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Abstract

A significant challenge in credit risk models for underwrit-
ing is the presence of bias in model training data. When most
credit risk models are built using only applicants who had
been funded for credit, such non-random sampling predomi-
nantly influenced by credit policymakers and previous loan
performances may introduce sampling bias to the models,
and thus alter their prediction of default on loan repayment
when screening applications from prospective borrowers. In
this paper, we propose a novel data augmentation method that
aims to identify and pseudo-label parts of the historically de-
clined loan applications to mitigate sampling bias in the train-
ing data. We also introduce a new measure to assess the per-
formance from the business perspective, loan application ap-
proval rates at various loan default rate levels. Our proposed
methods were compared to the original supervised learning
model and the traditional sampling issue remedy techniques
in the industry. The experiment and early production results
from deployed model show that self-training method with
calibrated probability as data augmentation selection crite-
ria improved the ability of credit scoring to differentiate de-
fault loan applications and, more importantly, can increase
loan approval rate up to 8.8%, while keeping similar default
rate comparing to baselines. The results demonstrate practical
implications on how future underwriting model development
processes should follow.

Introduction
Credit risk models are tools that financial institutions de-
sign to guide lending decisions for businesses or individu-
als. Such model predicts the probability of default, i.e., ap-
plicants’ probability of not repaying their debts, from col-
lected financial information during the application stage. It
is a binary classification model that separates bad borrowers
from good ones. Traditional credit risk models are trained
with only a part of loan applicants that financial institutions
approved since repayment performance is only available for
funded loans. Accepted applicants are already screened by
the credit risk models and manual checks during the under-
writing process. In comparison, the entire application popu-
lation includes rejected applicants whose actual repayment
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behavior is unknown and potential applicants who never ap-
ply. Therefore, from data sampling perspective, the train-
ing samples from accepted applicants are biased in that the
through-the-door population at the time of credit underwrit-
ing could be significantly different from the larger unknown
population (Eisenbeis 1977; Feelders 2000). Although it is
difficult to consider potential applicants since no financial
information is provided, this paper proposes approaches to
address the sampling bias issue by inferring rejected ap-
plicants and augmenting representativeness of the training
samples. This technique in the lending domain is known as
reject inference (Siddiqi 2003; Montrichard 2007).

The reject inference refers to techniques that resolve sam-
pling bias through inferring labels for rejects (Kozodoi et al.
2019), which share similar ideas with semi-supervised learn-
ing. They combine accepted applicants with their repay-
ment and rejected applicants with estimated performance
into inferred datasets and generate reject inference scoring
models. Recent ML based works have proposed new mod-
els to assign labels to the rejects from the angle of semi-
supervised learning, such as semi-supervised SVMs, self-
learning, and K-prototype clustering (Li et al. 2017, 2020;
Kozodoi et al. 2019). One common practice used in the
industry is to obtain external loan performance data from
credit bureaus for rejected applicants, though it is relatively
costly. Another well-known strategy, fuzzy augmentation,
assigns labels to the rejects based on the scoring model
trained by accepted applicants with adjustment made on
sample weights (Montrichard 2007). However, empirical re-
sults and reviews agreed that the common reject inference
methods now do not outperform credit risk models with
only accepted loan performances (Hand and Henley 1993;
Ehrhardt et al. 2021).Moreover, recent model-based meth-
ods like clustering have application limitations, such as hav-
ing good performances on low dimensional data only ac-
cording to theoretical findings. Datasets used in these studies
are usually oversimplified as low dimension and relatively
small in size as well (Li et al. 2017, 2020).

The contribution of this paper is two-fold. First, we pro-
pose a novel technique to label the rejected applicants and
augment the training set for sampling representativeness. We
applied the self-training method for rejected application la-
beling, with variations on the choice of confident unlabeled
predictions added to the training set. Specifically, we intro-
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duced probability calibration and Trust Score as confidence
models to select the most confident predictions (Triguero,
Garcı́a, and Herrera 2015; Jiang et al. 2018; Niculescu-Mizil
and Caruana 2005). Second, we introduce a new business-
related measure (denoted as approval rate) to evaluate the
performance of reject inference methods. By controlling the
default rate, estimated approval rate measures the percent-
age of applicants approved as an estimated business Key
Performance Indicator (KPI). This measure considers both
accepted label accuracy and also the application population.
It provides us a unique metric for domain-specific evalua-
tion.

