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Abstract
Recent years have seen significant advances in multi-turn
Spoken Language Understanding (SLU), where dialogue
contexts are used to guide intent classification and slot fill-
ing. However, how to selectively incorporate dialogue con-
texts, such as previous utterances and dialogue acts, into
multi-turn SLU still remains a substantial challenge. In this
work, we propose a novel contextual SLU model for multi-
turn intent classification and slot filling tasks. We introduce
an adaptive global-local context fusion mechanism to selec-
tively integrate dialogue contexts into our model. The local
context fusion aligns each dialogue context using multi-head
attention, while the global context fusion measures overall
context contribution to intent classification and slot filling
tasks. Experiments show that on two benchmark datasets, our
model achieves absolute F1 score improvements of 2.73%
and 2.57% for the slot filling task on Sim-R and Sim-M
datasets, respectively. Additional experiments on a large-
scale, de-identified, in-house dataset further verify the mea-
surable accuracy gains of our proposed model.

Introduction
The last few years have seen an increasing application of
Spoken Language Understanding (SLU) systems, such as
Google Assistant, Amazon Alexa, etc. One of the fundamen-
tal tasks of these systems is to map the meaning of spoken
utterances expressed in natural language to machine com-
prehensible language (Allen 1995; Tur and De Mori 2011).
For example, the machine learns to map find a restaurant in
Richmond to an intent for finding restaurants (intent classi-
fication) and to slots such as Richmond: Location (slot fill-
ing).

One important topic in the SLU research is effectively
interpreting a user’s intents in multi-turn dialogues, where
the user and the system have multiple turns of back-and-
forth conversations to achieve the user’s goal. Historically,
this line of work has focused on using traditional machine
learning methods (Miller et al. 1996; Bhargava et al. 2013).
For example, Bhargava et. al. (2013) found that using pre-
vious utterances as contexts in an SVM-HMM SLU system
could help resolve ambiguities. Recently, deep learning ap-
proaches have become increasingly popular to incorporate
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contextual information (Qin et al. 2021; Su, Yuan, and Chen
2019; Abro et al. 2019; Chen et al. 2019; Su, Yuan, and Chen
2018; Gupta, Rastogi, and Hakkani-Tur 2018; Chen et al.
2016; Wei et al. 2021). Chen et. al. (2016) proposed to use
end-to-end memory networks to model previous utterance
transcripts in multi-turn dialogues. Gupta et al. (2018) pro-
posed an efficient method to encode dialogue acts with a
feedforward network from prior dialogue history with lim-
ited degradation in accuracy compared to the end-to-end
memory network approach (Gupta, Rastogi, and Hakkani-
Tur 2018). Gupta et. al. (2019) fuses signals like previous
intents via a self-attention mechanism with a variable con-
text window. Wang et. al. (2019) encodes historical utter-
ances using the Bidirectional Long Short Term Memory (Bi-
LSTM) networks and ConceptNet to encode external knowl-
edge, and construct knowledge attention over these contexts.
Qin et. al. (2021) proposed a context-aware graph convolu-
tional network for contextual SLU. Yet, how to selectively
incorporate both dialogue acts and previous utterance con-
text to multi-turn intent detection and slot filling still remains
under-explored.

In this paper, we propose a contextual SLU model for
intent classification and slot filling in multi-turn dialogues,
where both dialogue acts and previous utterance contexts are
exploited. To selectively incorporate dialogue contexts into
the model, we propose an adaptive global-local context fu-
sion mechanism. The local context fusion aligns each con-
textual source information with the utterance transcript sig-
nals using the multi-head attention (Vaswani et al. 2017),
while the global context measures contribution of all con-
textual information. The closest work to ours are (Gupta,
Rastogi, and Hakkani-Tur 2018) and (Qin et al. 2021). How-
ever, these works use BiLSTM to encode previous utter-
ances, whereas our work uses BERT to enrich their contex-
tually semantic representations. Moreover, Qin et. al. (2021)
focuses on graph-based methods to filter out irrelevant in-
formation only for slot filling, whereas our work uses the
global-local multi-head attention for both slot filling and in-
tent detection. Our model achieves the SOTA results on in-
tent classification and outperforms previous methods for slot
filling by a large margin on two benchmark datasets. We fur-
ther experiment with our model on a large scale, in-house,
de-identified datatset. In addition, we study the effects of
contexts by conducting ablation studies and visualizing the
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global attention weights to demonstrate the effectiveness of
our proposed design.

