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Abstract

The cost of developing new drugs is estimated at billions of
dollars per year. Identification of new molecules for drugs in-
volves scanning existing bio-medical literature for relevant
information. As the potential drug molecule is novel, retrieval
of relevant information using a simple direct search is less
likely to be productive. Identifying relevant papers is there-
fore a more complex and challenging task, which requires
searching for information on molecules with similar charac-
teristics to the novel drug. In this paper, we present the novel
task of ranking documents based on novel molecule queries.
Given a chemical molecular structure, we wish to rank med-
ical papers that will contribute to a researcher’s understand-
ing of the novel molecule drug potential. We present a set
of ranking algorithms and molecular embeddings to address
the task. An extensive evaluation of the algorithms is per-
formed over the molecular embeddings, studying their per-
formance on a benchmark retrieval corpus, which we share
with the community. Additionally, we introduce a heteroge-
neous edge-labeled graph embedding approach to address the
molecule ranking task. Our evaluation shows that the pro-
posed embedding model can significantly improve molecule
ranking methods. The system is currently deployed in a tar-
geted drug delivery and personalized medicine research lab-
oratory.

Introduction
Drug discovery is the process of identifying new medicines.
Once a drug candidate is identified, it is optimized to in-
crease affinity, efficacy, and stability, while reducing side
effects. A compound that passes the optimization will then
move to drug development process, prior to clinical trials.
The estimated cost of the process is 2 billion dollars and
it may last between 10 and 15 years, while only 0.1% of
the drugs that enter pre-clinical testing progress to human
testing, and only 20% of these are approved by the FDA
(Suresh and Basu 2008). One of the first steps of the drug
discovery process is the generation of candidate molecular
compounds. During this process, prior trials and publica-
tion regarding similar substances are reviewed in order to
ensure the novelty of the compound and evaluate its charac-
teristics. In this work, we present a similarity search algo-
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rithmic framework for drug discovery that can assist in this
process. Given a novel chemical molecular structure, which
has not been previously developed, we wish to identify and
rank medical papers most relevant to the molecule. For ex-
ample, suppose the year is 1970 and a researcher is devel-
oping Captopril, our query will be a molecule; in this ex-
ample the molecule is described using SMILES (Weininger
1988) string representation and the result should be a list of
relevant articles to this molecule. For example, papers dis-
cussing drugs or molecules with similar toxicity, effect etc.

We explore two types of embeddings for our query: struc-
tural embedding, which relates to the chemical structure of
the molecule and linguistic embedding, based on the con-
texts of the molecule in a large PubMed corpus. We present
a novel methodology to combine the two approaches by
constructing a graph G, with several types of nodes, rep-
resenting text documents, structural molecular fingerprints,
and molecules. The graph’s edges represent the similarity
between the different nodes. We leverage a graph embed-
ding algorithm to produce node representations using ran-
dom walks. This enables us to jointly learn representations
of both documents and molecules.

The contribution of this work is threefold: (1) We present
the novel task of learning to rank documents for newly de-
veloped molecules. To the best of our knowledge, we are the
first to address the problem of ranking medical papers for a
novel molecule; (2) We study several different ranking al-
gorithms for this task and present comparative empirical re-
sults; (3) We study several embedding approaches to repre-
sent the molecules and documents for this problem. Specifi-
cally, we present a novel graph-based embedding algorithm
that represents both documents and molecules in the same
space. Empirical results show this approach yields superior
results for the task across all ranking algorithms.

Related Work
With the development of deep learning, convolutional neu-
ral networks, initially developed for image recognition, were
successfully applied on molecular graphs (Coley et al. 2017)
and on 2D depictions of molecules (Goh et al. 2017).
At the same time, natural language processing techniques
were adopted to learn from classical molecule representa-
tions, e.g., molecular fingerprints (Wan and Zeng 2016),
SMILES (Olivecrona et al. 2017), and graph representations
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of compounds (Kearnes et al. 2016). In addition, the infor-
mation retrieval TF-IDF method was applied to ECFP for the
prediction of compound proteins (Wan and Zeng 2016) and
LDA was used for the modeling of chemical topics (Schnei-
der et al. 2017). Deep generative models opened up new
opportunities to leverage molecular embedding for unsuper-
vised tasks, such as the generation of molecules and the dis-
covery of drugs (Gómez-Bombarelli et al. 2018; Kadurin
et al. 2017; Harel and Radinsky 2018).Simple networks have
been used for discovering novel associations in medical and
biomedical papers (Swanson and Smalheiser 1999; Spangler
et al. 2014). Spangler et al. apply text mining techniques to
identify entities and relations relevant to a specific query. Al-
though numerous studies have been conducted in the broad
field, to the best of our knowledge, we are the first to present
the task of ranking documents given a novel query.

