
AI-Assisted Controls Change Management for Cybersecurity in the Cloud

Harshal Tupsamudre1, Arun Kumar1, Vikas Agarwal1, Nisha Gupta1, Sneha Mondal2*

1 IBM Research, India
2 Google, India

Harshal.Tupsamudre@ibm.com,{kkarun, avikas, nisgup7}@in.ibm.com, sneha.12392@gmail.com

Abstract

Webscale services dealing with sensitive content are increas-
ingly being deployed in public and hybrid cloud environ-
ments. At the same time, the impact of security breaches have
also increased manifold averaging at USD 3.86M per data
breach To tackle such increasing risks, regulations and secu-
rity frameworks are defined that an organization must comply
with. Most of these frameworks are published in natural lan-
guage text that run into hundreds of pages resulting into thou-
sands of requirements and controls. When these frameworks
undergo revisions, understanding the changes, and interpret-
ing their impact consumes huge amount of time, effort and
resources.
In this paper, we propose a change management system that
supports SMEs with AI-assisted automation of this extremely
manual and time consuming activity. Specifically, we in-
troduce the concept of live crosswalks – a framework that
models complex relationships among security and compli-
ance documents along with associated operations to manage
the change. It uses natural language processing (NLP) and
algorithmic techniques to transform the current document-
driven, highly manual process into a data-driven interactive
intelligent system. We present the overall design and demon-
strate its efficacy over several hundreds of diversified controls
through experimental evaluation.

Introduction
Security and compliance requirements are typically speci-
fied in natural language documents and published by regula-
tory bodies either in PDF or WORD format. For instance,
PCI-DSS (PCI 2018) is a regulation in financial industry
dealing with payment cards, and HIPAA (HIPAA 1996) is
a regulation in medical domain dealing with health insur-
ance. These documents typically run into hundreds of pages
of text that need to be read, understood and interpreted by
compliance Subject Matter Experts (SMEs). In some cases,
the publishers also make a structured format such as Excel,
XML, YAML or JSON available.

To assist organizations in meeting cybersecurity require-
ments of these regulations, common security controls are de-
fined by organizations such as NIST and CIS. They have

*The work was done when the author was an employee at IBM
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

defined and published control definition baselines such as
the NIST 800-53 (NIST 2013) and the CIS Security Con-
trols (CISC 2019). The cybersecurity requirements in regu-
lations are mapped to these common security controls. This
mapping is called a crosswalk.

As an example, Figure 1 shows a crosswalk from NIST
Cybersecurity Framework’s (CISA 2020) data security con-
trols to a bunch of requirements from regulations including
PCI-DSS, COBIT, etc. More concretely, PCI-DSS 3.2.1 re-
quirement 10.6 states: ”Review logs and security events for
all system components to identify anomalies or suspicious
activity”. This maps to PR.DS-5 in the NIST CSF (i.e. ”Pro-
tection against data leaks are implemented”) as shown in the
figure. The crosswalk helps organizations understand what
needs to be implemented to meet those regulatory require-
ments. Second, they act as a harmonizer across regulations
so that an organization does not need to implement the same
control again.

Figure 1: A crosswalk example

A recent report from Thomson Reuters (Hammond and
English 2019) indicates that the number of regulatory bod-
ies tracked by them has continued to grow over the years,
surpassing the count of 1000 in 2019, with an average of
220 regulatory updates per day across industry sectors. On
the other hand, the current state-of-the-art at most organiza-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

12629

tions is to have legal SMEs employed in-house or hired from
consulting firms. They read the regulatory documents, iden-
tify additions or changes, and then interpret their impact for
the organization. The information is exchanged through tex-
tual documents. Given the scale of such regulatory changes
and often constrained availability of SMEs and Compliance
officers, it has become a necessity to automate this process
to the extent possible.