Problem Statement
Our contextual SLU model takes a current utterance
ut, and a list of previous dialogue acts Dt={(a1, s1),
..., (a|Dt|, s|Dt|)}, and previous utterance transcripts
U t={u1, u2, ..., ut−1}. Each (ai, si) pair indicates a dia-
logue action ai and a dialogue slot si. Given the ground truth
intent yintt of ut and ground truth slot yslott,i per each word to-
ken pt,i ∈ ut, our contextual SLU model aims to maximize
the intent probability P (yintt |ut,U t,Dt) for ut, and the slot
probability P (yslotit | ut,U t,Dt) for each pt,i.

Proposed Model
Figure 1 shows our proposed contextual SLU model archi-
tecture. At a high level, we input (i) the wordpiece embed-
dings of current utterance transcripts and (ii) the context en-
coder of dialogue acts and previous utterance transcripts into
our adaptive global-local context fusion mechanism.

The local context fusion aligns each contextual source
information with the utterance transcript signals using the
multi-head attention (Vaswani et al. 2017), while the global
context measures the contribution of all contextual informa-
tion. The local context fusion considers each context encod-
ing type as a separated key and value and the wordpiece em-
beddings as the query. Then, it assigns attention scores to the
context encoding. Intuitively, the global attention serves as a
gating layer to produce how much all contexts can contribute
to the input query. Without the global attention, the local at-
tention always give an accumulated attention score of 1.0,
as a result of performing a softmax function. This is not op-
timal. In many cases, the contexts contribute insignificantly
to the SLU tasks. For example, a user asks a voice assis-
tant system to call uncle sam, and the system confirms back
to see if the user wants to call a nearby uncle sam’s sand-
wich bar. The user then says in a second turn call my uncle
who’s first name is sam. In this case, dialogue contexts com-
ing from the first turn are not helpful for the interpretation of
the second turn. Therefore, we propose this global-local fu-
sion mechanism to allow the model to selectively pay atten-
tion to previous dialogue contexts in multi-turn dialogues.

After selectively fusing contextual information with the
wordpiece embeddings, we use a BiLSTM encoder to learn
context-aware embeddings, the output of which are used for
the intent classification and slot filling tasks, simultaneously.
We detail our architecture as below.

Embedding Layer
We pre-train a SentencePiece (SP)1 model on the training
data with 4,500 wordpieces to avoid the explosion of vocab-
ulary size and the out-of-vocabulary problems when using
a word-level representation. We denote E ∈ R4500×d as an
embedding layer with d as the embedding size. Given the

1https://github.com/google/sentencepiece

input utterance transcript ut, we use the pretrained SP tok-
enizer to tokenize the input transcript and project the tok-
enized wordpieces into E to obtain the wordpiece embed-
dings Pt = {p1,p2, ...,pn}, where n is the number of tok-
enized wordpieces.

Context Encoder
Figure 1 shows our methods for encoding dialogue acts (in
light orange color) and previous utterance transcripts (in
dark orange color). We describe the details of our context
encoder methods below:

Encoding Dialogue Acts: Its input contains a list of dia-
logue action and slot pairs Dt={(a1, s1), ..., (a|Dt|, s|Dt|)}.
Given that `D is the maximum number of dialogue action-
slot pairs in all training input data instances, if |Dt| < `D,
we pad Dt with default action-slot pairs until reaching `D.
During inference, if an utterance in the test set has more than
`D action-slot pairs, we only take the latest `D pairs. We use
zero-embeddings for the padding actions and slots so that
they have no effect on our model.
Embedding Layer: This layer maintains two embedding
matrices: a dialogue action embedding matrix A ∈ R|A|×d
and a dialogue slot embedding matrix S ∈ R|S|×d, where
|A| and |S| refer to the number of dialogue actions and slots
in the model, respectively. By projecting each action ai and
slot si in the action-slot pair (ai, si) ∈ Dt via A and S , we
obtain their corresponding embeddings ai and si.
Processing Layer: With each (ai, si) ∈ D, we obtain out-
put action embedding ai and slot embedding si from the em-
bedding layer. We then perform an element-wise addition to
fuse ai and si. Next, we transform the fused embedding of
ai and si by a linear transformation with a ReLu activation
to obtain gi as follows:

gi = ReLU
(
Wg(ai + si) + bg

)
(1)