We construct a graph representing documents, molecules,
and molecular fingerprints and study several embedding
methods for our task. Network embedding has been shown
helpful in many applications, such as node classifica-
tion (Bhagat, Cormode, and Muthukrishnan 2011) and link
prediction (Liben-Nowell and Kleinberg 2007).

Encoder-decoder models have been proposed to address
network representation problems. To scale for large graphs,
several random-walk based approaches have been proposed.
The resulting walks generate candidate paths in the graph,
which are then used in a word2vec-based network rep-
resentation learning frameworks, such as DeepWalk (Per-
ozzi, Al-Rfou, and Skiena 2014), TADW (Cao, Lu, and
Xu 2015), LINE (Tang et al. 2015), and node2vec (Grover
and Leskovec 2016). The skip-gram model (Mikolov et al.
2013), used in these frameworks, aims to train a model
based on the context of each node.Thus Deepwalk, LINE,
and node2vec are not effective for representing heteroge-
neous networks, where some nodes are over-represented.
Intuitively, candidate paths will contain more nodes from
the over-represented group, thus embeddings for under-
represented groups will be less effective. In this work, for
example, text document nodes are over-represented as com-
pared to the chemical fingerprints. We present an embedding
that will prevent such bias and show empirical results for the
approach superiority as compared to the above state-of-the-
art approaches.

Molecule and Document Representation
In this section, we explore learning a representation that
maps both text documents and chemical structures into a
single embedding space. Capturing the chemical structure
along with the text allows, in turn, to better rank documents
for a new molecular query given as input to the search frame-
work.

The Molecule-Document Graph
We construct a weighted graph G, with three types of nodes:
(1) historically known molecules, M (2) molecular finger-
prints1, F , and (3) medical publications, D. An illustration

1Molecular fingerprints are a widely accepted way to represent
molecules for similarity related tasks. In our work we use ECFPs

Figure 1: Pipeline of molgraph2vec methods. The heteroge-
neous network (left). Random paths generated using meta-
path constraints (middle). Skip gram model for learning
node embedding (right).

of the graph is given in Figure 1. We define several types of
edges Ri and their corresponding weights wi, as follows:

Molecule Relation. Rm1→m2
: the edge’s weight is de-

fined as weightm1→m2
= sim(m1,m2), where sim is a

similarity function between the word representations of the
known drugs m1 ∈ M and m2 ∈ M as appears in arti-
cles. In our experiments, we use cosine similarity for sim
and word2vec for text representation of m1 and m2 (Arora,
Liang, and Ma 2017).

Document Relation. Rd1→d2 : the weight of the edge is
defined as weightd1→d2 = sim(d1, d2), where sim is a
similarity function between the text representations of the
paper d1 and the paper d2. For d1 and d2 we used word2vec
for text representation (Arora, Liang, and Ma 2017) and co-
sine similarity as the similarity function.

Fingerprint Relation. Rf1→f2 : the weight of the edge
is defined as weightf1→f2 = sim(f1, f2), where sim is a
similarity function between the chemical representations of
the fingerprint f1 ∈ F and the fingerprint f2 ∈ F . We use
cosine similarity as the similarity function and Morgan FP
embeddings as the embeddings of fi.

Molecule-Fingerprint Relation. Rm→f : the weight of
the edge is defined as weightm→f = sim(m, f), where
sim is a similarity function. Following the similarity func-
tion suggested by (Jaeger, Fulle, and Turk 2018), we con-
sider the number of times that the fingerprint f ∈ F appears
in the molecule m ∈ M as the weight.

Molecule-Document Relation. Rm→d: the weight of the
edge is defined as weightm→d = sim(m, d), where sim is
a similarity function between the text representations of the
drug m ∈ M and the paper d ∈ D. We use cosine similarity
as the similarity function and weighted word2vec for text
representation.

