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Abstract

The deployment of vaccines across the US provides signifi-
cant defense against serious illness and death from COVID-
19. Over 70% of vaccine-eligible Americans are at least par-
tially vaccinated, but there are pockets of the population that
are under-vaccinated, such as in rural areas and some de-
mographic groups (e.g. age, race, ethnicity). These pockets
are extremely susceptible to the Delta variant, exacerbating
the healthcare crisis and increasing the risk of new variants.
In this paper, we describe a data-driven model that provides
real-time support to Virginia public health officials by recom-
mending mobile vaccination site placement in order to target
under-vaccinated populations. Our strategy uses fine-grained
mobility data, along with US Census and vaccination uptake
data, to identify locations that are most likely to be visited
by unvaccinated individuals. We further extend our model to
choose locations that maximize vaccine uptake among hes-
itant groups. We show that the top recommended sites vary
substantially across some demographics, demonstrating the
value of developing customized recommendation models that
integrate fine-grained, heterogeneous data sources. We also
validate our recommendations by analyzing the success rates
of deployed vaccine sites, and show that sites placed closer
to our recommended areas administered higher numbers of
doses. Our model is the first of its kind to consider evolving
mobility patterns in real-time for suggesting placement strate-
gies customized for different targeted demographic groups.

Introduction
As of August 2, 2021, at least 70% of American adults aged
18 and older had received at least one dose of a COVID-19
vaccine (Reuters 2021). However, in many subpopulations,
including young people, Black people, people of Latinx eth-
nicity, and in rural areas, the vaccination rate runs far be-
low that (UCSF 2021; PBS 2021). Strategies have been de-
vised to address vaccine accessibility – free child care, paid
time off for employees, and other financial incentives – but
these measures have not proven effective for these under-
vaccinated demographic groups.

In order to increase the rate of vaccination among the
under-vaccinated or less vaccine-enthusiastic populations,
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the Virginia Department of Health (VDH) has begun de-
ployment of mobile vaccine distribution sites. These mobile
units distribute the one-dose Johnson & Johnson vaccine
in order to simplify scheduling and encourage ”impulse”
vaccinations (i.e., seizing the opportunity to get vaccinated
when presented). When VDH started this program, deploy-
ment was driven primarily by intuition or educated guesses
by local public health officials. However, two important fac-
tors were not well-addressed in this deployment strategy: (i)
each demographic group has its own mobility patterns ; and
(ii) mobility patterns have been evolving as the lockdown
has eased. Therefore, a more methodical, real-time deploy-
ment plan was needed to address these deficits.

The success of mobile site placements depends on (i) the
accessibility of these sites for the target populations, and (ii)
their willingness to get vaccinated (acceptance/hesitancy).
To address the accessibility aspect, we propose that areas
with high foot traffic from the target demographic groups
would be productive locations to place mobile vaccination
units. To this end, we employ a dynamic, data-driven rec-
ommendation model, using heterogeneous data sources, that
can recommend locations with high probability of vaccina-
tion uptake success in real-time.

Our model works as follows. First, it uses aggregated and
anonymized mobility data from SafeGraph to identify ar-
eas with high mobility concentrations and the Census Block
Groups (CBGs) that contribute to that traffic. Such data has
been used extensively as a means to study the spread of
COVID-19 and to track the degree of compliance with so-
cial distancing directives (Badr et al. 2020; Buckee et al.
2020; Warren and Skillman 2020; Wellenius et al. 2020;
Chang et al. 2021a; Wang et al. 2020). The candidate areas
are defined as tessellations indexed by Google’s S2 Geome-
try. Second, it leverages multiple data sources containing the
demographic profile of each CBG to adjust the previously
computed mobility for target demographic groups using a
set of equations. Based on this adjusted mobility, it ranks the
tessellations separately for each group. Third, it is equipped
with a module to estimate vaccine acceptance across differ-
ent demographic groups to refine the previous rankings.

Overall, our model can be described as a rule-based sys-
tem which consists of a set of rules (equations) used to pro-
cess the heterogeneous knowledge graph data sources (Safe-
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Graph + Census data) and takes subsequent actions (recom-
mendations). The model also champions fairness and equity,
which are lingering issues in AI. Machine learning models
can suffer from bias, serving certain demographic groups
better than others (Sweeney et al. 2019), but our model mit-
igates this issue by employing the rules after taking into ac-
count the racial heterogeneity of CBGs.