For all |Dt| action-slot pairs in Dt, we obtain the cor-
responding fused embeddings {g1,g2...,glD} by following
the same process that produces gi in Eq.(1). To obtain the
output embeddings, we perform a row-wise concatenation
across the fused embeddings.

Gt = g1 ⊕ g2 ⊕ ...⊕ glD (2)

Encoding Previous Utterance Transcripts: Its input is a
list of previous utterance transcripts U t={u1, u2, ..., ut−1}.
To learn the contextual embeddings of an utterance tran-
script uj ∈ U t, we use the pre-trained uncased BERT-based
language model (Devlin et al. 2019). Specifically, we first
tokenize each uj with the BERT-based tokenizer. Next, we
prepend a [CLS] token and append a [SEP] token to the to-
kenized transcript. Since utterances at different turns have
a different number of previous utterance transcripts, we use
`U as the maximum number of turns in all the training exam-
ples. At turn t-th (t < `U ), we pad `U − t empty transcripts
to obtain a length of `U . During inference, if an utterance
has more than `U turns, we only take its latest `U previous
utterance transcripts.
Processing Layer: We input each uj ∈ U t into the pre-
trained BERT-based model and extract the embeddings from
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Figure 1: Architecture of our proposed contextual SLU model.
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Figure 2: Adaptive attention via global-local context fusion.

the [CLS] token as the summarized embeddings for uj . For
all previous utterance transcripts in U t, we obtain the cor-
responding output embeddings {u1,u2, ...,u`U }. We mask
the padded empty transcripts as zero embeddings so that they
have no effect on our model performance.
Output: We perform a row-wise concatenation for all pre-
vious utterance transcripts’ embeddings {u1,u2, ...,u`U } as
follows:

Ut = u1 ⊕ u2 ⊕ ...⊕ u`U (3)

Adaptive Global-Local Context Fusion
Figure 2 shows our proposed adaptive global-local con-
text fusion mechanism. We use the multi-head attention to
compute local attention scores and design a global atten-
tion mechanism to measure the contribution of all contexts.
Then, we fuse the global and local attention scores into one.
Details of this architecture are described below:

Global-Local Multi-Head Attention Layer: Recall Gt

is a row-wise concatenation of all dialogue act embeddings
(Equation 2), Ut is a row-wise concatenation of all previ-
ous utterance transcript embeddings (Equation 3), and Pt =
{p1,p2, ...,pn} is the wordpiece embeddings. Considering

Pt as the query, we apply the scaled dot attention (Vaswani
et al. 2017) to measure the local attention scores αG between
Gt and Pt, and the local attention scores αU between Ut

and Pt as follows:

αG = softmax
(
QGK

T
G√
d

)
; αU = softmax

(
QUK

T
U√
d

)
(4)

where QG, KG and VG are learned by linearly transforming
the corresponding Pt and Gt. QU , KU and VU are learned
by linearly transforming the corresponding Pt and Ut.

QG =W
(q)
G Pt + b

(q)
G ; KG =W

(k)
G Gt + b

(k)
G ; VG =W

(v)
G Gt + b

(v)
G

QU =W
(q)
U Pt + b

(q)
U ; KU =W

(k)
U Ut + b

(k)
U ; VU =W

(v)
U Ut + b

(v)
U

(5)

To measure global attention scores, we first perform a
column-wise concatenation between Gt and Ut, resulting
in a long context vector Ct ∈ R1×(`D×d + `U×768) (d is the
dialogue act embedding size and 768 is the BERT-based em-
bedding size). Then, we measure the global attention scores
as following:

β = sigmoid
(
QβK

T
β

)
(6)

where Qβ , Kβ are learned by linearly transforming Pt and
Ct as follows:

Qβ =W
(q)
β Pt + b

(q)
β ; Kβ =W

(k)
β Ct + b

(k)
β

Note that β is an n × 1 matrix, where each entry βi ∈ β
shows how much all the contextual information contributes
to each subquery pi ∈ Pt. Thus, we replicate β to have a
similar dimension size with αG and αU , resulting in βG and
βU respectively. Then, we perform an element-wise product
between αG and βG, as well as αU versus βU :

γG = αG � βG; γU = αU � βU
Lastly, we perform matrix multiplication between VG and

γG to obtain adaptive dialogue act embeddings Ct
G,att ∈
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Rn×d, and between VU and γU to obtain adaptive previous
utterance transcript embeddings CtU,att ∈ Rn×768. Finally,
we column-wise concatenate Ct

G,att and Ct
U,att with word-

piece embeddings Pt.
Ct
G,att = γGVG; Ct

U,att = γUVU

Ptcontext = [Pt, Ct
G,att, Ct

U,att]
(7)

Processing Layer: With Ptcontext established, we pass
Ptcontext through a m-layer Bi-LSTM encoder to pro-
duce a series of context-aware hidden states Ht

slot =

{h(slot)1 , h
(slot)
2 , ..., h

(slot)
n } and a summarized bidirectional

embedding vector h(int). Here, we use the BiLSTM encoder
to have a fair comparison against previous works such as
(Qin et al. 2021; Gupta, Rastogi, and Hakkani-Tur 2018).
In addition, it has also been shown that the BiLSTM en-
coder outperforms the transformer-based models on the pub-
lic benchmark datasets used in this study (Qin et al. 2021).
Of note, our adaptive global-local context fusion design can
be also integrated with the transformer-based models.

−→
hi

(k) =
−−−−→
LSTM(h

(k−1)
i ,

−−→
hi−1)

←−
hi

(k) =
←−−−−
LSTM(h

(k−1)
i ,

←−−
hi+1)

with i ∈ [1, n], k ∈ [1,m], h
(0)
i = p

(context)
i

h
(slot)
i = [

−→
hi

(m),
←−
hi

(m)], h(int) = [
−−→
h(m)
n ,
←−
h1

(m)]

(8)

Intent Classification and Slot Filling
Intent Classification: It is a multi-class classification prob-
lem. We use h(int) in Eq. (8) to produce an intent distribution
over all |I| intents at each input utterance ut. We define the
cross entropy loss for ut as follows:

ŷ
(int)
t,I = softmax

(
W (int)h(int) + b(int)

)
Lint = −

|I|∑
j=1

y
(int)
t,j log(ŷ

(int)
t,j,I )

(9)

Slot Filling: Similar to the intent classification, we useHt
slot

for the slot filling task for ut with |S| slots over each of
n tokens at each input utterance using the following cross
entropy loss:

ŷ
(slot)
t,i,S = softmax

(
W (slot)h

(slot)
i + b(slot)

)
Lslot = −

n∑
i=1

|S|∑
k=1

y
(slot)
t,i,k,S log(ŷ

(slot)
t,i,k,S)

(10)

Multi-Task Learning: We use a multi-task learning strategy
to train our model. The joint cost function is defined as:

L = Lic + λLsf (11)
where λ are hyper-parameters to control loss contribution.

Experimental Settings
Dataset: We conduct experiments on the bechmark Sim-
ulated Dialogue dataset (Sim) (Liu et al. 2018; Shah et al.

2018), which consists of two datasets: (i) Simulated Restau-
rant Dialogue (Sim-R) and (ii) Simulated Movie Dialogue
(Sim-M). Sim-R contains dialogues for booking a restaurant
table, whereas Sim-M contains dialogues for buying a movie
ticket. Specifically, Sim-R has 11k turns in 1,116 training
dialogues, 349 development dialogues, and 775 testing dia-
logues. Sim-M has nearly 4k turns in 384 training dialogues,
120 development dialogues, and 264 testing dialogues. In
total, the Sim dataset has 3 intents, 12 slot types, and 21
user dialogue act types. A key challenge of this dataset is
the presence of unseen entities in testing sets. For example,
only 13% of movie names in the validation and test sets are
in the training set.

In addition, we conduct experiments on our large-scale,
de-identified, multi-domain in-house dataset. This dataset
has both single turn utterances and multi-turn utterances.