Background
Application Outcomes and Loan Outcomes
The result of a loan application is approval or reject after
lending institutions evaluate the credit risks of repayment,
with rare exceptions. And the outcome of a credit decision
for an approved loan is not fully known until the loan has
matured and either the full amount due is repaid in the ex-
pected time or what is repaid is a partial amount and/or over
a much longer period of time. We define a loan to be in good
standing (labeled as Good) when timely payments are being
made or payments are less than 60 days past due. The de-
fault size is much smaller than the loans with good standing
with the help of credit scoring in practice, which leads to the
imbalance of data. Using this definition for our discussion,
we will simplify application results and loan outcomes as
follows:

• Loan application accepted – Loan applications that are
approved and taken by the borrowers.
• Loan application rejected – Loan applications that

lenders declined because of lack of creditworthiness
deemed by the lenders.
• Loan with Good Outcome – Loans are all those loans still

in good standing which will mature in 30 days plus all
those loans already repaid in full.
• Loan with Bad Outcome – Loans are all the rest: the ones

that are delinquent (60+ days past due) or not fully repaid
(write-offs due to charge off).

Methods
This section presents our reject inference method: Self-
training method, which combines a self-training algorithm
and a pseudo-label confidence model.

Consider a set of n loan applications x1, x2, · · · , xn ∈
Rk where k is the number of features. This set includes
m accepted applications x1, x2, · · · , xm ∈ Xa with cor-
responding labels y1, y2, · · · , ym ∈ {Good, Bad} and con-
sists of xm+1, · · · , xn ∈ Xu whose labels are unknown.
The credit scoring model trained with Xa only is denoted
as Known Good/Bad (KGB) model. To mitigate sampling
bias, our method assigns labels to partial unlabeled applica-
tions Xu, and combines accepted data and pseudo-labeled
data into inferred data sets to represent the whole applica-
tion population and update credit scoring models. The scor-

Figure 1: Flowchart of Fuzzy Augmentation.

ing model with inferred data as training set is denoted as
reject inference model (RI model).

Fuzzy Augmentation
Fuzzy augmentation is a representative of popular reject
inference techniques discussed, and we will use it as one
benchmark (Hsia 1978). It involves assigning labels to unla-
beled data based on the KGB model and retrain to get fuzzy
augmentation model (FA) (Montrichard 2007), as shown in
Figure 1. It assigns unknown data as being partial Good and
partial Bad by labels and weights. Every application inXu is
duplicated as two records with two labels y: (1) y1 = Good
with weight p(Good); and (2) y2 = Bad with weight p(Bad).
The weights p(Good) and p(Bad) are predicted probabilities
based on KGB model. The sum of two weights is equal to 1.
And accepted applications are also weighted by 1. Then the
FA model is constructed on weighted data.

Self-training with Confidence Model
Figure 2 is an overview of our proposed self-training method
pipeline. It starts with training an initial model (also the
KGB model in the first iteration) on the accepted data Xa

and uses it to predict all the unlabeled data. Then, a confi-
dence model is introduced to filter the most confident pre-
dictions whose labels are either good or bad in unlabeled
data Xu with fine-tuned thresholds. The selected unlabeled
data are labeled by the predictions, and the training set is
augmented with new labeled data, denoted as X1

a . Then RI
model is retrained with labeled data X1

a . This process is re-
peated, and self-training model and confidence model up-
date every iteration along with labeled data Xj

a. It will stop
until no confident applications are identified from the confi-
dence model or reaching a pre-defined number of rounds as
stopping criteria.