To address the scaling problem, we propose live cross-
walks construct which extends the notion of a crosswalk
such that the mapping is not just across a set of pairs of
regulatory documents but across multiple layers. Extending
the example shared earlier, through the crosswalk in Fig 1),
PR.DS-5 can be further mapped to CIS Control 13 (CISC
2019) (shown as CIS CSC 13 in Fig 1). CIS CSC 13 deals
with Data Protection and has several sub-controls to ensure
the privacy and integrity of sensitive information. One of
them is 13.4: ”Monitor and Block Unauthorized Network
Traffic” for detection and another one 13.5: ”Only Allow
Access to Authorized Cloud Storage or Email Providers”
for protection. Both of these together provide coverage to
satisfy PR.DS-5. To enforce such requirement, various soft-
ware and systems implement technical rules, such as those
specified in CIS Benchmarks (CISB 2021). These can be im-
plemented using scripting languages and frameworks such
as Ansible1. This end-to-end mapping makes it possible to
determine which piece(s) of code needs to execute on a de-
vice or service to meet a specific regulatory requirement.

Regulations Harmonized
Controls

Technical
Controls Implementation

Figure 2: Crosswalk representation spanning across multiple
layers of security and compliance documents

Figure 2 depicts a high level view of how two regulatory
documents connect to implementation via harmonized con-
trols. The mappings in a live crosswalk stay ‘live’ i.e., can
be updated semi-automatically when any document in the
crosswalk evolves to a new version. While we use the con-
text of IT security and compliance, the overall approach is
applicable to general internal controls compliance as well.

Problem Statement
In this section, we formalize the concept of live crosswalks
and define the problem of realizing it and maintaining it.

Let’s say a first-layer security and compliance document
X1 maps into a second-layer document X2, and over a few
more mappings across documents such as X2 → X3 →
. . . → Xn maps onto code at Xn, then we say that there is an
end-to-end crosswalk C from X1 to Xn. Note that mapping
the elements of one security and compliance document (Xi)
into that of another (Xj), leads to a pair-level crosswalk.

1https://www.ansible.com/

A security and compliance document can be thought of as
a set of control elements, each element embodies some tech-
nical requirement. If X = (x1, x2, . . . xm) denotes the set of
control elements in document X , and Y = (y1, y2, . . . yn)
denotes the set of control elements in document Y , then a
pair-level crosswalk between source document X and tar-
get document Y is a mapping M : X → Y , M =
(m1,m2, . . .mn) such that ml = (xk, {y1, y2, . . . , yn})
where xk ∈ {X ∪ ϕ} and y1..n ∈ {Y ∪ ϕ}. Intu-
itively, a mapping from one document to another consists
of a set of one-to-many relations that are uni-directional
wherein each element of the source could potentially map
into several elements of target. These mappings, i.e. pair-
level crosswalks, can either be created manually by human
experts or created semi-automatically using AI. Techniques
for semi-automated mapping creation have been demon-
strated in (Agarwal et al. 2021) for regulatory requirements
and in (Adam et al. 2019) for compliance technical checks.

Note that, over a few hops of the crosswalk, a single first-
level regulatory requirement (i.e. at X1) can fan-out to a
large number of target requirements/codes (say, at Xn). At
the scale of a few tens of security and compliance docu-
ments over multiple hops, manual maintenance of the cross-
walk becomes challenging. To tackle this we need to de-
tect changes and assess their impact on the mappings across
hops. In this paper, we propose a system that enables au-
tomation of change detection.

Essentially, change detection exploits the semantic and
structural information in these documents to generate a log
of changes across two versions. Formally, given a document
Xv and its subsequent version Xv+1, the change detection
module outputs a 4-tuple (A,R, I,M), where A is the set
of added elements (A ∈ Xv+1, A /∈ Xv), R is the set of
removed elements (R /∈ Xv+1, R ∈ Xv), I is the set of
identical elements. M = {(e1, e′1), (e2, e′2), . . . , (en, e′n)},
ei ∈ Xv and e′i ∈ Xv+1, is the set of modified elements.
Intuitively, this set contains pairs of elements from the two
documents that correspond to each other but are not identi-
cal, i.e., ei =̂ e′i; ei ̸≡ e′i.

Since a crosswalk stitches together pair-level mappings
across multiple layers, this method is applied across those
layers iteratively in a pair-wise fashion. Though the updates
need a review by an SME yet the semi-automation brings
substantial savings of time and effort.

