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Abstract

Predictive maintenance systems have the potential to signif-
icantly reduce costs for maintaining aircraft fleets as well as
provide improved safety by detecting maintenance issues be-
fore they come severe. However, the development of such
systems has been limited due to a lack of publicly labeled
multivariate time series (MTS) sensor data. MTS classifica-
tion has advanced greatly over the past decade, but there is
a lack of sufficiently challenging benchmarks for new meth-
ods. This work introduces the NGAFID Maintenance Clas-
sification (NGAFID-MC) dataset as a novel benchmark in
terms of difficulty, number of samples, and sequence length.
NGAFID-MC consists of over 7,500 labeled flights, repre-
senting over 11,500 hours of per second flight data recorder
readings of 23 sensor parameters. Using this benchmark, we
demonstrate that Recurrent Neural Network (RNN) meth-
ods are not well suited for capturing temporally distant
relationships and propose a new architecture called Con-
volutional Multiheaded Self Attention (Conv-MHSA) that
achieves greater classification performance at greater compu-
tational efficiency. We also demonstrate that image inspired
augmentations of cutout, mixup, and cutmix, can be used to
reduce overfitting and improve generalization in MTS classi-
fication. Our best trained models have been incorporated back
into the NGAFID to allow users to potentially detect flights
that require maintenance as well as provide feedback to fur-
ther expand and refine the NGAFID-MC dataset.

Introduction
In the domain of aviation, especially for small scale gen-
eral aviation fleets, aircraft maintenance is performed with
fixed schedules or after some maintenance issue is detected
during operation of an aircraft. Predictive maintenance tech-
niques can be performed to reduce cost, improve machinery
performance and life, as well as mitigate risk and increase
safety. The majority of published literature covers non neu-
ral network methods (Carvalho et al. 2019). Machine learn-
ing presents the potential to predict maintenance issues by
measuring anomalies or degradation of multivariate time se-
ries (MTS) sensor data; however this has been limited by the
proprietary nature of most flight data, with the further issue
of acquiring the data necessary to label flight data with and
without specific maintenance issues.
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While the abundance of multivariate temporal data has
enabled significant advances in MTS analysis for a wide
variety of fields, current literature lacks an evaluation of
MTS methods for non synthetic, extremely long sequences
(greater than 1024 time steps) from large labeled datasets
(more than 5000 datapoints) (Fawaz et al. 2019). This pa-
per utilizes data from the National General Aviation Flight
Information Database (NGAFID) and the MaintNet project
to create a new large scale labeled MTS benchmark, the
NGAFID Maintenance Classification dataset (NGAFID-
MC), with over 7,500 labeled flight sensor data files1, for
development of predictive maintenance systems for aviation.

Using this dataset, our results show that previous MTS
classification methods face great difficulty in classifying pre
and post maintenance flights. We also demonstrate that a
new Convolutional Multiheaded Self Attention architecture
can better capture complex temporally distant relationships
within NGAFID-MC and leverage them for better classifi-
cation performance and computational efficiency. We also
demonstrate the need for robust augmentations and intro-
duce a set of MTS augmentations that improve general-
ization. We provide a Google Colab Notebook for anyone
to fully replicate the results of our experiments2. Finally,
our best trained models have been reincorporated into the
NGAFID to inform users and collect their feedback to fur-
ther refine the models and expand the NGAFID-MC dataset.

Related Work
Several methods have been developed for MTS classifica-
tion, for a review see (Fawaz et al. 2019). Notable non-deep
learning methods include distance based k-nearest neighbors
by (Orsenigo and Vercellis 2010) and Dynamic Time Warp-
ing KNN by (Seto, Zhang, and Zhou 2015). For deep learn-
ing methods, well performing MTS classifiers tend to utilize
some combination of Recurrent Neural Network (RNN) and
Convolutional Neural Network (CNN) methods, e.g. (Karim
et al. 2017), or Temporal CNN (TCNN) methods (Wang,
Yan, and Oates 2017). However, RNN methods struggle
with long sequences due to the vanishing gradient prob-
lem (Le and Zuidema 2016). TCNN methods perform well
for MTS classification (Assaf et al. 2019), but may struggle

1https://www.kaggle.com/hooong/ngafid-mc-20210917
2https://tinyurl.com/b35mxv98
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when relevant features are temporally sparse and related.
Transformer models have been used in sequence tasks,

such as NLP by (Devlin et al. 2018) and MTS prediction
by (Zhou et al. 2021). They do not suffer the vanishing gra-
dient problem described by (Le and Zuidema 2016), allow-
ing them to learn more temporally distant relationships. Ap-
plication of transformer models and their underlying Mul-
tiheaded Self Attention (MHSA) mechanisms may lead to
performance gains compared to RNNs.