We applied two confidence models to accommodate
the attributes of different algorithms for reject inference:
Trust Score (Jiang et al. 2018) and probability calibration
(Niculescu-Mizil and Caruana 2005). The traditional self-
training selects confident predictions whose prediction prob-
abilities p satisfy p > α or p < 1 − α, where a is a
probability threshold. However, a part of machine learn-
ing classifiers, such as Naive Bayes, SVM, and Random
Forest, tend to yield a characteristic sigmoid-shaped dis-
tortion in predicted probabilities. Our probability calibra-
tion confidence model adds isotonic probability calibration
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Figure 2: Flowchart of self-training method with confidence model for reject inference.

(Niculescu-Mizil and Caruana 2005) and uses calibrated
probabilities to filter confident predictions. The calibrated
probability is estimated by a non-parametric isotonic regres-
sor which outputs a step-wise non-decreasing function. It is
well-known that it can more accurately represent the confi-
dence level of the probability output. From empirical results,
probability calibration shows a significant improvement in
maximum margin methods, such as XGBoost. Trust Score
model, on the other hand, provides prediction accuracy from
the nearest neighboring approach (Jiang et al. 2018). It pre-
selects a high-density data range for each class. Then a trust
score is defined as follows to evaluate the prediction: for a
predicted test label, the trust score is the ratio between the
distance from the test label to the nearest class different from
the predicted label class and the distance to the predicted la-
bel class within the data range. In this work, the score is
based on 5% of the instances from each class. A high score
implies high prediction accuracy since the predicted case is
close to labeled data with the same label class. It is an alter-
native to algorithms’ own confidence scores from the initial
feature space and validation set.

Experiments and Results
Data
Our experiment was carried out using loan data from In-
tuit lending business which offers business loans to its
small business accounting software (QuickBooks Online)
users since 2017. These loans are repaid weekly, bi-weekly
or monthly over a period of six, nine, twelve or eighteen
months. Since its inception, hundreds of thousands of loan
applications have been submitted, and tens of thousands of
loans have been issued. Over a quarter of issued loans have
reached maturity, meaning they were either being paid back

or defaulted. Those issued loans still in the process of repay-
ment are not included in the credit risk models due to a lack
of loan performance history.

For the experiment, Intuit provided around 50,000 ran-
dom and anonymous samples of loan applications to ensure
the representativeness of the population.

Numbers of features are derived corresponding to account
balance patterns, cash flow trends, composition of recur-
ring liabilities, seasonality and other spending patterns, fre-
quency of negative financial events such as overdrafts and
late payments, et cetera. We will not discuss here hundreds
of features that are extracted from bank transactions and how
credit bureau data was fetched and processed through third-
party API and internal data pipeline, apart for noting that this
kind of data is intrinsically noisy. Some of the noises are in-
troduced by information representation and transmission of
bank data, inaccurate recording of business bureau data, and
significant variability due to the differences in the nature of
business among loan applicants.

After feature engineering, the entire dataset was split into
a training set and a test set according to the loan applica-
tion date. For a fair evaluation of a more representative ap-
plication population, we augmented the labeled test data by
assigning labels to part of rejected applicants according to
their external credit history from credit bureaus as ground-
truth. Therefore, the labeled subset is a combination of in-
ternal loans with their performances and rejected applica-
tions with estimated labels from their bureau credit history.
About 13% of the labeled test set are rejected applications
with estimated labels from their bureau credit history. We set
stringent labeling criteria to eliminate false positive matches,
such as considering external credit accounts history in a nar-
row time window around application time to guarantee tem-
poral accuracy, looking up loans whose types and days past

12568



Bureau
Intuit Good Bad

Good 91% ∼ 0%
Bad 3% 6%

Table 1: Label matching between Bureau and Intuit. Bureau
data are shown in rows and Intuit data are shown in columns.
Percentages are shown as % of the total number of loans
with labels.

due are similar to our loan population exclusively.
To further validate the quality of ground-truth labeling on

the test set, we calculated the confusion matrix between ex-
isting internal labeled loan labels and their corresponding la-
bels assigned from credit bureau data. Results show that the
matching quality is satisfactory, as shown in Table 1 where
97% of the labels were matched.