Solution Design
In this section, we explain the core design for semi-
automatic maintenance of multi-layered crosswalks. Detec-
tion of change requires understanding security and regula-
tory documents at multiple levels - lexical, syntactic as well
as semantic.

A security framework or regulatory document is effec-
tively a collection of security controls. Each control element
encapsulates a discrete security requirement that a compli-
ant organization must fulfill. The statement of the control is
often organized into parts and sub-parts, providing a fine-
grained view of individual requirements. As an example,
Figure 3 juxtaposes a control, AC-1, from NIST 800-53 ver-
sion 4, and its analogue in the publicly available draft of

12630

version 5. Differences in the two versions are marked by
SMEs – equivalent sub-parts are highlighted in identical col-
ors, sub-parts newly introduced in version 5 are tagged. The
two documents combined contain more than 1000 controls
and manual annotation of changes entails a significant cog-
nitive overhead. The task of the change detection operator
is to automatically generate a change-log that captures these
incremental differences.

Change Detection
Given a list of m controls that constitutes an older version
of a regulatory document, i.e, X = {x1, . . . , xm} and a re-
vised list of n controls that constitutes a newer version of the
same document, i.e., Y = {y1, . . . , yn}, the change detec-
tion operator detects if a control has been added, removed,
modified, or remained identical across the two versions. To
detect changes, we need a textual similarity metric that as-
signs similarity scores to pairs of control texts. Jaccard index
is one of the most popular metric in NLP that measures the
degree of equivalence between a pair of texts. To compute
Jaccard index, we first preprocess the text from each con-
trol element and extract bag of words by – 1) tokenizing the
text into words, 2) converting to lowercase, 3) removing stop
words, and 4) applying Wordnet Lemmatizer to transform
each word into its base form. We denote a control element
using a lower-case letter (xi) and the corresponding bag of
words with an upper-case letter (Xi). Once we extract bag
of words Xi from a control element xi and bag of words
Yj from a control element yj , we compute the Jaccard index
between two sets Xi and Yj , which is defined as the size of
their intersection divided by the size of their union.

Jaccard(Xi, Yj) =
|Xi ∩ Yj |
|Xi ∪ Yj |

(1)

Intuitively, Jaccard index measures the extent of overlap be-
tween a pair of control elements. The higher the Jaccard in-
dex, more similar are the control elements.

We propose three algorithms for change detection. The
first algorithm is greedy that matches a set of control ele-
ments in the newer version of a document with a set of el-
ements in an older version. The second algorithm is based
on dynamic programming (DP) that takes into consideration
the order of control elements in two versions of a document
and aligns a sequence of control elements in the newer ver-
sion with an older version. However, DP algorithm fails to
align (or identify) the reordered (out-of-sequence) control
elements. Therefore, we give a hybrid algorithm, which first
aligns two sequences using the DP algorithm and then em-
ploys the Greedy algorithm on the output of the DP algo-
rithm (i.e., set of added and the set of deleted control ele-
ments) to identify reordering if any.

Greedy Alignment Algorithm
The Greedy algorithm to identify changes between two ver-
sions of a regulatory document is given in Algorithm 1. It
matches a control element yj ∈ Y with a control element
xi ∈ X if the Jaccard index between the corresponding bags
of words Yj and Xi is greater than a predefined threshold

Algorithm 1: Greedy Sequence Alignment Algorithm
Input: Two sets of control elements, X = {x1, . . . , xm} and Y =

{y1, . . . , yn}, and threshold t

Output: A dictionary M which maps a control element in Y to the maximally similar
control element in X based on a threshold value t

1: Initialize a dictionary M

2: for j=1 to n do
3: max overlap← t

4: k ← −1
5: for i=1 to m do
6: overlap← Jaccard(Xi, Yj)

7: if overlap > max overlap then
8: max overlap← overlap

9: k ← i

10: end if
11: end for
12: if k > −1 then
13: M [j]← k

14: end if
15: end for
16: return M

t (where 0 < t ≤ 1), and maximal among all m control
elements of X , i.e., Jaccard(Xi, Yj) ≥ Jaccard(Xk, Yj),
k ∈ {1 . . .m}. The resulting mapping is stored in a dictio-
nary M with the index of a newer control element as key and
the index of an older control element as value.