(Fawaz et al. 2019) notes that time series augmentation
lacks a thorough study, compared to NLP and Computer Vi-
sion. Augmentations techniques in Computer Vision, such
as cutmix (Yun et al. 2019), may be applicable to MTS data.

The datasets used by (Fawaz et al. 2019) do not exceed
1024 timesteps, except the WalkVsRun dataset consisting
of only 28 training and 16 test examples. To the authors’
knowledge, there are no MTS datasets that are not simu-
lated, have greater length than 1024, and have labeled exam-
ples greater than 5000. Datasets meeting this criteria provide
more realistic benchmarks for many real world applications,
especially those related to engineering systems and predic-
tive maintenance.

Dataset and Data Collection
The NGAFID serves as a repository for general aviation
flight data, with a web portal for viewing and tracking flight
safety events for individual pilots as well as for fleets of
aircraft (Karboviak et al. 2018). The NGAFID currently
contains over 900,000 hours of flight data generated by
over 780,000 flights by 12 different types of aircraft, pro-
vided by 65 fleets and individual users, resulting in over
3.15 billion per second flight data records across 103 po-
tential flight data recorder parameters. Five years of tex-
tual maintenance records from a fleet which provided data
to the NGAFID have been clustered by maintenance issue
type and then validated by domain experts for the Maint-
Net project (Akhbardeh, Desell, and Zampieri 2020). Flights
were extracted from the NGAFID and labeled as before or
after the date of the maintenance action, creating a MTS
dataset for training predictive maintenance models.

MaintNet’s maintenance record logbook data was clus-
tered into 39 different maintenance issue types. Because
some issues occurred very rarely, this work focused on the
two largest clusters, representing the most common main-
tenance issues: cluster 28 (C28): intake gasket leak/dam-
age and cluster 37 (C37): rocker cover loose/leak/damage.
The C28 and C37 clusters contain 1674 and 1248 main-
tenance records, respectively. Using the tail number from
these maintenance records, the five flights preceding any of
these maintenance records were exported from the NGAFID
to represent flight data relating to those maintenance issues.
To provide a robust set of “good” flights without mainte-
nance issues to compare these against, the five flights after
the maintenance issues were exported as well, unless they
were within 5 flights of any other maintenance issue. Flights
shorter than 30 minutes were excluded as these are typically
do not involve any actual flight. Flights were then further fil-
tered within 2 days of maintenance (before and after). As the
maintenance records only provided a day (and not a time)

of action, flights occurring on the same day as maintenance
were excluded as it was not possible to determine if they
occurred before or after maintenance.

This resulted in a benchmark dataset containing 7,505
flight data files representing 11,500 hours of Cessna 172S
flight data, with each flight data file in this dataset consisting
of data from 23 sensors (internal, external and operational
sensors, e.g., engine RPM, oil temperature, oil pressure, gas-
ket temperature, airspeed, pitch, roll, outside air tempera-
ture) recorded every second, with each flight labeled as pre
or post maintenance. Flights are split for the two mainte-
nance issues resulting in 1432 pre and 984 post examples
for C37 and 2814 pre and 2275 post examples for C28.

Background
A major goal of this work is to be able to classify flights
as problematic (leading to some maintenance issue), or in
good condition (post maintenance). Three factors make this
dataset challenging. First is the sequence length, often ex-
ceeding 3600 time steps. Second is the nature of the predic-
tion task, where the goal is to detect features relevant for
classification. Third is the significant impact of unobserv-
able variables, such as pilot actions, on the engine outputs.

To formalize the problem, we seek to predict the proba-
bility that a time series was generated by a pre or post main-
tenance flight given the flight sensor data. This can be ex-
pressed as P (Yi|Xi). We have access to the variable Ximt

as a matrix containing the flight sensor data, with imt rep-
resenting the ith flight’s mth variable at timestep t. Yi rep-
resents the ith flight’s pre or post maintenance state as 1 and
0, respectively. Uit represents the pilot’s actions for the ith
flight’s timestep t. This unknown variable U is significant
because it changes our understanding of the function gen-
erating X to f(Ui, Yi) = Xi. A pilot’s actions can impact
Ximt more than maintenance state of the aircraft.