To evaluate how our placement strategy compared with
actual placements made by public health officials, we review
existing mobile distribution site placements from VDH-
provided data and observe vaccines administered at these
locations. Furthermore, we analyze the robustness of our
model for various demographic groups and different weeks.

In line with the continuing support our group has provided
to various local, state, and federal public health authorities
since the onset of the pandemic, we presented two proto-
types of our model to VDH and received valuable guidance
integral to the current implementation of our model and the
selection of demographic groups for deployment. Our model
has been operational since the beginning of June 2021, con-
tinuously providing real-time placement recommendations.
Although we have not received quantifiable data reflecting
the effectiveness of these sites, VDH does rely on these rec-
ommendations for mobile vaccination site planning. Fran-
cisco Diaz, the Vaccine Administration Support Supervisor
for VDH, has stated that this program allows VDH to iden-
tify where vaccines are needed. This improves their ability
to focus their efforts on reaching target demographic groups
in locations that are accessible and convenient to them. His
complete statement is available at (Diaz 2021).

Our work is the first of its kind to develop a data-driven
model that considers evolving mobility patterns and finds a
real-time placement strategy that is accessible to different
targeted demographic groups. Through its simplicity and
interpretability, our model also outshines difficult-to-solve
location-theory algorithms and hard-to-interpret deep learn-
ing models, something that is sought by policymakers due to
its safety-critical use case. From this aspect, our model ad-
vocates interpretable AI.

The rest of this paper is organized as follows. We describe
similar previous works relying on mobility data in Section .
In Section , we describe the incremental design and imple-
mentation of our model to create a ranking of areas for place-
ment of vaccine distribution sites. Salient insights about mo-
bility of different demographic groups and comparison be-
tween our recommendations and existing sites are presented
in Section . Lastly, we explore the utility and implications
of our model in Section .

Related Work
Mobility and Vaccination A first set of works (Saldaña
et al. 2021; Chen et al. 2021; Buckner et al. 2021; Jentsch
et al. 2021) simulated different vaccination strategies for
various scenarios and studied their effectiveness. (Jentsch
et al. 2021) found that if there is a delay in vaccine avail-
ability, it is more effective to target individuals with high
social contact instead of focusing on the elderly; (Chen
et al. 2021) reached similar conclusions, except they com-
pared between high contact people and essential workers.

(Saldaña et al. 2021) evaluated the effectiveness of differ-
ent vaccination strategies by simulating a meta-population
model across several scenarios. (Buckner et al. 2021) used
a mathematical model that indicated that the prioritization
strategy should vary depending on the objective; for exam-
ple, targeting essential workers minimizes infection, but tar-
geting older individuals minimizes the number of deaths. In
terms of vaccination, these works focus mainly on who but
not where, whereas in our work we focus on both aspects.

COVID-19 systems to aid policymakers Similar to how
our system is designed to provide data-driven, real-time sup-
port to policymakers, quite a few systems have been devel-
oped to aid policymakers during the pandemic. Some were
designed for surveillance purposes, e.g. visualizing infection
rates and trends at different spatial resolutions (Dong et al.
2020; Peddireddy et al. 2020; Wissel et al. 2020), identify-
ing anomalous hotspots (Hohl et al. 2020), and informing
policymakers about the necessary levels of restriction in a
timely fashion (Qiu 2021). Another set of systems was de-
veloped to help policymakers observe the effects of differ-
ent non-pharmaceutical interventions in order to help them
make informed decisions (Barrett et al. 2007; Beckman et al.
2014; Chang et al. 2021b).

What sets our work apart is that we are the first to develop
an operational system that provides weekly updates to poli-
cymakers regarding placement strategies for mobile vaccine
distribution sites across different demographic groups. Also,
unlike other systems which largely focus on surveillance and
retrospective analyses, our system provides real-time sup-
port to policymakers for mitigating disease transmission.