1. If yj ∈ Y is mapped to xi ∈ X and Jaccard(Xi, Yj) =
1, then yj is identical to xi

2. If yj ∈ Y is mapped to xi ∈ X and
1 > Jaccard(Xi, Yj) > t, then xi is modified to yj

3. If yj ∈ Y is not mapped to any xi ∈ X , then yj is con-
sidered to be a newly added element in Y

4. If xi ∈ X is not mapped from any yj ∈ Y , then xi is
considered to be deleted from Y

Figure 3 shows the four control elements of AC-1 from
NIST 800-53 version 4 (left) and six control elements of
AC-1 from NIST 800-53 version 5 (right). The matching
computed by the greedy algorithm (t=0.5) is depicted in
Figure 4. The four control elements of AC-1 in version 5
are matched with some control element in version 4. The re-
maining two control elements AC-1.a.1.(b) and AC-1.b are
considered to be added to the newer version.

Dynamic Programming Alignment Algorithm
Greedy algorithm can reliably recognize identical, slightly
modified and reordered control elements in the newer ver-
sion of a regulatory document. However, most often the
newer version retains a subset of control elements from
an older version in the same order, i.e., (yj1 , . . . yjq) ∼
(xi1 , . . . xiq), where yjl is either identical to or a modifi-
cation of xil , 1 ≤ l ≤ q ≤ min(m,n). One important
limitation of the Greedy algorithm is that it performs match-
ing between the newer control elements and older controls
elements without taking into account the order of control el-
ements within the two versions of a document. This could
potentially result in incorrect matches. Consider the follow-
ing two scenarios:

12631

Figure 3: Control AC-1 from NIST 800-53 version 4 (left) and version 5 (right).

Figure 4: Matching computed by Greedy algorithm (t=0.5)
between AC-1 from NIST 800-53 v4 (left) and v5 (right).

• Suppose that (xi1 , xi2 , xi3) are three consecutive con-
trol elements in an older version of a document X
and (yj1 , yj2 , yj3) are three consecutive control ele-
ments in a newer version of the document Y such that
Jaccard(Xi1 , Yj1) ∼ 1, t > Jaccard(Xi2 , Yj2) and
Jaccard(Xi3 , Yj3) ∼ 1. Then, it is more likely that yj2
is a modification of xi2 since their neighbouring control
elements are similar. However, if there is another control
element xiq ∈ X such that Jaccard(Xiq , Yj2) > t >
Jaccard(Xi2 , Yj2), then the greedy algorithm matches
yj2 with xiq .

• Suppose that (xi1 , xi2) are two consecutive control ele-
ments in X and (yj1 , yj2 , yj3) are three consecutive con-
trol elements in Y such that Jaccard(Xi1 , Yj1) ∼ 1 and
Jaccard(Xi2 , Yj3) ∼ 1. Then, it is more likely that yj2 is
a new control element that is added to Y since its neigh-
bouring control elements yj1 and yj3 are similar to xi1
and xi2 respectively. However, if there is another control
element xiq ∈ X such that Jaccard(Xiq , Yj2) > t then
the greedy algorithm will match yj2 with xiq .

To address this limitation, we propose a dynamic pro-
gramming based algorithm that aligns a sequence of n con-
trol elements within a newer version of a regulatory doc-
ument i.e., Y = (y1, . . . , yn), with a sequence of m ele-
ments within an older version i.e., X = (x1, . . . , xm). The
algorithm computes an optimal alignment based on a cost
model (wa and wr), with wa representing the cost of adding

a control element in a newer version of a document and wr

representing the cost of removing a control element from
an older version of a document. The algorithm computes an
alignment score D[i][j] between the first i control elements
of X and first j control elements of Y using the recurrence
relation defined below:

D[i][j] =

0 if i = 0 and j = 0

D[i− 1][j] + wr if i > 0 and j = 0

D[i][j − 1] + wa if i = 0 and j > 0

min

D[i− 1][j] + wr

D[i][j − 1] + wa if i > 0 and j > 0

D[i− 1][j − 1] + (1− Jaccard(Xi−1, Yj−1))

(2)

Specifically, the alignment score D[i][j] depends on the fol-
lowing three values :
1. D[i− 1][j] +wr: where D[i− 1][j] is the score obtained

by aligning the first i − 1 control elements of X , i.e.,
(x1, . . . , xi−1) and the first j control elements of Y , i.e.,
(y1, . . . , yj), and wr is the cost of removing xi from Y .