We cannot construct a model to to predict Xim(t+1) using
only the past timesteps of Xi due to the impact of Ui. Sim-
ilarly, a compressed representation c(X) may be useless for
classification because it must first explain variance caused
by U . The authors believe that non-deep learning methods
will struggle to perform well in these conditions.

This dataset provides an exciting challenge compared to
industrial datasets, such as power plant data, because it mea-
sures a dynamic system that changes arbitrarily in a largely
uncontrolled and inconsistent environment. Routine flight
operations, such as landing and takeoff, can vary signifi-
cantly from flight to flight due to the experience of the pilot,
the weather, and wind conditions. We hope this dataset can
serve as a challenging benchmark for MTS classification.

Model Architecture and Training
Augmentation To address the limitations of the size of
this dataset, we looked into augmentations for MTS data. We
considered only basic domain augmentation methods based
on the taxonomy proposed by (Wen et al. 2020), as advanced
domain augmentations are too complex, requiring one to
train generative models. Basic time domain methods, as de-
scribed by (Le Guennec, Malinowski, and Tavenard 2016)
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and (Wen et al. 2020), include window slicing (training on
slices of the MTS) and window warping (reducing or ex-
tending the length of a segment of the MTS). These methods
were not seen to be applicable as window slicing should fail
if features for classification are temporally distant and infre-
quent, and window warping may not be applicable if the data
is not sinusoidal in nature, which this data is not.

The authors of this paper decided to explore new basic do-
main augmentations, inspired by highly effective augmenta-
tions for image classification. We consider the ideas cutout
from (DeVries and Taylor 2017), mixup from (Zhang et al.
2017), and cutmix from (Yun et al. 2019). To our knowledge,
this paper is the first to evaluate the these augmentations on
MTS, due to their absence in the surveys on MTS augmen-
tation by (Wen et al. 2020) and (Iwana and Uchida 2021).

Temporal cutout selects a random time segment and set of
channels from a MTS and sets selected values to 0. Temporal
cutmix selects a random time segment from the first MTS
and a random time segment of a random second MTS of any
label. It then selects a random set of channels and replaces
the first MTS’s segment’s channel values with those of the
second. Temporal mixup multiplies a randomly selected set
of channels in the first MTS by a value, m, and then adds
all values from the same set of channels from a randomly
selected second MTS of any label multiplied by 1−m.

Convolutional Multi-Headed Self Attention Multi-
Headed Self Attention (MHSA) modules were popularized
by (Devlin et al. 2018) for usage in Natural Language
Processing and by (Dosovitskiy et al. 2020) for Computer
Vision, but published usage of MHSA in MTS data is
less common than the previous two applications. Both
(Song et al. 2018) and (Rußwurm and Körner 2020) use
MHSA for MTS classification, but neither implements a 1D
convolution followed by MHSA. (Karim et al. 2019) utilizes
attention mechanisms in an Attention-LSTM network, but
not MHSA. The benefits of a low level convolution prior
to MHSA is demonstrated by (Gulati et al. 2020), where
convolutions can capture basic local relationships with high
efficiency while MHSA handles global relationships.

At the time of writing, the authors are not aware of any
publication that evaluates a convolutional MHSA model for
MTS classification. This model implements attention layers
that mimic the functionality of the encoder layers present
in BERT (Devlin et al. 2018). Instead of token embeddings,
the model generates sequence embeddings with the use of
1D convolutions along the temporal dimension. These learn-
able sequence embeddings capture local relationships and to
compress the MTS to a shorter length.

MHSA modules offer significant benefits over LSTMs
when applied to MTS. In particular, (Zhou et al. 2021) has
shown the capacity for MHSA to model long term rela-
tionships in time series data. Furthermore, when applied to
longer sequences, MHSA avoids the problems associated
with a vanishing gradient as described by (Le and Zuidema
2016). Not only does it better model long term relationships,
there is a significant computational efficiency over RNNs.

The Conv-MHSA model evaluated in this paper (see Fig-
ure 1) uses a series of 1D convolutions to reduce the tempo-

Figure 1: Layers and output shapes of the Conv-MHSA
model. The first dimension represents time and the second
represents channels. Note that white the boxes do not per-
form an operation, but mark significant states in the network.

ral resolution from 4096 to 512 and then employs 4 stacked
MHSA encoder layers with 8 heads each and 64 dense units
per head. The output is globally average pooled and fed to a
dense layer for classification.

Convolutional Long Short Term Memory Networks
(Keren and Schuller 2016) present a 1 dimensional convo-
lutional LSTM as an enhancement to the traditional RNN.
By using a 1 dimensional convolution, it is possible to ex-
tract features from the sequence before the LSTM layers and
reduce MTS temporal resolution.