Heterogeneous Graph Embedding
The molecule-document graph poses a challenge, as it repre-
sents a weighted heterogeneous network with multiple types
of nodes, in our case molecules, fingerprints, and docu-
ments. Since the molecule-document graph is a highly un-
balanced graph, consisting of a high number of documents

or Morgan fingerprints (Rogers and Hahn 2010).
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and a significantly lower number of potential fingerprints,
classic random walks might lead to a bias towards paths
through document nodes only. Such paths might create in
turn biased embeddings that will not map well documents
and molecules into the same space, which is essential for
our task. A similar issue was observed in other heteroge-
neous networks as shown by (Sun et al. 2011).

Metapath2vec (Dong, Chawla, and Swami 2017) was re-
cently proposed for creating graph embeddings for het-
erogeneous networks. It extends the basic node2vec ap-
proach with metapath-based random walks. That is, the
random walk is constrained by a metapath. Formally, the
random walk between a node v1 and vn for a metapath
p = R1, . . . , Rn, where Ri is a label type as defined in
the previous section, might only take the form: v1

R1−−→
v2

R2−−→ . . .
Rn−−→ vn. The approach attempts to preserve both

the structure and semantics of a given heterogeneous net-
work. The random walks allow creating embeddings based
on the heterogeneous neighborhood of a node, which are
then leveraged using the classic skip-gram model for the
node embeddings. The method was shown to improve per-
formance for heterogeneous graphs.

Metapath2vec requires selecting a specific metapath
scheme p = R1, . . . , Rn to guide the random walks. For
example, (Dong, Chawla, and Swami 2017) surveyed quali-
tative metapath-based prior work and identified that for het-
erogeneous academic networks the most efficient metap-
aths are author-paper-author and author-paper-venue-paper-
author paths. However, no prior work has been done in the
field of molecule and document graph representation. In the
next section, we first extend the metapath2vec to support
weighted heterogeneous networks. We then present a novel
algorithm for heterogeneous networks when no metapath is
defined apriori.

The Optimization Problem We define the edge-labeled
heterogeneous graph feature learning problem as a maxi-
mum likelihood optimization problem. Our analysis is not
limited to (un)directed graphs or (un)weighted graphs. Let
G = (V,E,L) be a given edge-labeled heterogeneous graph
and let f : V → Rd be the desired function from nodes to
the feature representations we wish to learn. For each node
u ∈ V , we define the neighbourhood of type l, NbL, as
the set of nodes that are connected to u via an edge of la-
bel l. Formally: NbL(u, l) & := {v ∈ V | (u, v) ∈
E ∧ label((u, v)) = l}.

Similar to metapath2vec, we extend the design of the skip-
gram model for edge-labeled graphs. Our optimization ob-
jective function aims to maximize the log-probability of ob-
serving a graph neighborhood NbL(u, l) for a node u con-
ditioned both on its feature representation, given by f , and
on the edge label l:

max
f

Σu∈v,l∈LlogPr(NbL(u, l) | f(u), l) (1)

Two standard assumptions are made in order to make the
optimization problem computationally efficient:
1. Conditional independence: We assume that the likeli-

hood of observing a neighborhood node connected with

an edge labeled as l is independent of observing any
other neighborhood node connected with the same la-
beled edge given the feature representation of the source
and a label l ∈ L.
∀v1, v2 ∈ NbL(u, l) : Pr(v1 | f(u), l) ⊥⊥ Pr(v2 | f(u), l)
We use this assumption in order to factorize the likeli-
hood of observing the neighbours of u for a label l as:

Pr(NbL(u, l) | f(u), l) = Πni∈NbL(u,l)Pr(ni | f(u))
2. Symmetry in feature space: We assume that a source node

u ∈ V and a neighborhood node ni ∈ V have a sym-
metric effect on each other in the feature space. Conse-
quently, the conditional likelihood of transforming from
u, given by its embedding under f , to a neighbourhood
node ni will be modeled as a softmax unit parametrized
by the dot product features of each source-neighborhood
node pair:

Pr(ni|f(u)) =
exp (f(ni) · f(u))

Σv∈V exp (f(v) · f(u))
The objective in Eq. 1, according to the above assumptions
is therefore simplified to:

max
f

Σu∈v,l∈Llog (Πni∈NbL(u,l)Pr(ni|f(u))) =

max
f

Σu∈v,l∈LΣni∈NbL(u,l) logPr(ni|f(u)) =

max
f

Σu∈v,l∈L

[
− logZu +Σni∈NbL(u,l)(f(ni) · f(u))

] (2)

As the partition function, Zu = Σv∈V exp (f(v) · f(u)), is
expensive to compute for large graphs, we leverage nega-
tive sampling (Mikolov et al. 2013) to estimate the per-node
partition. We optimize Eq. 2 using stochastic gradient ascent
over the model parameters defining the features f .