2. D[i][j − 1] + wa: where D[i][j − 1] is the score ob-
tained by aligning the first i control elements of X , i.e.,
(x1, . . . , xi) and the first j−1 control elements of Y , and
wa is the cost of adding yj to Y .

3. D[i− 1][j − 1] + (1− Jaccard(Xi, Yj)): where D[i−
1][j − 1] is the score obtained by aligning the first
i− 1 control elements of X , i.e., (x1, . . . , xi−1) and the
first j − 1 control elements of Y , i.e., (y1, . . . , yj−1),
and (1 − Jaccard(Xi, Yj)) indicates dissimilarity be-
tween the control elements yj and xi. Note that when
Jaccard(Xi, Yj) = 1, then (1− Jaccard(Xi, Yj)) = 0
and the control element yj is identical to xi, otherwise
yj is considered to be a modification of xi.

The last cell in the matrix D[m][n] represents the optimal
alignment score between the m control elements of X and n
control elements of Y . Once matrix D is computed, one can
back trace from D[m][n] to D[0][0] to identify a sequence of
operations used to transform an older version of a document
to a newer version.

12632

Figure 5: The score matrix D computed by DP algorithm
with wa = wr = 1. The arrows starting at D[4][6] and end-
ing at D[0][0] indicate the optimal sequence of operations
required to transform AC-1 from NIST 800-53 v4 to v5.

The alignment matrix D computed by dynamic program-
ming algorithm between four control elements of AC-1 from
NIST 800-53 version 4 (left) and six control elements of AC-
1 from NIST 800-53 version 5 (right) is shown in Figure 5.
For the purpose of demonstration, both costs wa and wr are
set to 1. A sequence of operations used to transform AC-1
from version 4 to AC-1 from version 5 can be identified by
starting at D[m][n] = D[4][6] and back tracing to D[0][0].

We note that the algorithm used in the diff utilities (GNU
and Git) is also based on dynamic programming 2. However,
there are two primary differences between our approach and
the diff algorithm.

1. Our approach computes optimal alignment between two
sequences of lines where each line is represented as a bag
of words. The diff algorithm also aligns two sequences of
lines, however it treats each line as a sequence of words.

2. Our approach uses Jaccard index to compute similar-
ity between two lines. Hence, the similarity score varies
from 0 to 1. The similarity score within the diff algorithm
is either 0 or 1.

In case of regulatory documents, most of the controls in a
newer version are modification of controls from an older ver-
sion (in some cases modification is slight) which makes our
proposed algorithm more suitable for change detection.

Hybrid Algorithm
The DP based algorithm fails to align (or identify) the re-
ordered (out-of-sequence) control elements. The Greedy and
DP algorithms can be combined to identify reordered control
elements in a newer version of a document (Hybrid Algo-
rithm 2). The intuition is that if some control element is re-
ordered, then the DP algorithm would label it as added in the
newer document (since it would not be aligned to any con-
trol element in the older document) and removed in the older
document (since it would not be aligned with any control
element in the newer document). Therefore, if the Greedy
algorithm is executed on the sets of added and removed con-
trol elements, it can help us identify such reordered pairs.