We consider two Conv-LSTM models. The first, referred
to as Conv-LSTM, utilizes the same series of 1D convo-
lutions as the Conv-MHSA model, but instead employs 4
stacked Bidirectional LSTMs with 512 units. The output is
globally average pooled and fed to a dense layer for classifi-
cation. The second Conv-LSTM is referred to as EX-Conv-
LSTM, which utilizes 2 additional 1D convolutions before
the stacked Bidirectional LSTMs to further reduce the tem-
poral resolution to 128.

Convolutional GRU Variational Auto Encoders Varia-
tional Autoencoders (VAE) were popularized by (An and
Cho 2015) for anomaly detection. VAE’s assume that a sys-
tem’s observable outputs X can be described via a vector
or embedding E, generated by the encoder component of
the VAE model. When X cannot be described via a model
generated embedding E, it indicates anomalous activity. The
ability to describe X via E is based on the ability of a de-
coder model to reconstruct X using only E and is measured
as the reconstruction error. VAE learn their embeddings as
a Gaussian distribution, with Kullback–Leibler divergence
(KLD) for regularization. (An and Cho 2015) shows better
performance for VAEs over standard Autoencoders.

GRU based VAE models have been employed by (Guo
et al. 2018) for anomaly detection in MTS data. For clas-
sification, this approach trains on within class data (post
maintenance) with the expectation that out of class data (pre
maintenance) will have greater reconstruction error.

We implemented a VAE-Conv-GRU that uses 1D convo-
lutions to reduce the temporal resolution to 256, followed
by a bidirectional GRU (BD-GRU) with 256 units, then a
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Model Step Time in ms Parameters
C.MHSA 50 7.9M
C.LSTM 800 24.7M

EX C.LSTM 220 28.4M
VAE-Conv-GRU 130 18.3M

Table 1: Approximate Training Step Time in Miliseconds

1D convolution to reduce the temporal resolution to 128, fol-
lowed by another BD-GRU with 512 units. An embedding of
512 mixture Gaussian distributions and 8 mixtures per distri-
bution is generated from the BD-GRU outputs, regularized
via KLD. The decoder structure matches the encoder, with
1D Transposed Convolutions for the purpose of expanding
the temporal resolution. Augmentations were not used.

Training Setup All results reported were generated us-
ing a Google Colab instance with a v2-8 TPU. All models
were trained for 30 epochs using a batch size of 32, with
5-fold cross validation. Steps per epoch are 250 for MHSA
and LSTM models, 1000 for VAE models, and 500 for ex-
tended training LSTM models. Flights are truncated to the
last 4096 time steps and padded to be of the same size.
To ensure the validation data is a good measure of gener-
alized performance, the validation data is only composed of
flights from tail numbers (unique identifier for planes) not
present in the training data. Classification models used an
Adam optimizer with a decaying learning rate starting at 1e-
5 for MHSA and 2e-5 for LSTM and VAE models used an
Adam optimizer with a decaying learning rate starting at 1e-
4. Each augmentation (temporal cutout, cutmix, and mixup)
was performed on a MTS with a 40% chance. The time seg-
ment length for cutout and cutmix was selected uniformly
at random between 64 and 512. Each channel had a 30%
chance of being selected for cutout and cutmix. For tempo-
ral mixup, m was selected uniformly at random between 0.6
and 0.9, and it was applied to all time steps, with channels
being selected with a 40% chance.

Results
Computational Efficiency We observe significant com-
putational advantages in the training of the Conv-MHSA
compared to all other models. When using a TPU, the train-
ing step time (time to train on 1 batch) of Conv-MSHA is at
least 4x faster than Extra-Conv-LSTM and at least 15x faster
than Conv-LSTM. The results are summarized in Table 1.

Some of these advantages in step time could be caused by
TPUs, which utilize matrix multiplication units (MXU’s).
Performance may differ on GPU systems.