Baseline Models: We compare our proposed model with
the following baseline models:
• NoContext: It is a two-layer stacked Bidirectional RNN

using GRU and LSTM cells respectively, where no con-
text information is incorporated. We report its best archi-
tecture’s results.

• PrevTurn: It is similar to the NoContext baseline, but en-
codes only the utterances in previous turns.

• MemNet (Chen et al. 2016): An end-to-end memory net-
work that dynamically exploits the contextual knowl-
edge.

• SDEN (Bapna et al. 2017): It uses a sequential dialogue
encoder to encode contexts from the dialogue history in
chronological order with recurrent neural networks.

• EfficientNet (Gupta, Rastogi, and Hakkani-Tur 2018): It
is a hierarchical recurrent neural network that efficiently
encodes dialogue act context.

• GraphNet (Qin et al. 2021): It uses a Graph Convolu-
tional Network for integrating dialogue act contexts.

Note that we do not compare with BERT because Qin at.
al., (2021) showed that GraphNet outperformed BERT on
the Sim datasets.

Implementation Details: Our experiments are imple-
mented in Tensorflow 2.3 (Abadi et al. 2016). The hyper-
parameters are selected based on the best performance on
the validation set. During training, we minimize the sum of
intent and slot losses using Adam optimizer (Kingma and
Ba 2015) for 100 training steps with a batch size of 32. We
use two BiLSTM layers with each having a wordpiece em-
bedding size of 256. The decoders for slot filling and intent
classification both are two-layer dense networks with 256
and 512 units, respectively. For the context encoder, the di-
alogue act embedding size is set to 256; and the embedding
size for BERT encoding of previous utterances is set to 768.
The attention size for global-local multi-head attention is set
to 256 with 1 head. We set λ = 1 in Eq. (11) to give equal
contribution for Lint and Lslot losses.

Evaluation Metrics: To benchmark against SOTA ap-
proaches, we report the performance of the intent classifi-
cation task using intent accuracy and the performance of
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Model Sim-R Results Sim-M Results
Intent Acc. Slot F1 Intent Acc. Slot F1

NoContext 83.61% 94.24% 88.51% 86.91%
PrevTurn 99.37 % 94.96% 99.12% 88.63%

MemNet-6 99.75% 94.42% 99.12% 89.76%
MemNet-20 99.67% 94.28% 98.76% 90.70%
SDEN-20 99.84% 94.81% 99.60% 90.93%

EfficientNet 99.65% 94.70% 99.27 % 93.73%
GraphNet 99.97% 95.37% 99.93% 94.41%
Our model 99.97% 98.10% 100% 96.98%

Table 1: Overall Performance on Sim-R and Sim-M datasets.

Model Sim-R Results Sim-M Results
Slot F1 Slot F1

Our model 98.10% 96.98%
w/o G-CF 97.81 % 96.54 %

w/o GL-CF 97.34 % 96.35 %

Table 2: Effectiveness of our global-local context fusion. w/o
GL-CF means that we remove the global and local context
fusion from the proposed model; w/o G-CF means that we
remove the global context fusion from the proposed model.

the slot filling task using the slot chunk F1 score (Tjong
Kim Sang and Buchholz 2000) for the Sim-R and Sim-M
dataset. For the in-house dataset, we report model perfor-
mance on intent classification error rate (ICER), and seman-
tic error rate (SemER). ICER measures the proportion of ut-
terances with a misclassified intent, i.e. ICER = 1.0 - intent
accuracy. IRER and SemER measures the utterance-level
error rate that considers both intent and slot errors. SemER
(Makhoul et al. 1999) combines intent and slot accuracy into
a single metric, i.e. SemER = # (slot errors + intent errors) /
# (slots + intents in reference). For the in-house dataset, we
report relative improvements with respect to the baseline .

