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Abstract

Magnetic Resonance Imaging (MRI) is a non-invasive imag-
ing modality that is a cornerstone of diagnostic radiology.
Clinical MRI scans capture a single image to highlight a sin-
gle tissue property. The intensity difference between different
regions of this image shows disease states that a radiologist
can interpret. Magnetic Resonance Fingerprinting (MRF) is
a recently proposed novel MRI technique. MRF allows the
capture of multiple MR images in a single scan. This enables
clinicians to analyze multiple tissue properties, potentially in-
creasing the sensitivity of diagnosis and also allowing for the
diagnosis of novel diseases. However, it is more challenging
to analyze MRF images, because MRF produces much larger
and noisier data than MRI. In this paper, we show how AI
techniques can help solve this problem. Using a hybrid search
strategy combining simulated annealing with pattern search,
we show it is possible to tractably reconstruct multiple tis-
sue properties from a single MRF image. This is a key step
towards the deployment of MRF for radiological diagnosis.

Introduction
Magnetic Resonance Imaging (MRI) is an indispensable
clinical tool for diagnosing and tracking several disease
states noninvasively (Larsson et al. 1989; Kim et al. 2000;
Jack et al. 2008). Radio frequency (RF) transmitter coils in-
side the scanner excite protons by disrupting tfrheir align-
ment with a strong magnetic field (Brown et al. 2014). Over
time, these excited protons return to their initial state via
relaxation processes that emit RF radiation that is captured
using receiver coils. From the relaxation processes, we can
capture quantitative data characteristic of the tissue. The lon-
gitudinal relaxation time T1 (milliseconds) is a measure of
time elapsed by excited protons to align back to the strong
magnetic field. The transverse relaxation time T2 ((millisec-
onds) is the time taken by protons spinning perpendicular to
the main magnetic field to go out of phase with each other.
Besides T1 and T2, MRI can also capture secondary proper-
ties, such as proton density and proton diffusion. We collec-
tively refer to these as tissue properties (Ma et al. 2013).

In an MRI scan, the signal at each pixel in an image cap-
tures the frequency and phase information of protons. We
can then construct an intensity image by applying a Fourier
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Figure 1: Image of a patient with brain haemorrhage as cap-
tured by a T1w scan in axial and sagittal planes. The large
hyperintense blob indicates area affected by haemorrhag-
ing (Ginat and Meyers 2012).

transform to the captured signal. This transformed intensity
image does not in itself represent the values of tissue proper-
ties. Instead, this intensity image is used to identify regions
of increased signal (hyperintense) or decreased signal (hy-
pointense) compared to the normal (tissue lacking observ-
able abnormalities). In the MR literature, these images are
referred as “weighted” images to signify that a single tissue
property of interest dominates the image. For example, Fig-
ure 1 shows a T1-weighted (T1w) image of the brain of a
patient suffering from brain hemorrhaging (Ginat and Mey-
ers 2012). The hyperintense blob in the image represents the
extent and size of abnormality, which is interpreted by a clin-
ician to make diagnostic decisions.

Individual clinical T1w and T2w MRI images are quali-
tative because they can change across scans. This is because
the precise image depends on several factors, such as coil
sensitivities, system imperfections and environmental vari-
ations. To obtain a reliable quantitative tissue property that
is invariant to such factors, multiple sequential MR scans
must be made for a tissue property. Then, the data for each
pixel in each sequence of images is fit to a known behavioral
curve for the chosen tissue property. This allows inferring
the value of the tissue property for that pixel. This procedure
is shown schematically in Figure 2. However, this process is
expensive and time consuming because multiple scans must
be made for each tissue property of interest. This limits ra-
diologists from performing quantitative scans in clinical set-
tings, or from using multiple tissue properties in diagnosis.
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Figure 2: Traditional tissue property mapping pipeline.
Here, several images (a) are generated that are dominated by
a single tissue property, for example T1. Each pixel along the
time axis is fit to an exponential curve. This allows inferring
the values of T1 (Yao et al. 2018).