We now describe how to estimate the neighbourhood
NbL. Intuitively, word2vec leverages the skip-gram ar-
chitecture to sample neighbours using a sliding window.
Node2vec preforms randomized walks that sample many
different neighborhoods of a given source node u. Each ran-
dom walk creates a “sentence” of nodes where the context of
a node is evaluated from its neighborhood. We use these ran-
dom walks as input to the skip-gram architecture. We refer
to the application of this method to the molecule-document
graph as molgraph2vec.

Metapath Guided Random Walks As previously dis-
cussed, our network structure is heterogeneous, containing
many different types of nodes, and therefore simple random
walks tend to create biased embeddings (Dong, Chawla,
and Swami 2017). We therefore suggest heterogeneous ran-
dom walks. We define a metapath scheme p = R1, . . . , Rn,
where Ri is a label type (as defined in Section ), to be a path
in the graph that might only take the form: v1

R1−−→ v2
R2−−→

. . .
Rn−−→ vn, for vi ∈ V . Given a weighted heterogeneous

network G(V,E, L), and a metapath scheme p, the transi-
tion probability at step i is defined as follows:

P (vi+1|vi, p) =

{
weight(vi+1,vi)

Σv∈NbL(vi,Ri)
weight(vi,v) , if l(vi+1, vi) = Ri

0 otherwise
(3)
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where NbL(u, v,R) is the set of nodes that are connected to
u via an edge of label R.

A similar extension to node2vec, creating metapath-based
random walks, was suggested by metapath2vec (Dong,
Chawla, and Swami 2017) for unweighted and unlabeled
graphs. However, this approach requires defining a single
metapath, which is based on some prior knowledge of the
problem domain. For our problem, no such definition has
been previously studied. We next discuss how to create sev-
eral metapaths in an unsupervised manner. The algorithm
greedily selects the metapaths best suited per each novel
molecule. Finally, an embedding is created specifically for
the novel molecule from the different metapath-based ran-
dom walks.

Metapath Selection We begin by randomly generating
metapaths according to the node and edge types in the het-
erogeneous network. Then, each potential metapath creates
a candidate embedding for each node (Figure 1). To create
the final embedding of each node in G, we present a greedy
algorithm described in the next section (Section Embedding
Algorithm): given a novel molecule, mol, select the “best”
set of metapaths from which the final embeddings of all the
graph nodes can be created. Once metapaths are selected, the
final embedding of the nodes is the average of the metapath-
corresponding embeddings. In the next section, we will fur-
ther describe how to define the notion of “best set” and select
the metapaths from which the final embedding of each node
is created.

Embedding Algorithm We use beam search for creating
the set of metapaths from which the final embedding for
each node will be created. The algorithm holds a set of the
best metapaths identified so far, mset. At each step, it se-
lects an additional metapath that maximizes a given objec-
tive function. Our objection function is dependant on the
novel molecule given as a query, which we present next.

Intuitively, we assume that if we knew the text repre-
sentation of the novel molecule, we could leverage it for
document ranking. That is, if we knew the name of the
molecule when it will be discovered in the future, we could
use text-ranking techniques to identify relevant documents.
We therefore devise a function estimating how similar the
distances between the node’s embeddings in the graph and
the novel molecule are compared to the distances of the text
embeddings of those nodes and the estimated text represen-
tation of the molecule. Formally, let t be the desired future
text representation of the novel molecule mol (i.e., the name
of the molecule when it will be discovered in the future).
Since we aim at ranking text documents, we wish to identify
the known molecules, whose embeddings are closest to t.