Evaluation
In this section, we report the performance of the change de-
tection operator by (i) comparing the results against human
annotations on a few security and compliance documents

2gnu.org/software/diffutils/manual/html node/Overview.html

Algorithm 2: Hybrid Algorithm (DP+Greedy)
Input: Two sequences of control elements, X = (x1, . . . , xm) and
Y = (y1, . . . , yn), and threshold t, addition cost wa and removal cost
wr

Output: A label assigned to each control element in X and Y indicating if the
control element has been added, deleted, modified or remained identical

1: Run the DP algorithm and compute the optimal alignment between two versions
of the document X and Y , according to the cost model (wa and wr)

2: Extract the sets of added, removed, modified and identical controls as identified
by the DP Algorithm

3: Run the Greedy algorithm (Algorithm 1) on the sets of added and removed con-
trols extracted in the previous step to identify reordered controls if any

and (ii) evaluating our algorithm across different kinds of
security and compliance documents. Overall, we found that
both DP and Hybrid (DP+Greedy) algorithms outperform
Greedy algorithm in terms of recall and precision. As the
number of identical controls across all regulatory documents
was small (less than 10% of total controls), and both recall
and precision for all algorithms were almost 1, we do not
further discuss results pertaining to the identical controls.

NIST 800-53 First, we compare versions 4 and 5 of NIST
800-53 To obtain a complete list of changes , we rely on a
changelog authored by the MITRE corporation, also avail-
able at NIST’s website3. The precision and recall of the
proposed algorithms for 1061 coarse-grained control ele-
ments is provided in Table 1. The threshold t required for
the Greedy algorithm is set to 0.5 and the costs wa and wr

are set to 0.4. We chose these values as they were found to
be yielding better results empirically (Figure 6).

The overall recall and precision of the DP algorithm
(0.935 and 0.886) exceeds the overall recall and precision
of the Greedy algorithm (0.877 and 0.805). We observed
that 49 controls in the version 5 were reordered which were
labelled incorrectly by the DP algorithm. The Hybrid algo-
rithm improves the recall of modified controls and the preci-
sion of added and removed controls, which in turn improves
the overall recall to 0.957 and overall precision to 0.941.

Regulation Total Added Removed Modified
NIST 800-53 1061 237 52 761
Greedy (t = 0.5)
Recall 0.877 0.937 0.808 0.862
Precision 0.805 0.696 0.284 0.966
DP (wa=wr=0.4)
Recall 0.935 0.992 0.923 0.917
Precision 0.886 0.799 0.432 0.991
Hybrid
Recall 0.957 0.966 0.808 0.963
Precision 0.941 0.909 0.6 0.983

Table 1: Recall and Precision of Greedy, DP, and Hybrid
algorithms for two versions of NIST 800-53 document.

3https://csrc.nist.gov/CSRC/media/Publications/sp/800-
53/rev-5/draft/documents/sp800-53r5-draft-fpd-comparison-with-
rev4.xlsx

12633

Regulation Total Added Removed Modified
PCI-DSS 745 244 118 353
Greedy (t = 0.5)
Recall 0.737 0.881 0.889 0.572
Precision 0.624 0.63 0.415 0.789
DP (wa=wr=0.4)
Recall 0.91 0.943 0.898 0.887
Precision 0.886 0.874 0.768 0.934
Hybrid
Recall 0.894 0.902 0.788 0.915
Precision 0.899 0.913 0.816 0.907

Table 2: Recall and Precision of Greedy, DP, and Hybrid al-
gorithms for two versions of PCI-DSS regulatory document.

PCI-DSS Next, we used our change detection algorithms
on two versions of PCI-DSS regulatory document (v3.2.1
and the latest draft) which contains 15 requirements (includ-
ing 3 appendices). Each requirement has sub-requirements,
each containing description, test procedures and supplemen-
tary guidance. There are over 1500 elements. We manu-
ally created the list of changes for 745 elements to serve
as ground truth. The overall recall and precision of the DP
algorithm exceeds that of the Greedy algorithm (Table 2).
Also, as the number of reordering were few, the recall of the
DP algorithm is better than the Hybrid algorithm.

CFR 12 Part-25 Finally, we evaluated our change detec-
tion algorithms on 12 CFR Part 254, a U.S. Government reg-
ulation around Community Reinvestment Act in Banking in-
dustry. We took the help of an SME to manually generate the
list of changes between two releases to serve as ground truth
for our recall and precision computation. The overall recall
of the Greedy and DP algorithm is similar because more than
50% of the elements were newly added to the latest version
of the document (Table 3). Overall, the Hybrid algorithm
performs slightly better among all algorithms.