To address some of these drawbacks, a novel technique
called Magnetic Resonance Fingerprinting (MRF) (Ma et al.
2013) has recently been introduced. MRF, described in de-
tail in the next section, is a novel MRI framework that al-
lows acquisition of multiple tissue property images in a sin-
gle MR scan. Multiple tissue property images from a sin-
gle scan decreases costs and discomfort faced by patients
and can increase sensitivity in diagnosis. Access to multi-
ple tissue properties may also allow for the use of MRF in
novel diagnostic procedures as yet unknown. However, re-
constructing tissue properties from MRF images is an algo-
rithmic challenge. MRF produces noisy images for which
there are no known mathematical models that can generate
tissue property maps. Therefore, the traditional approach of
fitting a curve to recover the tissue property cannot be ap-
plied. Instead, the state of the art is to use a template dictio-
nary matching approach for reconstructing tissue properties
(described in more detail below). This strategy, although ro-
bust (Jiang et al. 2017) does not scale well as the number
of tissue properties increases. This is because both time and
space requirements of this procedure are exponential in the
number of tissue properties. Thus, a different approach is
required. Our key insight is to observe that stochastic local
search techniques in AI have been successfully used in many
previous applications involving high dimensional parameter
estimation. Thus we propose an approach based on this idea
to interpret MRF images in a tractable manner. This is a key
step toward the clinical deployment of MRF.

In the following section, we first explain how MRF ac-
quires scans. Then we introduce our hybrid stochastic search
approach to recover multiple tissue properties from a single
MRF scan. We show empirically that our approach is com-
parable to template dictionary matching for recovering two
tissue properties (Ma et al. 2013). We then show that the
approach can estimate six tissue properties, which is impos-
sible with state of the art methods. Finally we discuss re-
maining issues and the path to deployment of this approach.

Magnetic Resonance Fingerprinting
There are some basic similarities and fundamental differ-
ences between MRI signal acquisition and MRF signal ac-
quisition. During the acquisition step in MRI, a pre-defined
sequence of RF pulses on the RF coil in the scanner is ex-
ecuted. This is referred to in MR literature as a pulse se-
quence (Bernstein, King, and Zhou 2004). A set of pulse se-

quence parameters controls the amplitude, phase and delays
in a fundamental period of the pulse sequence. Designing
the pulse sequence parameters allows us to collect MR sig-
nal in predictable ways to increase the sensitivity of the cap-
tured signal to a single tissue property. For instance, in T1w
imaging, a pulse sequence is played that can capture differ-
ent points on the exponential decay curve of T1, shown in
Figure 2. In MRI, there is a time delay between sampling of
subsequent points on the exponential curve. This delay al-
lows the protons to recover back to their original position.
This delay is unavoidable during a conventional MRI. In
MRF, we avoid this “dead time” by playing the pulse se-
quence with no delay, choosing the sequence in a way so
that each pulse produces a different excitation in the under-
lying Fourier space. Different pulses can be sensitive to dif-
ferent tissue properties. This is one of the primary strengths
of MRF; however, it implies that we are not sampling the
exponential curve but a more complex signal trajectory. Fur-
ther, the pulse sequence parameters at each fundamental pe-
riod allow sampling of the frequencies and phases of the un-
derlying Fourier space. In MRI, the Fourier space is sampled
at a rate that is at or above the Nyquist rate. To decrease the
time required to scan, in MRF, we sample a fraction of the
Fourier space (usually at 1/24th of the Nyquist rate). The
pattern in which we scan the image is an active research
area (Körzdörfer et al. 2019). This decreases time to capture
a single image, but increases the noise in the image that is
captured at the scanner (Figure 3a). If we assume each image
is of size R × R, we capture T images for each pulse in the
pulse sequence. The time taken to capture these T images is
equivalent to time taken to capture three to five images cap-
tured during a conventional MRI scan. However, because of
the way MRF pulse sequences are designed, this allows re-
covery of multiple tissue properties from a single scan that
takes time comparable to a conventional MRI scan.

Tissue Parameter Recovery using Explicit
Dictionary
In standard MRI, a known mathematical model is used to
estimate the tissue property. For example, in T1 mapping,
we fit a parametric exponential curve to the captured sam-
ples to recover the tissue property value (Figure 2). In MRF,
each tissue parameter does not follow a known closed form
curve. To solve this problem, (Ma et al. 2013) propose an
explicit template dictionary based approach. The underlying
idea is to simulate all known signal trajectories given by tis-
sue parameter values. NMR Bloch equations (Bloch 1946)
are differential equations that characterize precession of pro-
tons under the influence RF signal amplitude and phase. This
allows simulating proton precession at δ time step (usually
1ms). In such Monte Carlo simulations, we allow multiple
protons to precess and relax for each δ time step in a pulse
sequence. The generated signal from the simulation is col-
lected for each set of tissue property values to generate a
template dictionary (Figure 3c). Next, we match the cap-
tured MRF signal trajectories (Figure 3b) with the template
dictionary to retrieve the tissue property values. The match is
performed by taking an inner product between the observed
signal trajectory and each element of the dictionary. The dot
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Figure 3: MRF tissue property mapping pipeline. Multiple noisy images (a) are captured at the scanner. Individual signals for
each pixel (b) are compared with an explicit dictionary (c) to recover the tissue properties generating the signals. The generated
maps represent tissue properties such as T1 (d), T2 (e), B1 mapping (f) and proton density (g) respectively (Ma et al. 2013).