Methodology
Datasets
Fine-grained mobility data (SafeGraph) Mobility data
can reveal important information about populations, such
as where people are visiting and how this behavior evolves
over time. For our model, we use anonymized and aggre-
gated data from SafeGraph (Safegraph 2018). It provides
detailed information about non-residential locations visited
by individuals (e.g. grocery stores, parks), also referred to
as points of interest (POIs). SafeGraph’s Weekly Patterns
dataset1, released on Wednesdays with the data for the pre-
vious week (Monday through Sunday), includes weekly es-
timates of visits from CBGs to these POIs. The dataset can
be naturally viewed as a bipartite graph, as described later
in . For our work here, we focus on POIs and CBGs in the
Commonwealth of Virginia, where visits from 5,293 CBGs
to 74,535 POIs were compiled in the latest release.

However, SafeGraph has some limitations. For instance, it
does not cover all POIs or populations (e.g., children). Fur-
thermore, depending on the number of devices carried by a
user, visits may be underreported or overreported. The GPS
signal itself can also be noisy. We describe how we account
for some of these limitations in Sections and .

Demographic Data As the SafeGraph dataset does not in-
clude demographic information, we use demographic data

1https://docs.safegraph.com/v4.0/docs/weekly-patterns
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Figure 1: Detailed breakdown of the pipeline of our recommendation model (1a). The pipeline is run weekly on Wednesdays
with the updated SafeGraph data. Sample HTML deliverables generated by the model are shown for Danville City for the week
of June 21-June 27 for two demographic groups (1b,1c). The deliverables to VDH are generated by noon on Thursday.

from the US Census American Community Survey (ACS)
in conjunction with the visits from the CBGs to POIs data.
The 2015-2019 release of the 5-year Census data contains
the population breakdown in each CBG by different demo-
graphic groups (e.g. Black, Latinx). This adapts our model
to estimate visits from each demographic group to each POI,
or which POIs are frequented by each group.

Although the census data provides numbers for individual
demographics, such as race or age group, it does not include
fine-grained information about combined demographics. We
describe our approach for handling combined demographics
in the extended version of this paper (Mehrab et al. 2021).

Vaccination Data Our final dataset, obtained from VDH,
contains the number of individuals per census tract who have
received vaccine doses. However, SafeGraph and ACS Cen-
sus data are provided at the CBG level. In order to maintain
the same level of resolution across all data sources, we es-
timate the number of unvaccinated individuals at the CBG
level, assuming that the number of doses in a census tract is
distributed proportionately across its underlying CBGs.

S2 Geometry
Although SafeGraph provides the number of visits to spe-
cific POIs, the resolution level is quite dense for calculating
the placement of mobile vaccination sites. Furthermore, the
signals picked up for a specific POI do not necessarily indi-
cate that the device was present in that specific POI at that
time of collection due to the noise associated with Global
Positioning Systems (GPS) signals. In order to address these
issues, instead of considering individual POIs with high foot
traffic for potential site placement, we identify geographical
areas with high foot traffic as follows. (i) We divide each
county in Virginia into much smaller areas, each of which
contains a group of POIs. (ii) For each area, we aggregate
the foot traffic for all of the POIs in that area, then rank each
area inside a region based on this aggregated foot traffic.

To partition Virginia into regions, we use Google’s S2 ge-
ometry2, which divides the world map into nested cells of
decreasing size (L0 - L30). Level L0 is one cell representing
the entire map; it contains 4 L1 cells, each of which contains
4 L2 cells, each of which contains 4 L3 cells, and so on.

Placement Model
Our data-driven model was guided by two preceding proof-
of-concept prototypes, described in more detail in the ex-
tended version of this paper (Mehrab et al. 2021). Lessons
learned from these prototypes helped shape our final model,
which is described below.

Mobility Network: One input to our placement model is
a dynamic mobility network which can be represented as a
bipartite graph G(V,E), where V is the set of nodes and
E is the set of time-varying edges. V is the union of two
disjoint sets C = {c1, ..., cm} and P = {P1, ..., Pn}. Here
C represents the set of CBGs, and P is the set of POIs in the
dataset. Each edge (ci, pj) is associated with a weight wt

ij ,
the number of people from ci visiting pj at time t.

Let D = {d1, d2, ...} be a set of demographic groups of
interest. Each CBG ci is associated with its overall popula-
tion Ni and the population Nk

i , which is specific to demo-
graphic group dk (where dk ∈ D). Each CBG ci is also
associated with Mi, the number of mobile devices from ci
captured by SafeGraph. Subsequently, each POI pj is also
associated with a small geographic area denoted by Sj and
a large region indicated by Lj . In our final model described
below, each small geographic area is an L14 cell of Google’s
S2 geometry as described in Section and each large region
is a county. Therefore, we use these notations for denoting
the L14 cell and county also in subsequent paragraphs.