Let listtext be a sorted ranked list of molecules by their
similarity to t, and listgraph be a sorted ranked list of
molecules by their similarity to the the graph embedding set
of mol, as given by the metapath set mset. We define the
objective function, fmol,mset, as:

fmol,ms =

Σn
i=1

(
sim(t, listtext[i]))− sim(t, listgraph[i])

)
/i

where k is a parameter of the model. Intuitively, we eval-
uate the similarity by the text representation and wish the
graph embedding to be as close as possible to that similarity.
We chose cosine similarity as the similarity function, sim.
We select an approximation of t by a fully connected neu-
ral network that receives as input the mol2vec representa-
tion of mol and predicts the word2vec representation of the
known molecule. The details of the architecture are given by
(Kim 2014). The classifier is trained using molecules from
the training set, for which both mol2vec and word2vec rep-
resentation exist. We refer to the application of this method
to the molecule-document graph as Selective molgraph2vec.

Molecular Ranking Algorithms
In this section, we explore several algorithms that leverage
the embeddings described in the previous sections for the
purpose of ranking documents for novel molecule.

Bag of Molecular Entities Ranking (BOME). For
each molecule whose name is mentioned in the docu-
ment d we measure the distance of the embeddings, and
calculate the final ranking score by: score(d,mol) =∑

m∈d sim(e(m), e(mol))/|d|, where |d| is the number of
molecules mentioned in d, sim is a similarity function, and
e(mol) is the embedding of mol. Cosine similarity is used
for sim in our experiments.

Pointwise Document-Molecule Ranking. We adopt a
pointwise approach to rank molecule-document pairs. The
score of a document d and a novel molecule mol is de-
fined as the score the classifier assigns given their em-
beddings, here e(d) is the embedding of the document
d:score(d,mol) = classifier(e(d), e(mol)). Specifically
in this work, we follow the practice of (Severyn and Mos-
chitti 2015) and use a convolutional neural network (CNN)
with mean square error as the loss function.

Molecular KNN Ranking. We define
closest(molnovel, k) to be the set of k most similar
molecules to novel molecule molnovel from the set of
known molecules. To define similarity to identify the
closest molecules, we use the textual representation of
the molecules in the set closest(molnovel, k), and use the
cosine similarity of their embeddings (as defined in Section
) to rank the medical papers. Additionally, we define the
similarity of known molecules and papers to be cosine
similarity of their word2vec representations. The similarity
of molnovel and a paper, p, depends on the similarity
between the novel molecule and k known intermediate
molecules, molintermediate ∈ closest(molnovel, k) and the
similarity of those k known intermediate molecules and the
medical document, d:

score(M,d) =∑
m∈closest(M,k)

cosSim(e(M), e(m))

·cosSim(W2V(m),W2V(d))

where M is a novel molecule, cosSim is the cosine similar-
ity function, e is a molecule embedding method (Section ),
and k is a hyperparameter.
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Molecular KNN++ Ranking. We extend the Molecu-
lar KNN algorithm to consider additional similar molecules
and refer to the new algorithm as Molecular KNN++. In
this version, we define closest(molknown, l) to be a func-
tion of a known molecule molknown that returns the set
of l most similar molecules to molknown from the set of
known molecules. At this stage, since we are dealing only
with known molecules that have a textual context, we define
the similarity between them to be the cosine similarity be-
tween their word2cec representation. Intuitively, we want to
leverage the similarity between word2vec representation of
known molecules to create a less biased ranking model:

score(M,d) =
∑

m∈closest(M,k)

cosSim(e(M), e(m))·

∑
x∈closest(m,l)

cosSim(W2V(x),W2V(d))

where M is a novel molecule, d is a medical document,
cosSim is the cosine similarity function, e is a molecule
embedding method (Section ), and k and l are hyperparam-
eters.

Experimental Setting
PubMed is a bibliographic database dealing with life, med-
ical, and paramedical sciences (Falagas et al. 2008). The
database contains bibliographic records of most scientific
articles published since the 1950s (and sometimes earlier)
in all languages. The PubMed dataset includes 29,700,000
papers. For our experiments, we consider only papers with
a full abstract, reducing the set to 11,954,865 papers. We
limit the papers in our dataset to those published in jour-
nals with impact factor of 5 or higher, reducing the set to
1,429,705 papers. For queries, we use a list of well-known
drugs that includes 1286 drug names with a notation of their
chemical structure (using SMILES). Our experimental setup
simulates a situation wherein the current time is the end of
the year 2000. We therefore only have access during train-
ing to PubMed papers published until the end of 2000. We
consider the invention date of a drug as the publication date
of the first PubMed paper that refers to it. We consider all
drugs invented until the end of the year 2000 for the train-
ing set (1105 drugs) and the rest as the test set used as novel
molecules for queries (181 drugs). For each drug in the train-
ing set, we create a word2vec representation using a skip-
gram model based on all the PubMed abstracts that refer to
it until year 2000.