Results
Overall Performance: Table 1 shows the performance of
our proposed model and SOTA baselines for intent accuracy
and slot F1 on Sim-R and Sim-M datasets. Overall, our pro-
posed model achieves the best performance for intent accu-
racy and slot F1 on the two benchmarking datasets. On the
Sim-R dataset, our model achieves 99.97% intent accuracy
and 98.10% slot F1. Compared to the previously best per-
forming model, our model achieves the same intent accuracy
and an absolute slot F1 improvement of 2.73% (p-value <
0.001 under the non-directional Mann-Whitney U test). On
Sim-M dataset, our model achieves 100% intent accuracy
and 96.98% slot F1. On averge, our model achieves better
results than the previously best performed model, with an
absolute intent accuracy improvement of 0.07% and an ab-
solute slot F1 improvement of 2.57% (p-value < 0.001).

Next, we present ablation studies to understand the effec-
tiveness of our global-local context fusion design and differ-
ent contexts. As obtaining a high intent accuracy is trivial on
Sim-R and Sim-M datasets, we report only Slot F1 results.
Effectiveness of Global-Local Fusion: Table 2 shows that
removing global-local fusion has a negative impact on our
model performance, with an average drop of 0.08% in the
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Figure 3: Distribution of global attention scores in Sim-R
and Sim-M datasets. The global attention scores (blue bars)
are mostly distributed in ranges of [0.9, 1.0] and [0.0, 0.1].

Model Sim-R Results Sim-M Results
Slot F1 Slot F1

Our model 98.10% 96.98%
w/o DialogAct 97.09% 95.91 %

w/o PrevUtt 96.85 % 96.12 %

Table 3: Effectiveness of different contexts. w/o DialogAct
means that we remove the dialogue act encoder from the pro-
posed model. w/o PrevUtt means that we remove the previ-
ous utterance encoder from the proposed model.

absolute intent accuracy and 0.3% in the absolute slot F1.
To further verify the effectiveness of the global attention, we
plot the histogram of global attentive scores in Sim-R and
Sim-M datasets. Figure 3 shows global attention scores are
mostly distributed in ranges of [0.9, 1.0] and [0.0, 0.1] in the
Sim-R and Sim-M datasets. This suggests that our global-
local fusion can reduce the context contributions when all
global attention scores are close to [0.0, 0.1], which is an
enhancement over the traditional multi-head attention ap-
proach (Vaswani et al. 2017).
Effectiveness of Different Contexts: Table 3 shows the ab-
lation study results when removing different contexts and
attention mechanisms. A first observation is that removing
dialogue acts leads to the lowest performance on the Sim-
M dataset, whereas removing previous utterances leads to
the lowest performance on the Sim-R dataset. This indicates
that dialogue history contexts play a crucial role in improv-
ing SLU task in the multi-turn dialogue setting.
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ICER SEMER IRER

Overall NoContext baseline baseline baseline
Our model ↓ 2.86% ↓ 3.35% ↓ 1.03%

2-turn NoContext baseline baseline baseline
Our model ↓ 48.21% ↓ 42.15% ↓ 37.90%

3-turn NoContext baseline baseline baseline
Our model ↓ 47.77% ↓ 37.29% ↓ 31.66%

4-turn+ NoContext baseline baseline baseline
Our model ↓ 44.77% ↓ 13.80% ↓ 17.25%

Table 4: Relative error deduction of our proposed model on
in-house datasets. ↓ shows the decrease in error rate with re-
spect to the proposed model. Higher numbers suggest more
error deduction and better model performance.

Results on In-House Dataset
Table 4 presents the overall performance of our proposed
model and the baseline model without contexts. Compared
to baseline model without contexts, our proposed model
relatively reduces 2.86% of ICER, 3.35% of SEMER, and
1.03% of IRER on the overall dataset that includes both
single turn and multi-turn utterances. We further examined
the model performance on multi-turn utterances and evalu-
ated utterances with only two turns (2-turn), with only three
turns (3-turn), and with four turns or more (4-turn+). For 2-
turn datasets, the proposed model relatively reduces 48.21%
of ICER, 42.15% of SEMER, and 37.90% of IRER. For 3-
turn dataset, the proposed model relatively reduces 47.77%
of ICER, 37.29% of SEMER, and 31.66% of IRER. For 4-
turn datasets, the proposed model relatively reduces 44.77%
of ICER, 13.81% of SEMER, and 17.25% of IRER. These
results present a large improvement margin of our model
on multi-turn datasets. In addition, these results are consis-
tent with our model performance on the public benchmark
datasets (Sim-R and Sim-M), suggesting a critical role of
dialogue contexts in improving intent and slot prediction.

