single
full charge when compared to the initial stage of EV sales
because car makers have extended the range by equipping
their EVs with larger battery packages (Rauh, Franke, and
Krems 2015; Viola 2021; Cheah 2021).

Even though the extended EV range decreases multiple
errands for EV to find charging stations and accordingly
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decreases the number of feeling anxious for EV range, the
range anxiety of whenever EV needs to be charged gets no
better (Kollias and Gollapudi 2021; Rosenberg 2021). Be-
fore moving on to a destination, EV owners generally have
to consider charging-related issues about the current battery
state of charge (SOC), if there exist charging stations on the
expected route, or if a battery charger is available in the des-
tination, etc. There are two kinds of approaches to relax the
charging-related concerns: building additional charging sta-
tions nationwide and providing accurate battery SOC and its
driving range so that EV drivers are able to plan charging
sensibly.

In general, the ordinary EVs display a metric related
to the residual driving range named a distance to empty
(DTE), remaining distance, remaining driving range, etc.
The research for EV range prediction has been studied by
considering physics-based modeling and test-based perfor-
mance map (Ferreira, Monteiro, and Afonso 2013; Oliva,
Weihrauch, and Bertram 2013; Miri, Fotouhi, and Ewin
2021) as well as by utilizing regression-based parameters
estimation and machine learning techniques (Bi et al. 2018;
Ondruska and Posner 2014; Fetene et al. 2017; Mao et al.
2021; Sun et al. 2019; Topic, Skugor, and Deur 2019; Warey
et al. 2020; Zhao et al. 2020).

For predicting EV driving range, a particle filter with
Markov chain is designed on the basis of the vehicle dy-
namics modeling, and the main parameters are determined
by known driving cycle data sets (Oliva, Weihrauch, and
Bertram 2013). In (Miri, Fotouhi, and Ewin 2021), a com-
plex computer-based model that combines individual EV
parts is developed for estimating the energy consumption
and range prediction with several known driving cycles.
Data-based modeling methods of (Bi, Wang, and Zhang
2018; Wang, Besselink, and Nijmeijer 2018) are employed
to estimate the model parameters and (Fetene et al. 2017)
provides meaningful analyses of big data to validate the fac-
tors affecting the energy consumption rate and the driving
range of EVs.

To predict the residual range with ML methods, (Bi et al.
2018) and (Topic, Skugor, and Deur 2019) utilize RBF
NN and CNN training respectively to mitigate the driver’s
range anxiety as one of the most pressing barriers adopt-
ing EVs (Noel et al. 2019). The ML methods in (Sun et al.
2019) and (Zhao et al. 2020) also show more accurate range
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prediction results than the multiple regression-based estima-
tion methods, as illustrating several simulation comparison
results. However, the method of (Sun et al. 2019) was val-
idated by small numbers of sample data with only one-day
length, and the method of (Zhao et al. 2020) shows a series
of 10-sec preview range predictions, with somewhat a short
prediction window to indicate the entire performance vali-
dation.

To lighten driver’s range anxiety illustrated in Fig. 1, we
propose an energy balance relation between vehicle-related
signals and battery charging/discharging measurements. The
energy relation is trained by utilizing a time-series data
processing-based deep learning network. A LSTM network
manages the time-series data to retain consecutive features
of vehicle speed and acceleration materialized in aid of intel-
ligent transportation system and navigation platform. With
the output features resulting from the LSTM network, addi-
tional vehicle system states, which include the current bat-
tery SOC, auxiliary electric loads, and outdoor temperature,
build another input structure connected to a deep neural net-
work. As a consequent learning model, a LSTM-DNN mix-
ture model is designed to train the energy balance relation
to predict EV battery consumption energy, which is trans-
formed into EV range prediction by considering the current
available battery energy. To train the LSTM-DNN mixture
model, one-year driving data sets during about 1000 hours,
also expressed as about 160, 000 km were exploited, and
to illustrate prediction performance the EV battery con-
sumption energy and range prediction were evaluated every
40 min unit, which can be calibrated as a design parameter
and considered to be a remaining trip time.

This study provides novelty in the following aspects:

• To practically achieve EV range prediction linked with
predictive information regularly delivered from intelli-
gent transportation system (ITS) and navigation plat-
form, a novel two-stage input structure is designed for
the proposed LSTM-DNN mixture model: in the first
stage regarded as the LSTM network, the input structure
has time-series profiles consisting of speed and accelera-
tion updated by varying traffic conditions ahead, and with
outputs of the LSTM network additional vehicle system
signals are connected to the DNN as the second stage.

• By the LSTM network designed to capture long-term
dynamics resulted in the speed and acceleration data, a
far-sighted range prediction is achieved, and further the
range prediction interval can be flexibly adjusted depen-
dent on a residual trip time, since the LSTM-DNN mix-
ture model retains a tailored structure to react exterior
data with volatile traffic conditions.