product is a measure of the similarity of the two trajectories.
The parameter yielding the highest dot product (most simi-
lar known trajectory) is selected as the tissue parameter. This
process is repeated for each pixel in the input.

The original MRF paper describes reconstruction of two
tissue properties, T1 and T2. Several authors have extended
dictionary based matching to three or four tissue proper-
ties (Deshmane et al. 2019; Wang et al. 2019). While pri-
mary focus has been in increasing the speed of reconstruc-
tion, most of these methods (Cauley et al. 2015; Yang et al.
2018; McGivney et al. 2014) still depend on dictionary gen-
eration for tissue property recovery. Generating a large dic-
tionary with millions of entries is slow and takes several gi-
gabytes of memory during runtime. For example, we need
to generate 196, 000 elements to get a precision of about
1−2% in three tissue properties (Cauley et al. 2015). It takes
2 hours on an AMD based octa-core CPU and uses 0.8GB of
memory during runtime to generate the dictionary. This may
be tolerable for three tissue properties. With an increase in
number of tissue properties, however, the dictionary grows
exponentially large and tissue property recovery using such
an explicit matching technique becomes infeasible.

Hybrid Search for Recovering Multiple Tissue
Properties from MRF Images

In our work, we use the pulse sequence used in prior
work (Hamilton, Griswold, and Seiberlich 2015) to generate
six tissue properties that authors call MRF with exchange
(MRF-X). The six tissue properties represent characteristics
of two tissue environments that have an exchange of protons
with each other. Each compartment is an independent tissue
environment. For example, if a single pixel includes white
matter region in brain, it has two independent environments,

myelin (fat environment), and axon (non-fat environment).
We want to estimate the tissue properties T1 and T2 for each
separate environment, rate of exchange of protons between
the environments (τ ) and fractional volume occupied by the
environments (ρ). To simplify notation, we will call T1 es-
timated in one of the environments as T1a (fast relaxation)
and the other environment as T1b (slow relaxation). But we
would like to do this without an explicit dictionary. Our key
observation is that this is an optimization problem, and lo-
cal search, in particular stochastic local search techniques in
AI have been very successful at solving large optimization
problems in prior work. So we propose a stochastic hybrid
search method to provide a tractable alternative to dictionary
matching for tissue parameter recovery in the 6D case.

Let us define each pixel in an MRF-X image sequence of
size R × R × T as Xrst where (r, s, t) ∈ R × R × T are
the row, column and time-step index of the image sequence.
Each 1×1×T vector in time is a function of p tissue property
values. So, the input to the search technique is a (R×R)×T
image sequence and the output is (R × R) × p tissue prop-
erty maps. In our work we generate p = 6 tissue property
maps consisting of tissue properties T1a, T2a, T1b, T2b,
exchange rate (τ ) and volume fraction (ρ). The range of each
parameter is shown in Table 1. The objective function to be
maximized is defined in terms of the inner product as:

C =
〈X̂rs, Xrs〉
‖X̂rs‖2‖Xrs‖2

. (1)

The objective function measures the similarity as the co-
sine of the angle between the T -dimensional input signal
Xrs and the guess X̂rs. We note that function evaluation in
this task is computationally expensive. Since we cannot pre-
generate the dictionary, each function call involves running
a simulator to create the trajectory X̂rs at a new guess of the
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Algorithm 1 HybridSearch
(
X0, T0, S, k