Our placement model takes the dynamic bipartite graph
generated from SafeGraph and a set of demographic groups

2https://s2geometry.io/
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of interest, and generates as output a ranked list of areas as
potential candidates for setting up mobile vaccination units
within each larger region. This is performed as follows:
1. First, we adjust the weights along the edges of the graph

to estimate the number of actual visits to each POI to mit-
igate the under-reporting issue discussed in . Due to this
issue, the actual number of visits is higher than the re-
ported number of visits. This issue is addressed by up-
weighting the visits along each edge as : U t

ij = wt
ij

Ni

Mi

2. Second, we adjust the weights for each demographic
group dk by obtaining an apportioned estimate of how
many people of that group from CBG ci visited a POI pj .
In other words, we apportion the visit along the edge for
a particular demographic dk as : Atk

ij = U t
ij

Nk
i

Ni

3. Third, each area (L14 cell) within a region (county) is
ranked based on the apportioned visits to the POIs within
that cell. Let S = {s1, s2, ...} be the set of all distinct ar-
eas. Then, we aggregate the apportioned number of visits
to the POIs of a particular L14 cell sL and calculate its
visit count at time t for a particular demographic group
dk as: I(sL, t, k) =

∑
pj∈P

∑
ci∈C Atk

ij 1sL(Sj)

where 1sL(Sj) is 1 when Sj = sL and 0 otherwise.
4. Finally, we group each area (L14 cell) Sj by their cor-

responding region (county) Lj , then sort by their visit
counts. For each county, the 25 top-ranked areas are re-
ported as candidate sites. The conceptual pipeline for the
model is presented in Figure 1a.

Demographic Acceptance/Hesitancy
Even if vaccination units are placed in easily accessible
locations, some individuals may be unwilling or afraid to
get vaccinated (CNN 2021; PBS 2021). We employ a
simulation-based approach to infer hesitancy levels of dif-
ferent demographic groups at the county level; this approach
is described in the extended version of this paper (Mehrab
et al. 2021). After the simulation, for each timestamp t, each
CBG Ci and a demographic group d, we have the popula-
tion count, number of individuals who had at least one dose
of vaccine V t

id, and the estimated number of hesitant indi-
viduals as per the calibrated model Ht

id. In this section, we
describe how we incorporate these values into our model.

Overcoming the hesitancy threshold in areas where vac-
cine acceptance is low can be a challenge; for this reason,
placing mobile sites in these areas may not be the best strat-
egy for maximizing uptake. However, hesitant people may
be influenced to take the vaccine if they see their peers get-
ting vaccinated (i.e. peer pressure). Considering these fac-
tors, (i) we pick locations with high foot traffic, (ii) we also
give higher priority to areas with greater numbers of unvac-
cinated individuals, and (iii) if vaccine-hesitant people can
be influenced by peer pressure, then we want to lower prior-
ity in areas where most of the unvaccinated are hesitant.

Based on this, we calculate an updated apportioned
weight At

ij by incorporating hesitancy data from the origi-
nal apportioned weight At

ij as: At
ij = At

ij ∗Rt
id ∗Xt

id

Here, Rt
id is the ratio of the unvaccinated individuals to

the total population of demographic group d in CBG Ci at

time t. Xt
id is the ratio of vaccine-accepting individuals to

vaccine-hesitant individuals in the population.
Updating the apportioned weight in this approach ensures

that places with high mobility are still given importance At
ij ,

priority is reduced for CBGs where a majority of the popula-
tion is vaccinated Rt

id, and a good balance between accept-
ing and hesitant populations is maintained.

Implementation
Due to the large volume of the SafeGraph Weekly Patterns
data, upweight and apportion are done on separate chunks
of the complete dataset in parallel jobs. We also filter out
CBGs and POIs outside of Virginia and associate the re-
maining POIs with an L14 cell during this step. Afterwards,
the output from each parallel job is concatenated into a sin-
gle dataset, and the visit counts to each POI are aggregated
by their corresponding L14 cells. Then, we generate a CSV
file for each demographic group containing the S2 identifier
of each L14 cell, latitude and longitude of the centroid of
that cell, and its visit count. The L14 cells are ranked based
on their visit count for each county. The top 25 cell loca-
tions per county are also shown in HTML maps, one for each
demographic group, for ease of visualization. In Figure 1b
and 1c, we display sample HTMLs generated by our model
for the week of June 21 - June 27 showing some of the rec-
ommended locations for the deployment of mobile vaccina-
tion sites in Danville City for two demographic groups.