Regulation Total Added Removed Modified
CFR 12 Part-25 811 479 163 91
Greedy (t = 0.5)
Recall 0.921 0.956 0.945 0.67
Precision 0.895 0.944 0.823 0.772
DP (wa=wr=0.3)
Recall 0.93 0.994 0.988 0.615
Precision 0.879 0.903 0.767 0.933
Hybrid
Recall 0.94 0.96 0.945 0.77
Precision 0.93 0.958 0.895 0.816

Table 3: Recall and Precision of Greedy, DP, and Hybrid
algorithms for two versions of CFR 12 Part-25 document.

Selecting Parameters The recall of the Greedy algorithm
for different values of threshold t and the recall of the Hy-
brid algorithm for different values of costs wa and wr are de-
picted in Figure 6. Empirically, we observed that the Greedy

4https://www.ecfr.gov/cgi-bin/text-
idx?tpl=/ecfrbrowse/Title12/12cfr25 main 02.tpl

algorithm performs better across all documents when the
threshold t is around 0.5, and the DP algorithm performs bet-
ter when the costs wa and wr are between 0.3 and 0.4. The
figure also show that the Hybrid algorithm with parameters
t = 0.5 and wa and wr between 0.3 and 0.4 always performs
better than the Greedy algorithm irrespective of the value of
t used within the Greedy algorithm.

Intuitively, when both costs wa and wr are greater than
0.5, then the DP algorithm tries hard to match unrelated con-
trol pairs (xi, yj) even if there is no significant overlap be-
tween the two, i.e., Jaccard(Xi, Yj) ∼ 0. This is because,
the total cost of adding yj and removing xi is greater than
1 (wa + wr > 1), whereas the cost of matching (xi, yj) is
close to 1 since (1 − Jaccard(Xi, Yj)) ∼ 1. On the other
extreme, if costs wa and wr are close to 0, then the DP algo-
rithm labels every element in the newer document as added
and every element in the older element as removed even if
there is a significant overlap between the two. Therefore, set-
ting wa and wr between 0.3 and 0.4 results in a better recall.

Related Work
The survey paper (Papanikolaou, Pearson, and Mont 2011)
covers existing work around processing and understanding
of regulatory documents. The authors have grouped past
research based on various stages in the pipeline like pars-
ing and extraction, semantic representation, implementa-
tion/enforcement of regulations etc. The survey also men-
tions that none of the existing work is able to capture the en-
tire pipeline. While the notion of pair-level regulatory cross-
walks has existed in several industry domains, the process of
creating these is mostly manual relying on human expertise
and domain knowledge.

Authors in (Adam et al. 2019) describe a system that
uses machine learning to automatically map regulatory re-
quirements across documents. However, they demonstrate
this in the context of NIST STiGs and CIS Benchmarks
which have overlapping fine grained requirements as com-
pared to a regulatory document such as HIPAA. Mapping
across a semantic ontology created from regulations and an
existing business process ontology is described in (Sapkota
et al. 2016). Given the tough nature of this problem of map-
ping text across different kinds of documents, this problem
is still largely unsolved.

Regulatory change analysis has also been attempted ear-
lier. This includes predicting which portions of regulations
are likely to change and which are more likely to be sta-
ble (Maxwell, Anton, and Swire 2012), ensuring whether
a change proposed has been incorporated in new ver-
sion (May, Gunter, and Lee 2006) or mapping change im-
pact to business processes (Rudzajs and Buksa 2011). How-
ever, the first two appear to mostly employ a manual pro-
cess, and while third does seem to have automation, it relies
on version control system for change analysis and does not
expand much on change propagation. In contrast, our system
assumes the presence of initial mappings across regulatory
documents (usually created by SME’s) and automates the
task of keeping these up-to-date in the light of changes and
provides assistance in determining impact of those changes.

12634

Figure 6: Recall of Greedy algorithm for varying value t and Hybrid algorithm for varying costs wa and wr across documents.