0,K, p,MaxIter
)

for r = 1 to R {Iterating over row indices} do
for s = 1 to R {Iterating over column indices} do
i←− 0
while i ≤MaxIter do
{X l

rs} = GenerateHypercube
(
Xi

rs, k
0, p

)
if random(0, 1) < γ then

Xi+1
rs ←− X l̂

rs for l̂ = argmax
l

〈Xl
rs,Srs〉

‖Xl
rs‖2‖Srs‖2

else
Xi+1

rs ←− X l̂
rs for l̂ = random(1, 2p)

i←− i+ 1
X̂rs = PatternSearch

(
Xi

rs, Srs, k
0,K, p,MaxIter

)
Return X̂

Algorithm 2 GenerateHypercube (X, δ, d)

for i = 1 to d do
Xnew[i]← X[i] + δ
Xnew[2i]← X[i]− δ

Return {Xi
new}∀i ∈ (1, . . . , 2d)

six tissue properties. Each signal is generated using Monte
Carlo simulations of 200 protons and subjected to the same
MRF-X pulse sequence used in the scanner. For each com-
bination of tissue properties, a unique signal is generated
which is then used in the objective function. This is an un-
avoidable space-time tradeoff. However, because the search
space is very large and very noisy, it is important to initialize
the search from a reasonable starting point. To do this we use
a small fixed dictionary of 10000 elements, uniformly dis-
tributed across the search space. Given a new trajectory, we
find the closest match in this initialization dictionary using
the objective function. We denote this initial guess as X0

rs.

Tissue
property

Minimum
value

Maximum
value Step Size

T1a(ms) 100 1200 10
T2a(ms) 20 120 5
T1b(ms) 1200 3000 10
T2b(ms) 120 300 5

log10(τ(s−1)) -2 0 -1
log10(τ(s−1)) 0 1 0.6
log10(τ(s−1)) 1 2 0.6

ρ(%) 1 99 2

Table 1: Tissue property value bounds for the search space.

The approach we use is shown in Algorithm 1. This takes
as input an initial guess X0, signal S ∈ R×S×T , Temper-
ature parameter T0, and maximum iterations MaxIter. It
additionally, takes parameters K, k0, and p, which represent
the maximum search distance, initial mesh size and num-
ber of tissue parameters, respectively. For each pixel in the
input image, we perform two searches in succession. The
first is Simulated Annealing. Simulated annealing (SA) is

Algorithm 3 PatternSearch
(
X0, S, k0,K, p,MaxIter

)
for r = 1 to R {Iterating over row indices} do

for s = 1 to R {Iterating over column indices} do
i← 0; k ← k0

while k ≤ K and i ≤MaxIter do
{X l

rs} = GenerateHypercube
(
Xi

rs, k, p
)

C1← 〈Xl
rs,Srs〉

‖Xl
rs‖2‖Srs‖2 ≥

〈Xi
rs,Srs〉

‖Xi
rs‖2‖Srs‖2 l ∈ (1, 2p)

C2← 〈Xl
rs,Srs〉

‖Xl
rs‖2‖Srs‖2 ≤

〈Xi
rs,Srs〉

‖Xi
rs‖2‖Srs‖2 ∀ l ∈ (1, 2p)

if C1 then
k ← 2k

Xi+1
rs ← X l̂

rs for l̂ = argmax
l

〈Xl
rs,Srs〉

‖Xl
rs‖2‖Srs‖2

else if C2 then
k ← k

2

Xi+1
rs ← Xi

rs
i← i+ 1

X̂rs ← Xi
rs

Return X̂

a stochastic search technique that is effective at searching
large, noisy search spaces. During this phase, we use simu-
lated annealing with an acceptance function defined as

γ =
1

1 + exp
(

∆
max(T0)

) (2)

where γ is the probability of acceptance, ∆ is the dif-
ference between function value at new point and old point,
and T0 is the temperature of simulated annealing. Using a
step size as shown in Table 1, a set of neighbors to the cur-
rent guess is chosen by the GenerateHypercube function
(Algorithm 2) by taking a step with each parameter value.
We evaluate the objective function at each of the neigh-
bors and choose to move in the direction increasing func-
tional value with probability γ, or randomly with probabil-
ity 1− γ. Simulated annealing terminates when it reaches a
predefined number of function evaluations. When it termi-
nates, the point obtained may still not be a (local) maximum
of the objective function because of the stochastic nature of
the algorithm. At this point, we use a second, deterministic
search called pattern search which refines the solution found
by simulated annealing.

Generalized pattern search (Audet and Dennis Jr 2002) is
a derivative-free greedy search with adjustable length scales
to find an optimum solution. The goal of such a method is
to avoid explicit calculation of gradient on the noisy high
dimensional error surface.