Gold-Standard Test Set: Intuitively, in the test set we
are given a SMILES of a novel never-before-seen molecule
and wish to evaluate whether the document ranking for it
is relevant. In our experiments, we use drugs not known in
the year 2000 and compare to the ranking of the molecules
once invented and named after the year 2000. In other words,
we compare the ranking of the documents for the SMILES
until the year 2000 to the future document ranking for the
name of the molecule after the year 2000. The gold-standard
ranking of the PubMed papers for a given drug, we consider
the cosine similarity between the word2vec representation of

the name of the molecule and the document representation
as suggested by Arora, Liang, and Ma (Arora, Liang, and
Ma 2017).

For evaluation, we use three ranking metrics: MAP, preci-
sion, and NDCG (Manning, Raghavan, and Schütze 2010).
We inspect precision and NDCG at the top 10, 50, and 100
results. For the MAP and precision metrics, we consider the
top 100 gold standard ranking results for each drug in the
test set as the relevant results, while the other papers are
considered as irrelevant. For NDCG, we consider the cosine
similarity score between the molecule and the document.

In addition to the methods presented in Section , we
present results of a random baseline which, given a molecule
and a paper, assigns an random number between 0 and 1 as
their similarity and produces the ranking accordingly.

For each embedding method and for each ranking algo-
rithm, we learn on a validation set derived from the training
set with a grid search the best value of all the hyperparam-
eters, including embedding size, the number of metapaths,
and length of the paths.

Experimental Results
Table 1 presents standard information retrieval evaluation
metrics (Sanderson 2010): MAP, precision, and NDCG
across the four algorithms, each with the four embedding
methods. Best results, marked in bold are achieved via
the mKNN++ algorithm and Selective molgraph2vec em-
bedding. Selective molgraph2vec embedding shows supe-
rior results for each algorithm tested. When comparing the
different ranking algorithms we observe that the BOME
method performs, as expected, better than the random base-
line, across all metrics. The supervised Pointwise approach
achieves better results than BOME. The mKNN approach
achieves a substantial performance gain over the Pointwise
approach. Across most ranking methods, embeddings cre-
ated with metapath selection yield better results.

Exploring mKNN++
We hypothesize that our algorithm preforms better on
queries of drugs for which there is sufficient information in
the training set, i.e., drugs with similar molecular structures
to the query molecules exist in the graph and there is a large
number of documents for these existing drugs.

We divide our test set into ten groups according to the
Precision@10 score. Group 0 has the lowers score of 0 pre-
cision@10, group 1 has 0.1 precision, and so on. Due to
the limited size of the test set and the diversity of drugs,
we cannot offer a thorough statistical analysis of the differ-
ences between groups. We will however, discuss some inter-
esting traits relaxing claims of statistical power. The entire
test set consists of 181 drugs of diverse types. We focus on
drug categories that can be identified in the test set and con-
tain a minimal number of 7 drugs: Chemotherapy/Cancer,
Antiviral/HIV, Antibiotic, Diabetes, and Anti-Hypertensive.
Table 2 presents the percentage of each drug category in
the precision groups. We assume these results mirror the re-
search trends in our training data. If a category is a popular
research subject, the dataset will contain more examples of
papers discussing it allowing for better discovery.
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Algorithm Embedding MAP Precision NDCG
@10 @50 @100 @10 @50 @100

Random – 0.0052 0.0055 0.0062 0.0050 0.5997 0.6274 0.6435

BOME
mol2vec 0.0241 0.0795 0.0477 0.0379 0.7246 0.7248 0.7304
node2vec 0.0245 0.0784 0.0542 0.0406 0.7126 0.7113 0.7106
molgraph2vec 0.0290 0.0872 0.0596 0.0432 0.7164 0.7209 0.7237
Selective molgraph2vec 0.0340 0.0872 0.0710 0.0517 0.7437 0.7479 0.7476