Our model is operationalized to deliver these CSV and
HTML files to VDH weekly, which they are using currently
to target the 10 health districts with the lowest vaccination
rates. Based on guidance from VDH, we are currently deliv-
ering recommendations for the target demographic groups
Ethnicity Latinx (L), Race Black (B), and populations within
the ages of 20 to 39 (A1), 20 to 29 (A2), and 30 to 39 (A3).
We also use cumulative vaccination data from VDH to gen-
erate recommendations targeting unvaccinated (U) people.
These, along with the population group ”Whole population”
(W) which considers foot traffic only, means we deliver rec-
ommendations for a total of seven population groups.

Analysis
Comparison of Model Recommendations Across
Demographics and Temporality
This section presents some key insights obtained from anal-
yses of our model output conducted at state level and across
each health district. Detailed discussion on these results are
covered in the extended version (Mehrab et al. 2021).

First, we present comparative analyses across different
demographic groups at the state level. Figure 2a tabulates the
number of common recommendations across the top 25 rec-
ommended sites in Virginia for pairs of demographic groups
for the week of July 19 - July 25. We observe only two
common recommended areas between L and B, indicating
that frequently visited locations by these two demographic
groups differ quite a bit. We also find that the locations fre-
quented by B are quite different compared to those of the
other demographic groups. Therefore, it is worthwhile to
consider customized recommendations for different groups.
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(a) Number of common areas. (b) AMD (km).

Figure 2: Statewide comparison of recommended places
across demographic groups for the July 28 delivery.

Over the course of our weekly deliveries to VDH, we
also noticed that recommended sites varied across different
weeks. Figure 3a and 3b show variations for the top 25 rec-
ommended areas over a two-month delivery period for de-
mographic groups W and L, respectively. Interestingly, the
recommended areas are largely similar for the four weeks
of June, then again across the four weeks of July. But if we
compare any week in June to any week in July, the recom-
mendations differ significantly. This suggests that mobility
patterns changed after June going into the month of July. The
state of emergency mandated by Virginia ending on June 30
may be a possible cause for this change in mobility pattern.

Upon further study, we found that the “different” L14
cells often shared a border, suggesting that aggregated foot
traffic in those cells came from adjacent POIs. Therefore,
instead of looking at common areas, we examined how far
apart highly-ranked areas were relative to each other by cal-
culating the average minimum distance (AMD) between two
sets of areas. The two sets can either be the top 25 areas for
two groups in a week or the top 25 areas for two different
weeks for a particular group, depending upon the analysis
involved. We calculated AMD by matching each area in one
set with its closest area in other set and taking average haver-
sine distance of the matched areas based on their centroids.

We find that while the monthly pattern is still observable
for W (Figure 3c), it is not the case for L (Figure 3d). This
is contrary to the similarity observed in Figure 3a and Fig-
ure 3b. Furthermore, the AMD between areas are quite con-
centrated for L in Figure 3d while the AMD is high between
areas recommended for L and other demographic groups
(Figure 2b). This indicates that while the frequently visited
locations by Latinx individuals are comparatively far away
from other demographic groups, the locations themselves
visited by Latinx individuals remain relatively close to each
other across different weeks.

Acceptance/Hesitancy
In this section, we analyze the effect of incorporating hes-
itancy into our model by examining the recommended mo-
bile site placements for B and L. We refer to our base model
as MB and the hesitancy-incorporated model as MH .

First, we observe the number of common recommenda-
tions between the two implementations of the model, MB

and MH . We compare from the top 1 to the top 100 areas
recommended by both models and find there are more differ-

ences across the models between the recommended areas for
the group B than group L (left y-axis of Figure 4a). For ex-
ample, MB and MH have only two common areas between
their recommended top 25 areas for group B, while there are
17 common areas for L. This indicates that many of the ar-
eas recommended by the base model for the Black race see
high percentages of vaccine-hesitant individuals, while this
phenomenon is less evident for the Latinx ethnicity group.