We provide the pseudo-code of the pattern search algo-
rithm (Algorithm 3). The algorithm iterates over each pixel
of the MRF-X image to generate the tissue property maps.
We initialize the algorithm with the best guess from the sim-
ulated annealing search. The pattern search algorithm also
takes as inputK,MaxIter, and p, which represent the max-
imum search distance, maximum iterations and number of
parameters, respectively. We use a length parameter k0 that
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Figure 4: Box and Whisker plot of tissue property values T1
and T2, comparing Hybrid Search with dictionary matching
(“Direct match”). The plots represent the mean squared er-
ror.

is initialized to a preset length at the start of the iteration. As
before, GenerateHypercube generates the neighbors of the
current point, which are on the edge of the hypercube cen-
tered around the current guess. The algorithm accepts a new
point if the function value is larger than the current guess.
The current guess is now shifted to the new point, and the
procedure repeated. If the current guess is larger than all
the neighbors, we choose the point with the largest function
value and cut the length parameter by half. Conversely if the
current guess is smaller than all the neighbors, the length
parameter is doubled. When the algorithm exceeds the max-
imum iterations or maximum search distance, the algorithm
exits and returns the best guess X̂ . This is then returned as
the found solution by the Hybrid Search procedure.

Results and Discussion
Our primary hypothesis is that using our Hybrid Search ap-
proach, we will be able to tractably extract locally optimal
values for six tissue properties from each pixel of MRF im-
ages, something which is impossible with the current state of
the art. First, we validate the performance of our approach
when just recovering two tissue properties, T1 and T2, from
MRF data. In this case we can also use the dictionary match-
ing procedure, which is the state of the art. We generated
data for 5000 (T1, T2) targets using pulse sequences simi-
lar to previous work (Ma et al. 2013). White Gaussian noise
with SNR 5.0 was added to simulate realistic signals cap-
tured at the scanner. Each method produces estimated (T1,
T2) values and we then compute the normalized root mean
squared error for each property. The results are shown in
Figure 4.

From the figure, we observe that both approaches produce
excellent results in this case, typically within 2− 4% of the
target values. This is expected for dictionary matching, and
shows that our approach can provide similar results. Perhaps
surprisingly, our approach slightly (though not significantly)
outperforms the dictionary matching procedure on average
by about 1%. This may be because a step size is necessary
to generate a dictionary. We used a step size of 5ms in T1

Figure 5: Box and Whisker plot of tissue property values
T1a, T2a, T1b, T2b, τ , ρ, comparing Hybrid Search and L-
BFGS. The plots represent the mean squared error.

and 3ms in T2. However, in the pattern search procedure,
it is possible to search at a finer granularity and find more
accurate matches.

We next evaluate our approach with the task of recovering
six tissue properties T1a, T2a, T1b, T2b, τ , and ρ. We again
generated 50000 targets with values for the six tissue prop-
erties uniformly distributed across the entire search space,
and used MRF-X pulse sequence parameters used in (Hamil-
ton, Griswold, and Seiberlich 2015). Because of this distri-
bution of targets, we are evaluating the approach in regions
where the MRF-X sequence has high sensitivity as well
as low sensitivity. This range covers the values that were
observed in normal white matter, grey matter, and abnor-
malities, such as meningioma. White Gaussian noise with
SNR 5.0 was added to simulate realistic signals captured at
the scanner. We provide a baseline using L-BFGS (Fletcher
1987). This is a deterministic gradient-based quasi-Newton
optimization method. In this case, since the gradient is not
computable in closed form, we use numerical gradient es-
timation at each candidate point to perform the search. We
also provide summary statistics for mean and median abso-
lute error over all six properties (T1a, T2a, T1b, T2b, τ , and
ρ) in Table 2 for “idealized” dictionary matching, L-BFGS
and Hybrid Search. In this case, true dictionary matching is
impossible. However, we create an “idealized” comparison
by creating a hypercube centered around each target point
with the distance from center in each direction, T1a=300ms,
T2a=20ms, T1b=300ms, T2b=20ms, τ=0.3s−1, ρ=6. Then
we generate the dictionary within this hypercube and per-
form matching with it. Obviously, in real scenarios, the true
targets are unknown, so this approach cannot be used. How-
ever, it gives us an “ideal” lower bound of how well it is
possible to do if the initial point of the optimizer lies in this
hypercube. The results are shown in Figure 5 and Table 2.