Pointwise
mol2vec 0.0651 0.1046 0.0888 0.1359 0.7779 0.7983 0.8109
node2vec 0.0688 0.1408 0.1097 0.1380 0.7800 0.8035 0.8163
molgraph2vec 0.0671 0.1500 0.1123 0.1432 0.7850 0.8075 0.8243
Selective molgraph2vec 0.0736 0.1600 0.1252 0.1471 0.7970 0.8155 0.8321

mKNN
mol2vec 0.2287 0.3226 0.2771 0.2188 0.8092 0.8258 0.8334
node2vec 0.2211 0.3071 0.2701 0.2133 0.8040 0.8210 0.8284
molgraph2vec 0.2139 0.3475 0.2797 0.2229 0.8404 0.8550 0.8620
Selective molgraph2vec 0.2379 0.3883 0.3072 0.2428 0.8556 0.8674 0.8743

mKNN++
mol2vec 0.1982 0.3292 0.2647 0.2080 0.8431 0.8589 0.8660
node2vec 0.2156 0.3558 0.2843 0.2233 0.8468 0.8610 0.8675
molgraph2vec 0.2335 0.3712 0.3087 0.2420 0.8532 0.8676 0.8740
Selective molgraph2vec 0.2465 0.3928 0.3237 0.2511 0.8616 0.8742 0.8797

Table 1: MAP, precision, and NDCG for article ranking per molecular query across different algorithms and embedding meth-
ods.

Group Size Chemo Antiviral Antibiotic Other Diabetes Hypertension
All data 181 18% 6% 7% 61% 4% 3%
0 52 30.7% 1.9% 5.7% 55.7% 5.7% 0
1 24 41.6% 4% 0 5% 4% 0
2 9 0 11% 0 77.8% 11% 0
3 12 8.3% 0% 0 91.7% 0 0
4 6 16.7% 0 0 8.3% 0 0
5 9 0 0 0 88.8% 11% 0
6 11 9% 0 0 72.3% 0 18%
7 9 11% 11% 11% 44% 11% 11%
8 15 13% 0 13% 60% 6.7% 6.7%
9 34 2.9% 20.6% 17.6% 52.9% 0 5.9%
0+1 (low) 85 31% 4% 4% 56% 6% 0
8+9 (high) 49 6% 14% 16% 55% 2% 6%

Table 2: Precision Groups

Qualitative Example

Clofarabine is a chemotherapy drug approved by the FDA
in 2004. It is used for treatment of Acute Lymphoblas-
tic Leukemia (ALL) in pediatric patients. We mimic a re-
search process that could have been conducted in 2000
using our system. The molecular representation of Clo-
farabine was fed to the ranking algorithm, which ranked
the following titles relating to this molecule: ‘Effects of
mitoxantrone in combination with other anticancer agents
on a human leukemia cell line.’, ‘In vitro cytotoxic ef-
fects of fludarabine (2-F-ara-A) in combination with com-
monly used antileukemic agents by isobologram analy-
sis.’,‘Myelodysplastic syndrome following successful ther-
apy of acute promyelocytic leukemia.’. These all refer to ini-
tial experiments in different types of cancers. The similarity
was observed due to the similarity of the molecular struc-
ture of Clofarabine to drugs such as Mitoxantrone, which
was discovered to treat certain types of cancer.

Conclusions

In this work, we suggest a solution to the task of ranking
documents based on a novel molecule, given as a query.
Motivated by the idea of combining the structure of the
molecule and its textual context, our solution creates embed-
dings for drugs based on their molecular structure, and em-
bedding for documents based on their text. Which construct
one heterogeneous graph. We traverse this graph, generating
an embedding for a novel molecular structure, and retrieving
relevant documents based on this new embedding. We de-
ployed our system in a material discovery setting targeted at
searching for known materials with unexpected/unexplored
properties. It is currently deployed at a pharmaceutics re-
search lab focused on personalized medicine and targeted
drug delivery. Future work on this subject may include fur-
ther investigation of heterogeneous graph-based embedding
for molecules, for instance by using graph representations of
molecular structures instead of the SMILES-based mol2vec.
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