Credit Risk Models
We applied two credit risk models in this experiment,
weighted logistic regression and gradient boosted tree al-
gorithm (XGBoost). Logistic regression is one of the com-
mon methods used in credit scoring since it is easy to imple-
ment and interpret, and it has been widely used to compare
reject inference methods with authentic and simulated data
(Nguyen et al. 2016). Note that the size of Bad class is much
smaller than that of Good. In order to balance the data dis-
tribution, we applied weighted logistic regression instead of
the default. The weight is the inverse of the label size ratio.

On the other hand, previous work (Wang et al. 2020)
found that gradient boosted tree algorithm (XGBoost) pro-
vided the best model performance among several algo-
rithms for credit risk scoring, and simultaneously mono-
tonic constraints (DMLC/xgboost 2016) on inputs can pro-
vide explanations on the predicted score in conjunction with
Shapley values (Lundberg and Lee 2017). Best hyperpa-
rameters used in our XGBoost is determined by Amazon
Sagemaker XGBoost hyperparameter tuning using Bayesian
search (Amazon-Sagemaker 2020).

Evaluation Metrics
The benchmarks and our new methods are tested on the same
test set to ensure a fair comparison.

AUC-ROC (AUC) and K-S are used to compare the per-
formances in this experiment because of data imbalance.
Besides the regular AUC metric, K-S statistic is a met-
ric between 0 and 1 that measures the maximum separa-
tion between the cumulative distribution of the two classes
(Bradley 1997; Smirnov 1948; Kolmogorov 1933). Note that
both metrics do not depend on the selection of classification
thresholds, making them attractive as evaluation metrics in
credit risk domain.

Approval Rate To supplement domain-independent eval-
uation metrics, we introduce an innovative evaluation met-
ric from a business KPI perspective, approval rate. In gen-
eral, when more applications are approved, more loans with
bad outcome will be introduced. For maximum profit and

risk control, lending institutions prefer to extend their cus-
tomer population while keeping controllable potential loan
defaults. Therefore, approval rate is designed to measure this
trade-off in credit scoring model performance ad hoc analy-
sis. It is analogous to hypothesis testing – it controls type II
error rate and reports the fraction under the null hypothesis
(in our case, loans with good label). From the lending busi-
ness perspective, it predicts the business revenue and poten-
tial customer population it can serve with default loss con-
trol. This measure could be extended and apply to other fi-
nancial domains which have strict and specific prediction er-
ror limitations as a domain-specific evaluation metric, such
as insurance and consumer lending.

For a given risk score threshold t(p) where p is the pre-
defined bad rate, the approval rate is calculated as

Approval rate =
number of applications with score ≤ t(p)

number of applications
Bad rate p from accepted loans

=
number of applications with label Bad

number of applications with labels in {Good, Bad}
Note that the calculation of approval rate is based on both
labeled and unlabeled data. Refer to Figure 3 for an illustra-
tion of risk score distribution and its relation to approval rate
calculation. Given all the applications, predicted risk scores,
and a specific risk score threshold, applications whose risk
scores are lower than the threshold assume to be approved.
And the corresponding bad rate, which is the bad rate of la-
beled applications, is the ratio of bad labels in the labeled
data in the approved application set. The bad rate of the
overall approved population will be larger and challenging
to estimate because of the lacking of ground-truth labels of
rejects. So we use the bad rate of labeled applications as bad
rate alternative. To take unlabeled data into consideration,
such bad rate thresholds from labeled applications need to be
set lower than normal business bad loan rates that financial
institutes could take. Therefore, we report approval rate es-
timates on different low bad rates, including 2.5% and 3.5%
in the results.