To explore this further, we looked at the AMD of the two
sets of recommended areas considering from the top 1 to
top 100 areas. We see that the two top areas for B in the
two models are highly disparate (right y-axis of Figure 4a).
For example, the top recommended area by MB is in Vir-
ginia Beach, whereas the top recommended area by MH is
in Stafford, which is about 200km from Virginia Beach.

Finally, we visualize the top 100 areas recommended by
both models on a map. For B, we see that while many areas
in the southern part of Virginia are recommended by MB ,
the areas recommended by MH are mostly concentrated
within the Central and Northern parts of Virginia. It is also
interesting that MH does not recommend any area in Vir-
ginia Beach even within its top 100 recommendations, while
the area was recommended highly by MB (Figure 4). The
model is much less sensitive to the Ethnicity Latinx group,
as the map tells us that the recommended areas are mostly
the same in both versions of the model (Figure 4c).

Validation Study
The absence of ground truth data about the accessibility of
our recommended areas made the evaluation of our strategy
a bit involved. However, VDH provided a list of 147 mo-
bile sites deployed from May 19 to June 30, and the num-
ber of daily doses administered at those sites, which we
used to retrospectively analyze the effectiveness of our strat-
egy. We looked at the corroboration of our recommenda-
tions with these deployed sites using the recommendations
for B over the month of June. The results were also similar
for L, which we show in the extended version (Mehrab et al.
2021). Specifically, for each deployed site, we looked at our
closest recommended area and found that most of the de-
ployed sites were within 1km of at least one of our recom-
mended areas, suggesting that either our placement strategy
led to selection of these sites, or the original selection strat-
egy and our strategy corroborated each other to some extent.

To evaluate the effectiveness of these conforming sites
with respect to vaccine administration, we compared the
sites within 1km of at least one of our recommended ar-
eas with the remaining sites in terms of doses administered.
We find that, in general, sites close to our recommended ar-
eas administered higher numbers of doses on average. (Fig-
ure 5b). This indicates that our recommended areas are in-
deed more accessible, and it is probable that using our place-
ment strategy could help policymakers to increase uptake
among targeted demographic groups.

Discussion
In this work, we have devised a data-driven, equity support-
ive, dynamic, rule-based recommendation model for the so-
cial good that considers evolving mobility patterns to find a
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(a) Number of common areas
across delivery weeks for W.

(b) Number of common areas
across delivery weeks for L.

(c) AMD (km) across delivery
weeks for W.

(d) AMD (km) across delivery
weeks for L.

Figure 3: Statewide comparison of recommended places across delivery weeks.

(a) Comparison of top 100 places. (b) Heatmap for B by MB (left) and MH (right). (c) Heatmap for L by MB (left) and MH (right).

Figure 4: Number of common areas and AMD for areas recommended by MB and MH (Figure 4a) and heatmaps of areas
recommended by MB and MH for Race Black (B) and Ethnicity Latinx (L) (Figures 4b and 4c).

(a) Conformity of our recom-
mendations with deployed sites.

(b) Comparison of doses admin-
istered in sites.

Figure 5: Effectiveness of our placement strategy.

real-time placement strategy for making vaccines more ac-
cessible to targeted demographic groups. This model has
been operational since early June 2021, and, since then,
we have delivered mobile vaccination recommendations to
VDH every week. Our strategy is simple and transparent, yet
effective. There are some additional takeaways from this ex-
perience that are worth noting, however.

First, the target demographic groups are divergent in their
mobility, alluding to the necessity of a targeted ranking of
locations. Similarly, depending on the target group, con-
sidering hesitancy may be necessary. Second, trends at the
state level do not carry through at finer resolutions. Third,
while mobility may differ across demographic groups, it
stays comparatively stable over time for a particular group.
Fourth, although our research focuses on the Common-
wealth of Virginia, this approach can be generalized for any
other US state, which we leave as future work.

There are some limitations to our work. The absence of

data made it difficult to validate our work against actual vac-
cination rates at the recommended sites; however, our site
recommendations compared favorably with the sites placed
by VDH where data was available. Our model also assumes
that people from a given CBG who frequent these L14 loca-
tions are demographically similar to the population of that
CBG; this may not hold true in all cases. In the future, we
want to factor this into our model by taking into consider-
ation that the mobility of a particular demographic group
from a CBG to a POI not only depends on the demographic
distribution of the CBG, but also the category of the POI.
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