The remainder of this paper is organized as follows: Sec-
tion II describes an ITS-based ML method for EV range
prediction. Section III specifies a LSTM-DNN mixture
model for battery consumption energy prediction. Section
IV presents data partition and the following performance
analysis for the ML model. The key conclusions of the pro-
posed ML method are summarized in Section V.

Figure 1: Illustrated descriptions for range anxiety, which
starts to increase concerns when approaching a psychologi-
cal limit of battery SOC (Viola 2021).

Figure 2: Illustrative representation of on-road communica-
tions in cloud infrastructure (Javed, Ben Hamida, and Znaidi
2016).

Toward Practical EV Range Prediction

Existing Methods and Utilization of Preview
Information

Generally, the remaining driving range of EV has been esti-
mated by employing various physics-based models and per-
formance test data, which include physics-based vehicle en-
ergy consumption model, energy recuperation model by re-
generative braking, energy consumption model by auxiliary
electric devices and dual automatic temperature control, bat-
tery charging and discharging efficiency map, etc. However,
these physics-based models do not consider nonlinear and
uncertain state information, and moreover a way to simply
combine the multiple physics-based models may frequently
overlook complex dynamic states that cannot be ignored.
To overcome the existing range prediction method, preview
map and traffic information on the driving route can be in-
terconnected to reasonably predict and update the battery
energy consumption. As shown in Fig. 2, preview traffic in-
formation connected with navigation platforms can advise
quantitative and qualitative traffic conditions on the remain-
ing route to a destination.
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Figure 3: Conceptual representation of input and output
structure for battery energy consumption prediction.

Machine Learning Model Based on Energy
Balance Relation

By considering a relation of electric energy supply and me-
chanical energy demand, a data-driven ML model is pro-
posed. EV has an energy balance relation, which consists of
electric energy supply from battery package and mechanical
energy demand by driving motor and other auxiliary electric
devices, whereas recuperating or supplying mechanical en-
ergy by regenerative braking. The energy relation is simply
expressed as

EBat Consump = EDriving + ENon−Driving, (1)

where EBat Consump, EDriving and ENon−Driving are
a battery consumption energy, driving-related and non-
driving-related energy, respectively. Hence, utilizing big
data going through various driving conditions such as road
types, traffic congestion, temperatures, etc. can configure the
energy relation-based learning model as shown in Fig. 3.
Specifically, the energy relation is realized by a big data-
based ML model where input signals, which comprise
driving-related signals such as speed and acceleration and
non-driving-related signals like battery state of charge, out-
door temperature, and auxiliary electric load, generate bat-
tery consumption energy through the ML model. The trained
ML model plays a role as a prediction model that can yield
battery consumption energy prediction once the input sets
with the same structure are given. Therefore, with the battery
consumption energy prediction denoted as ÊBat Consump,
the concluding range prediction is obtained from the follow-
ing relation:

dPrd = ECur Bat ×
dRes

ÊBat Consump

, (2)

where dPrd is a predicted EV range that can be trans-
formed by the current available battery energy denoted as
ECur Bat as well as energy economy expressed as dRes r
ÊBat Consump, where dRes is a residual distance to a desti-
nation.

Figure 4: Schematic structure for battery consumption en-
ergy prediction to a destination based on preview route and
traffic information.

Figure 5: LSTM-DNN mixture model architecture and its
conceptual signal flow.

Machine Learning Model for Battery
Consumption Energy Prediction

Input and Output Structure to Train ML Model
On the given driving route determined by the navigation
platform, the inputs and outputs of the ML model are con-
figured to predict the near-future battery consumption en-
ergy by using the preview dynamics information and the cur-
rent vehicle states. As shown in Fig. 4, the input consists of
the preview dynamics information to be received by com-
munication with the navigation platform and the battery-
related vehicle states measured in real time, and the output
is the battery consumption energy. The ML model of Fig. 4
trains the energy relation by using one-year data set, which
was collected by driving Hyundai Kona EV during about
1000 hours, also denoted as about 160, 000 km. The trained
model linking with the inputs and output can update the pre-
dicted battery consumption energy with the current vehicle
states once it regularly receives preview dynamics informa-
tion from the navigation platform.