Experiment Results
Table 2 summarizes the performances of our proposed self-
training method and benchmarks on the test set. The train-
ing size reports the final training size applied in each method
compared to the original accepted data size. Fuzzy augmen-
tation uses the full unknown data for the training, while
Self-training method selectively includes part of unlabeled
dataset into the training set. The best of each metric is high-
lighted. Between the two benchmarks, fuzzy augmentation
does not improve the performance compared to KGB model
on most of the metrics. Especially for weighted logistic re-
gression, evaluation metrics of fuzzy augmentation drop sig-
nificantly. One possible explanation is that the training set in
fuzzy augmentation shift largely from labeled data for reme-
dying data bias. However, the classification accuracy is com-
promised.

For Self-training method, XGBoost algorithm outper-
forms benchmarks, and it works better with calibrated prob-
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Credit risk model Methoda Training size AUC K-S Approval rateb
@ 2.5% bad rate

Approval rate
@ 3.5% bad rate

XGBoost

KGB 100% 0.737 0.367 0.529 0.696
FA 238% 0.738 0.365 0.510 0.684

ST-TS 126% 0.732 0.356 0.514 0.704
ST-CP 115% 0.740 0.381 0.543 0.706

Logistic Regression

KGB 100% 0.732 0.359 0.515 0.716
FA 238% 0.720 0.336 0.455 0.669

ST-TS 117% 0.733 0.362 0.521 0.708
ST-CP 102% 0.732 0.354 0.506 0.705

Table 2: Performance of Self-training Methods and Benchmarks in the Experiment
a KGB: Known Good/Bad model, FA: Fuzzy Augmentation, ST-TS: Self-training based on Trust Score, ST-CP: Self-training based on

calibrated probability, b Approval rate: approval rate estimate based on labeled and unlabeled datasets.

Figure 3: Illustration of approval rate calculation. The
dashed line is risk score approval threshold t(p): applica-
tions with lower risk scores are approved.

ability as confidence model than Trust Score. Self-training
with probability calibration confidence model outperforms
all other methods in AUC, K-S statistics, and approval rate
@2.5% bad rate. Compared to the KGB model, the approval
rate increases from 52.9% to 54.3%, and K-S statistics im-
proves from 0.367 to 0.381. In contrast, self-training with
TrustScore only performs better than fuzzy augmentation on
the approval rates.

The evaluation of weighted logistic regression implies dif-
ferent results compared to XGBoost. The results of KGB,
self-training with Trust Score, and self-training with cali-
brated probability are close to each other for all metrics.
Self-training with Trust Score performs slightly better than
the others, K-S statistic of 0.362, AUC of 0.733, approval
rate @2.5% bad rate of 0.521, without statistical signif-
icance. Logistic regression returns well-calibrated predic-
tions by default as it optimizes log loss. Therefore, probabil-
ity calibration is not expected to improve the performance,
and the training set (102% of original training set) is almost
not augmented in the experiment. In general, XGBoost has
better classification performance than weighted logistic re-
gression in most metrics and the benefit provided by self-

training is more significant on XGBoost algorithm.
Performance gains are relatively modest, consistent with

the prior literature (Hand and Henley 1993). Friedman’s
rank sum test reports that not all the methods perform the
same (p < 0.05), but pairwise comparisons do not show sig-
nificant differences between most of the methods. However,
considering the large loan volume involved, it is still a sig-
nificant difference for business purposes.

The final training set sizes among different methods in
Table 2 also implies the need for fine-grained selection for
inferred training set as discussed in other literature (Li et al.
2020). Introducing more pseudo-labels into training set does
not guarantee better classification performance. The intro-
duction of data that are far from decision boundaries of clas-
sifiers may not help with classification performance. As pre-
diction uncertainty studies develop, one future work direc-
tion is to consider new uncertainty estimates to improve the
self-training performance for RI models.