From the figure, we first observe that the errors in re-
covering the target values are significantly higher in the 6D
case than in the 2D case. This is because of two reasons:
first, the noisiness of the MRF signal means that the search
space is significantly non-smooth. Relatively close tissue
properties can have very different objective function values,
which is challenging to handle. Second, while we are using a
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Algorithms Dictionary
Matching L-BFGS Hybrid

Search
Tissue

Properties Me Md Me Md Me Md

T1a 0.13 0.11 0.39 0.37 0.24 0.25
T2a 0.18 0.12 0.52 0.39 0.36 0.36
T1b 0.07 0.07 0.31 0.25 0.24 0.25
T2b 0.16 0.15 0.48 0.35 0.27 0.25
τ 0.07 0.02 3.96 0.61 2.75 0.68
ρ 0.3 0.14 1.8 0.59 1.95 0.37

Table 2: Mean (Me) and median (Md) absolute error over
six tissue properties for dictionary matching, L-BFGS, and
Hybrid Search.

fixed pulse sequence, the targets are widely distributed. This
means that the pulse sequence may not be sensitive to many
targets, increasing the error. From the component-wise error,
we observe that some of the tissue properties are estimated
better than others. For example, T1a, T1b, T2a and T2b are
relatively more accurate than τ and ρ. This likely means that
the objective function was more sensitive to the last two val-
ues than the first four. Finally, we observe that the gradient-
based baseline, L-BFGS, generally returned solutions that
were less accurate than our approach. Again, this indicates a
noisy non-smooth search space where deterministic gradient
search can easily be trapped in local optima.

From the table, we observe that the “ideal” dictionary
match has better mean and median absolute error than L-
BFGS and Hybrid Search. This is expected, since it is do-
ing an exhaustive search in a small, correct neighborhood of
the target. Along some axes, such as T1a and T2b, Hybrid
Search is only ∼ 10% worse than an exhaustive match even
though it generally does not start so close to the target as the
“ideal” match, which is very promising. Along other axes
such as τ , there may be room for improvement. While there
remain opportunities for improvement, our approach is still
able to solve these problems and recover six tissue properties
tractably, which is an advance over the state of the art.

Path to Deployment
Challenges remain to be addressed on the path to deploy-
ment for MRF-X. As we see above, while our approach
is tractable, its accuracy should be improved. Part of this
must involve pulse sequence optimization, because if the se-
quence used is nowhere sensitive to the target properties, it
is difficult for the search to recover the target. This is an it-
erative process, but the results can be applied at any stage to
the clinical setting through computer-aided radiological di-
agnosis applications. These are already used by by radiolo-
gists to help diagnosis procedures. Figure 6 shows an exam-
ple tool UI enhanced with the tissue properties we recover.
We envision that our approach will allow a radiologist to
select a region of interest from a standard T1w/T2w image
where he or she suspects an abnormality. The tool will then
reconstruct the other tissue properties of that region using
our approach and display the tissue property maps of the se-

Figure 6: Proposed reconstruction tool for visualizing six tis-
sue property maps from MRF scan. In the GUI, user selects
a region that needs to be reconstructed. Selected tissue prop-
erty maps are generated as shown in the GUI.

lected region. This will allow for rapid diagnosis when ra-
diologist believes there is a need for further investigation
but conserves computational resources when there is cer-
tainty in negative diagnosis. Figure 6 shows a T1w image
and a T2w image of a patient suffering from meningioma.
When a radiologist selects a region of interest as shown in
the image, we provide six tissue property maps of the region.
The figure illustrates normal region tissue property values
with T1a=465ms, T2a=26ms, T1b=1070ms, T2b=117ms,
τ=7.14s−1, ρ=30 and for abnormal region as T1a=375ms,
T2a=20ms, T1b=1270ms, T2b=140ms, τ=0.6s−1, ρ=25.
These values were chosen due to their clinical significance
with compartment A representing fat and compartment B
representing non-fat tissue in white matter region of the
brain (Deoni et al. 2008). We hypothesize that access to
more tissue properties will increase diagnostic sensitivity
and provide as yet unknown diagnostic opportunities for
other diseases.

Conclusions
In our work, we have discussed an important emerging
application, reconstructing multiple tissue properties using
a single MRF scan. We introduce a hybrid search algo-
rithm that uses a combination of stochastic and determin-
istic search strategies to enable recovery of 6 tissue proper-
ties that were intractable previously. A path to deployment
of our method in the clinic is to extend computer-aided ra-
diological diagnosis tools to show the reconstructed tissue
property maps, improving diagnostic sensitivity and possi-
bly enabling new diagnosis procedures.
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