LSTM-DNN Mixture Model
The input data for the ML model is the preview dynamics
information given from the current location to a destination
and the vehicle states. The vehicle states consisting of SOC,
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Figure 6: Signal structure and features of time series data as
inputs for LSTM network.

outdoor temperature, and non-driving load can affect the bat-
tery energy consumption with the respective state variations.
However, when it comes to the speed and acceleration data,
the information connected by order and continuity is quite
critical since the speed and acceleration are time-related pro-
files. Hence, the ML model needs to be configured by a re-
current neural network (RNN), which can obtain feedback
of the previous value within the loop while considering or-
der and flow. Even though RNN has the merit to consec-
utively predict a relation of neighboring data, it is some-
what unstable to exploit long-term dependency that can re-
tain characteristics of nonadjacent data. Therefore, a LSTM
network is exploited to effectively predict the battery con-
sumption energy as capturing long-term dynamics given by
the speed and acceleration data to an endpoint. The resulting
ML model is shown in Fig. 5. The LSTM network is trained
by the time-series profiles comprising the speed and accel-
eration data to a destination. Then, with SOC, outdoor tem-
perature and auxiliary electric load, the output features of
the LSTM network make another input set for a deep neural
network to predict the battery consumption energy. To effec-
tively extract the consecutive features, the input data struc-
tures are designed in a window size of 40 min so that the
features of the speed and acceleration profiles are extracted
effectively, and the input window has a shifting size of 3min
to represent a proper correlation between the adjacent data
windows, as shown in Fig. 6. The number of the full time-
series data arranged by the designed window and shifting
size is 40773. Also, the input structure for the DNN has
another three inputs with the same shifting size, as shown
in Fig. 5. The outputs of the LSTM network, linked to the
DNN, are determined by a number of neurons for the LSTM
network, designed as 72. The output as a true label is the
battery consumption energy computed in the same window
size, which has the same shifting size as the input one.

Data Partition and Consequential
Performance Analysis

Analysis of Non-driving Load Effects in Battery
Energy Consumption
The EV battery consumption energy can be largely sepa-
rated into driving energy and non-driving energy. The ve-
hicle driving energy is mainly determined by the dynamics
characteristics of the vehicle, and by the LSTM-based net-
work learning which utilizes speed and acceleration data to a
destination, the tendency of the battery energy consumption
can be captured. However, the non-driving energy is gen-
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Figure 7: Seasonal histogram of non-driving loads compris-
ing auxiliary electric devices, heat, ventilation, and air con-
ditioning system: top-two histograms of winter and summer
illustrate relatively high median values of non-driving power
measured.

erated from various causes such as auxiliary electric load,
heat, ventilation, and air conditioning (HVAC), battery char-
acteristics according to temperature, and dark energy hard to
specify identities. It is difficult to model the respective dis-
turbing elements, and further modeling the combined fea-
tures is impractical. But the entire non-driving energy can
be simply separated as

ENon−Driving = EHVAC AUX + EDark, (3)

where EDark is an energy element negatively affecting
range prediction, as consuming the battery energy ineffi-
ciently. Other than EHVAC AUX measured, EDark is a sum
of energy dissipated by heats or battery efficiency charac-
teristics. Also, EHVAC AUX displays obvious features ac-
cording to each season, as shown in Fig. 7 where summer
and winter experience higher auxiliary energy than spring
and fall. Therefore, to illustrate a ratio of total driving dis-
tance divided by total battery consumption energy, distance
driven per battery energy consumption (DPB) index is de-
fined as

DPBi =
DToti

ETot Bat Consumpi

, (4)

where DToti is a total driving distance, ETot Bat Consumpi

is a total battery consumption energy and i is denoted as a
specified month. Fig. 8 shows that Nov., Jan, Feb. and Mar.
indicating winter have less DPBi. Also, to identify a ratio
of total auxiliary electric energy divided by total battery con-
sumption energy, auxiliary electric energy per battery energy
(AUXPB) index is defined as

AUXPBi =
ETot HV AC AUXi

ETot Bat Consumpi

. (5)

Fig. 9 illustrates that the auxiliary energy is quite consumed
by heating and warm-up in winter. Furthermore, to exam-
ine only the effects of how the battery consumption energy
influences the EV range, distance driven per driving energy
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Figure 8: Monthly distribution of DPB and DPD indexes
with a reference line separating normal and high non-driving
load data.

consumption (DPD) index, excluding the auxiliary energy
from the battery consumption energy, is defined as

DPDi =
DToti

ETot Bat Consumpi
− ETot HV AC AUXi

. (6)

ETot HV AC AUXi
is total auxiliary energy. DPDi of Fig. 8

shows that Aug. excluding cooling energy appears to be in-
creased in the aspect of the range efficiency, but the season
with a low temperature indicates low growths in the range
efficiency, even if the auxiliary energy being made up of
heating or warm-up is excluded. The reasons can be inferred
that the driving in the low temperature experienced low en-
ergy efficiency resulting from chemical characteristics of
battery cells and accordingly the low energy efficiency pro-
vided negative effects to the range efficiency. Hence, sepa-
rating the data set by DPB index and training the model by
the respective data sets would be able to offer more accurate
battery consumption prediction.