Model Deployment and Early Results
Model Production Deployment
Based on the experimental results in Table 2, the self-
training method with calibrated probability (ST-CP) and
KGB model using XGBoost as credit risk algorithm are cho-
sen and was deployed into production since March 2021.
The credit risk scores generated are applied in the loan ap-
proval process as reference. Unlike chatbots and recommen-
dation systems, the loan approval policy must stay consistent
and fair for all applicants. Therefore, only the KGB model
scores are used in the current approve/decline process. ST-
CP model scores are trained with previous loans in one
batch, monitored in silent mode and only serves as bench-
mark purpose at the moment. We have been actively mon-
itoring the performances of self-training model and KGB
model closely and run regular comparison analyses.

Figure 4 illustrates the abstract architecture design of the
model deployment pipeline. First, the loan application starts
from one of the access points such as QB Capital website
(Capital 2021), email promotion, in-product discovery ban-
ner in QBO, direct mail or other internet channels with QB
Capital advertisement. After loan application is submitted,
internal and external data are fetched and transformed into
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Figure 4: Model deployment architecture

features in real time and an API call is made to model exe-
cution stack where trained model endpoints are hosted. The
model execution stack composed of two model endpoints,
KGB model and Self-training model. Model prediction re-
sults are returned to the caller. Logging and monitoring of
the model inputs and outputs along with metadata is han-
dled through Apache Kafka streaming events and eventually
persisted into designated AWS S3 buckets. Note that model
hosting, execution, logging, and monitoring are done on In-
tuit Machine Learning Platform (Canchi and Wenzel 2020).

Early Deployment Results
As an evaluation of the performance in the production envi-
ronment, an anonymous sample of about 10,000 loan appli-
cations and a few hundred matured loans were collected and
analyzed. The K-S statistic of applications with loan out-
comes between models are compared, while approval rate
estimates are reported, shown in Table 3. Note that we still
report approval rate estimate here since the production appli-
cation decisions are still based on traditional credit scoring
model (KGB model).

These results show that our proposed self-training model
outperforms the traditional credit scoring method across the
metrics. Self-training method improves the K-S statistics by
6.8%, which indicates that our proposed model performs
better in detecting potential default applications. And esti-
mated approval rate increases from 70.7% to 76.9% when
bad rate is 3.0%.

We run another evaluation to measure business impact
of reject inference compared to current approval policy: we
compare the bad rate of observed approval population and
predicted approval population from self-training method.
For the 76.9% of self-training model -‘approved’ applica-
tions whose bad rate on labeled population is 3%, we pre-
dicted the bad rate of all RI-approved applications by as-
signing a higher bad rate to rejects. Similar to the bad rate
that we observed in the matched bureau data for the rejects,
we assume rejects (unlabeled) have 3 times higher default
risk than observed labeled data, and the result shows that the

Model K-S Est. Approval rate
@ 3% bad ratea

Est. population
bad rate b

KGB 0.441 0.707 5.1%
ST-CP 0.471 0.769 5.1%

Table 3: Performance Comparison of Self-training and KGB
models in Production

a 3% bad rate is based on labeled population; b Assume loan
default risk is 3 times higher in the rejects.

predicted overall bad rate is 5.1% for both models.
On the other hand, among all loan applications in this

sample, 55% were approved by the current lending policy,
and the observed bad rate is 5.2%. With similar bad rates on
approved population, these results prove that Self-training
method largely increases the approved population lending
institutions can serve by 39% while keeping the same low
default risk.

Conclusion and Future Work
In this paper, we have shared application of self-training
methods that can help reducing sampling bias in credit risk
models and how we should evaluate these methods based not
only on the traditional model performance metric but also on
business KPI related metric, i.e., application approval rate.

We had empirically shown in both historical loans and
production that including data selectively from the loan
applications with unknown outcome with self-training ap-
proach can effectively improve credit risk models in terms
of their performance on the general population, i.e., approv-
ing more applications while maintaining the same risk level.
We are cautiously optimistic about the early production re-
sults and will continuously monitor the proposed model per-
formance in the next few months. This warrants the consid-
eration of making proposed model “official” for the sake of
making better lending decisions and further research to ex-
plore more ML related sampling bias correction methods in
the credit scoring domain and other financial fields.
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