We also replicate the ablation study when removing dif-
ferent contexts and global and local context fusion mecha-
nisms on the in-house dataset. Table 5 and 6 show the model
performance on multi-turn datasets. An interesting obser-
vation is that removing dialogue acts leads to the biggest
performance degradation for our proposed model on all the
examined multi-turn utterances. For example, after remov-
ing dialogue acts, the ICER relatively drops by 22.89%
for 2-turn utterances, 100.95% for 3-turn utterances, and
53.65% for 4-turn+ utterances. Similarly, the SEMER rel-
atively drops by 24.03% for 2-turn utterances, 58.67% for
3-turn utterances, and 13.30% for 4-turn+ utterances. These
findings are also consistent with what we observe on the
public datasets (Sim-R and Sim-M), suggesting the impor-
tance of dialogue act history in the intent and slot predic-
tion in multi-turn dialogues. Across all the turns, 3-turn ut-
terances suffer the most performance degradation when re-
moving dialogue acts, whereas 2-turn utterances suffer the
most performance degradation when removing previous ut-
terances.

We also observe that the proposed model has the low-

ICER SEMER IRER

2-turn Our model proposed proposed proposed
w/o DialogAct ↑ 22.89 % ↑ 24.03 % ↑ 23.78 %

w/o PrevUtt ↑ 4.18% ↑ 4.06% ↑ 5.71%

3-turn Our model proposed proposed proposed
w/o DialogAct ↑ 100.95 % ↑ 58.67 % ↑ 53.79%

w/o PrevUtt ↑ 2.64% ↑ 1.35% ↑ 1.19%

4-turn + Our model proposed proposed proposed
w/o DialogAct ↑ 53.65% ↑ 13.30% ↑ 12.38%

w/o PrevUtt ↑ 1.10% ↑ 0.31% ↑ 0.71%

Table 5: Relative performance degradation when removing
dialogue contexts on in-house multi-turn datasets. ↑ shows
the increase in error rate with respect to the proposed model.
Higher numbers suggest more degradation on the model per-
formance. w/o DialogAct means that we remove the dia-
logue act encoder from the proposed model. w/o PrevUtt
means that we remove the previous utterance encoder from
the proposed model.

ICER SEMER IRER

2-turn Our model proposed proposed proposed
w/o GL-CF ↑ 17.12% ↑ 23.31% ↑ 23.35%
w/o G-CF ↑ 3.01% ↑ 2.35% ↑ 2.52%

3-turn Our model proposed proposed proposed
w/o GL-CF ↑ 30.67% ↑ 11.95% ↑ 14.84%
w/o G-CF ↑ 4.11% ↑ 2.79% ↑ 1.30%

4-turn+ Our model proposed proposed proposed
w/o GL-CF ↑ 34.47% ↑ 10.92% ↑ 8.00%
w/o G-CF ↑ 4.50% ↑ 0.70% ↑ 0.92%

Table 6: Effectiveness of global and local context fusion on
the in-house multi-turn datasets. ↑ shows the increase in er-
ror rate with respect to the proposed model. Higher numbers
suggest more degradation on the model performance. w/o
GL-CF means that we remove the global and local context
fusion from the proposed model; w/o G-CF means that we
remove the global context fusion from the proposed model.

est performance for slot prediction when we remove global
and local context fusion. Across all the turns, the 4-turn+
datasets suffer the most for intent prediction, whereas 2-turn
datasets suffer the most for slot prediction. These findings
suggest the importance of global and local context fusion in
predicting intents and slots in multi-turn dialogues.

Conclusion
We propose a novel E2E SLU model designed for multi-turn
dialogues where dialogue acts and previous utterance tran-
scripts are utilized as contexts to improve the performance
of intent prediction and slot filling tasks. We introduce a
global-local multi-head attention mechanism to effectively
incorporate contextual signals into our model. We demon-
strate that our proposed approach improves intent accuracy
and slot F1 – two well known SLU metrics over six state-
of-the-art baselines on two publicly available datasets. Ex-
tensive experiments on an in-house dataset further verify the
effectiveness of our proposed model.
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