Performance Analysis of ML Models Trained by
Separated Data Sets
As shown in Fig. 8, one-year data set is separated into the
normal load (NL) and high load (HL) data sets by the refer-
ence line of DPB index. Therefore the respective three data
sets are exploited to individually train the LSTM-DNN mix-
ture model: one is a full data set of one year, another is a
NL data set above the reference line, and the other is a HL
data set below the reference line. To equivalently compare
the three trained models, each model holds the same train-
ing conditions, which include one LSTM layer with 72 neu-
rons, 40 epochs, regularization parameter of 0.001, the same
schedule of learning rate decay, etc. In Fig. 10, the loss val-
ues denoted as mean absolute errors converge to a stable area
with increasing epoch, as one complete pass of the training
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Figure 9: Monthly distribution of AUXPB index during one
year.

data. All three LSTM-DNN mixture models were trained so
that each model is settled at each stable steady-state, and
the detailed performance results are listed as Table 1 and
the error metric is a normalized root mean squared error
(NRMSE) specified as

NRMSE :=

√
1
m

∑m
i=1

(
y(i) − ŷ(i)

)2√
1
m

∑m
i=1

(
y(i) − ymean

)2 . (7)

Full Normal High
NRMSETrain 0.054 0.050 0.046
NRMSEV al 0.055 0.051 0.048

Table 1: Comparison of training and validation NRMSE for
three data sets.

Regarding the respective training and validation data sets
for all three models, the NRMSE values indicate well-
trained results without overfitting, and the prediction test re-
sults using the trained models embody the EV range pre-
diction performance: for three types of examples with only
a single range prediction per 40 min time window, the me-
dians of errors between ground truth and predicted values
are 2.67 km (in 4068 examples of Full data), 2.23 km (in
2415 examples of NL data) and 1.72 km (in 1653 examples
of HL data), respectively. Furthermore, to inspect the model
performance resulting from the data separation, the full data-
trained and NL data-trained models are evaluated by the NL
data set, respectively. As shown in Table 2 and Fig. 11, the
NL data-trained model as a customized one shows better
performance of 5.2 % than the full data-trained model as
a general-purpose one. Similarly, the full data-trained and
HL data-trained models are evaluated by the HL data set,
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Figure 10: Training and validation loss history during 40
epochs regarding full data, NL data and HL data.

Data type NL Data HL Data

Model Full Nor Full HL
Range error [km] 2.35 2.23 1.83 1.72

Table 2: Comparison of range prediction results: range pre-
diction errors in NL and HL test data set.

respectively. In Table 2 and Fig. 12, the HL data-trained
model shows enhanced results by 6.8 % compared to the
full data-trained model. Compared to other methods of (Sun
et al. 2019; Zhao et al. 2020), which predict the remaining
distance of EV by using ML methods, the illustrated per-
formance results show that the proposed LSTM-DNN mix-
ture model can predict the EV remaining range much further
while using the less number of input features. Besides, the
proposed method, which can update the EV range predic-
tion regarding the entire range of residual time and distance
throughout the given route, raises expectations to alleviate
the EV range anxiety, because reflecting realistic informa-
tion aligned with the look-ahead traffic conditions displayed
in the vehicle infotainment system.

Conclusions
A new ML method to achieve the improved EV range pre-
diction is proposed by merging the benefits of each LSTM
network and DNN. The LSTM network retains the long-
term dynamics established by the look-ahead speed and ac-
celeration information consecutively updated from ITS and
navigation system, while the DNN builds a nonlinear net-
work model to concretize input and output energy balance
relation. To train the LSTM-DNN mixture model, Hyundai
Kona EV driving data during about 1000 hours, also de-
noted as about 160, 000 km are employed. Considering the
DPB index to indicate distance per battery consumption en-
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Figure 11: Comparison results of full data-trained model and
NL data-trained model evaluating NL test data set.
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Figure 12: Comparison results of full data-trained model and
HL data-trained model evaluating HL test data set.

ergy, the full data set is separated into the normal and high
load data sets. The three LSTM-DNN mixture models were
trained individually by the respective three data sets, and
with a series of test processes for performance verification,
the LSTM-DNN mixture models show well-trained perfor-
mance as well as the system states converged to stable re-
gions. The test results indicate that the LSTM-DNN model
possesses an ability to practically improve the EV range
prediction in connection with the ITS and navigation plat-
forms. To further verify the reliable performance linked with
ITS-based information, the LSTM-DNN model needs to be
implemented to in-vehicle control boards or an embedded
computer system. Also, a continual learning method for the
LSTM-DNN model would be one of durable solutions to
keep the EV range prediction performance against battery
aging.
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