Conclusion
We introduced the concept of live crosswalks - a framework
to link hundreds of regulatory requirements to thousands of
actual control implementations. We focused on identifica-
tion of change in regulatory and security control documents.
We demonstrated that our system performs comparable to
human generated change logs available today. Hence, it can
assist compliance experts saving their time and effort.

As future work, we intend to provide even better assis-
tance to the experts by incorporating semantic analysis of
the identified changes. Further, the value of this work gets
amplified when these changes can be connected to mappings
(Agarwal et al. 2021) to advise and alert the compliance ex-
perts and engineers on impacted policies/controls.

Acknowledgements
The authors would like to thank Kuntal Dey, Aditya
Dwivedi, Milton Hernandez, and Sagar Gahalod for their in-
puts on early parts of this work.

References
Adam, C.; Bulut, M. F.; Hernandez, M.; and Vukovic, M.
2019. Cognitive Compliance: Analyze, Monitor and Enforce
Compliance in the Cloud. In 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD), 234–242.
Agarwal, V.; Bar-Haim, R.; Eden, L.; Gupta, N.; Kantor, Y.;
and Kumar, A. 2021. AI-Assisted Security Controls Map-
ping for CloudsBuilt for Regulated Workloads. In IEEE In-
ternational Conference on Cloud Computing (CLOUD).
CISA. 2020. Cyber Resilience Review (CRR):
NIST Cybersecurity Framework Crosswalks. https:
//us-cert.cisa.gov/sites/default/files/c3vp/csc-crr-nist-
framework-crosswalk.pdf. Accessed: 2022-01-03.
CISB. 2021. CIS Benchmarks. https://www.cisecurity.org/.
Accessed: 2022-01-03.
CISC. 2019. CIS Critical Security Controls. https:
//workbench.cisecurity.org/files/2312/download/2608. Ac-
cessed: 2022-01-03.

Hammond, S.; and English, S. 2019. Report: Cost of
Compliance 2019—after 10 years of regulatory change, ex-
pect more change. https://blogs.thomsonreuters.com/legal-
uk/2019/07/23/report-cost-of-compliance-2019-after-
10-years-of-regulatory-change-expect-more-change/.
Accessed: 2022-01-03.
HIPAA. 1996. HEALTH INSURANCE PORTA-
BILITY AND ACCOUNTABILITY ACT OF 1996.
www.govinfo.gov/content/pkg/CRPT-104hrpt736/pdf/
CRPT-104hrpt736.pdf. Accessed: 2022-01-03.
Maxwell, J. C.; Anton, A. I.; and Swire, P. 2012. Managing
changing compliance requirements by predicting regulatory
evolution. In 2012 20th IEEE International Requirements
Engineering Conference (RE), 101–110.
May, M.; Gunter, C.; and Lee, I. 2006. Privacy APIs: Ac-
cess Control Techniques to Analyze and Verify Legal Pri-
vacy Policies. In 19th IEEE Computer Security Foundations
Workshop (CSFW’06), volume 2006, 85–97.
NIST. 2013. Security and Privacy Controls for Fed-
eral Information Systems and Organizations, NIST Special
Publication 800-53, Revision 4. https://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf. Ac-
cessed: 2022-01-03.
Papanikolaou, N.; Pearson, S.; and Mont, M. 2011. Towards
Natural-Language Understanding and Automated Enforce-
ment of Privacy Rules and Regulations in the Cloud: Sur-
vey and Bibliography. In Secure and Trust Computing, Data
Management, and Applications, volume 187, 166–173.
PCI. 2018. Payment Card Industry (PCI) Data Security Stan-
dard version 3.2.1. https://www.pcisecuritystandards.org/
documents/PCI DSS v3-2-1.pdf. Accessed: 2022-01-03.
Rudzajs, P.; and Buksa, I. 2011. Business Process and Reg-
ulations: Approach to Linkage and Change Management. In
Perspectives in Business Informatics Research, volume 90,
96–109.
Sapkota, K.; Aldea, A.; Younas, M.; Duce, D.; and Banares-
Alcantara, R. 2016. Automating the semantic mapping be-
tween regulatory guidelines and organizational processes.
Service Oriented Computing and Applications, 10.

12635