Classification Performance We evaluate each model’s
Area Under the Curve score for Precision-Recall (PR) and
Receiver Operating Characteristic (ROC). These threshold
independent metrics better measure generalized model per-
formance than accuracy. Accuracy (ACC) is excluded from
analysis because it depends on defining a threshold for pre-
dictions, which may be misleading due to class imbalance.
Binary Cross Entropy loss in also considered as a metric

Model Type A Loss ROC PR ACC

C28

C.LSTM Y 0.630 0.701 0.654 0.653
N 0.617 0.742 0.697 0.685

C.LSTM+ Y 0.623 0.730 0.644 0.691
N 0.613 0.757 0.711 0.694

C.MHSA Y 0.528 0.826 0.802 0.744
N 0.557 0.819 0.792 0.751

EX C.LSTM Y 0.612 0.725 0.678 0.667
N 0.614 0.755 0.713 0.694

EX C.LSTM+ Y 0.608 0.764 0.699 0.718
N 0.612 0.785 0.737 0.733

C37

C.LSTM Y 0.643 0.674 0.567 0.655
N 0.679 0.553 0.489 0.596

C.LSTM+ Y 0.635 0.723 0.639 0.693
N 0.644 0.711 0.618 0.683

C.MHSA Y 0.601 0.775 0.711 0.723
N 0.680 0.559 0.485 0.590

EX C.LSTM Y 0.632 0.708 0.620 0.677
N 0.640 0.709 0.608 0.680

EX C.LSTM+ Y 0.639 0.731 0.643 0.699
N 0.651 0.714 0.619 0.681

Table 2: Mean of the best metrics for each configuration.
LSTM + models are trained for 500 steps per epoch. C.
stands for Conv. A stands for augmented.

to evaluate model overconfidence in wrong predictions. Re-
sults for VAE-Conv-GRU models are excluded from the ta-
ble due to poor performance. See Table 2.

Results indicate that Conv-MHSA models consistently
perform better than Conv-LSTM models by a wide margin.
Even when Conv-LSTM models are given twice the num-
ber of training steps, they fail to reach the performance of
MHSA models.

Classification using VAE-Conv-GRU While the VAE-
Conv-GRU model is capable of achieving a validation Root
Mean Squared error of 0.0338, it cannot predict pre or post
maintenance. With mean squared error as the reconstruction
loss for comparing within class and out of class examples,
the PR-AUC and ROC-AUC values never exceed 0.55.

Discussion
Temporally Distant Attention To explore the question
as to why MHSA can achieve better performance on this
dataset compared to RNNs, it is important to observe how
the various heads attend to different positions of the se-
quence. Figure 2 is a visualisation of the 4 MHSA layers
with multiple input datapoints. We can clearly observe in
sample 0 that some layers are attending to time steps that
are 300 units apart. An RNN model may have great diffi-
culty in propagating information from time step 50 to time
step 400 due to memory degradation and vanishing gradi-
ents. MHSA allows any time step to attend to any other time
step and better capture temporally distant relationships.

To further show that the relationship between temporally
distant features is necessary for classification, we attempted
to train a Short-LSTM network using randomly sampled
slices 128 time steps long. This network uses 4 stacked 512
unit bidirectional LSTMs followed by global average pool-
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Figure 2: Attention maps illustrate how each time step at-
tends to other timesteps in MHSA. This shows 3 MHSA
Layers for 2 different datapoints from validation data. Y
Axis represents Query and X axis represent Key. Sample 2
is positive and sample 1 is negative. Bright sections are im-
portant timesteps that the model focuses on.

ing and a dense sigmoid layer for classification. This Short-
LSTM network did not perform significantly better than a
fully random predictor, outputting random floating point val-
ues between 0 and 1. This demonstrates that random sub
samples from the overall MTS is not sufficient.

Augmentation The 3 augmentations of cutout, mixup, and
cutmix, have similar functionality as dropout, described by
(Srivastava et al. 2014). While it may seem counter intu-
itive to generate unrealistic sequences, these augmentations
penalize the model for memorizing a small subset of time
steps by removing or modifying them. Like their computer
vision equivalents, these augmentations help models learn
more resilient representations and improve generalization.

Augmentations are particularly important for Conv-
MHSA networks, which are prone to overfitting on small
datasets. Conv-LSTM networks do not overfit and may not
benefit from augmentation. Results from experiments on
Conv-MHSA models show a small advantage in the mean of
all metrics when training on the C28 dataset, but a significant
advantage when training on the C37 dataset. These differ-
ences are significant, such that Conv-MHSA models trained
on C37 without augmentation perform not significantly bet-
ter than random guessing. This is most likely caused by a
difference in the dataset size, where C37 is about half the
size of C28. This difference may also be caused by a differ-
ence in the nature of the data, where it is possible that C28 is
easier to generalize on than C37. Figure 3 shows the Conv-
MHSA overfitting when training without augmentations on
the C37 dataset.

VAE and Reconstruction Loss Figure 4 shows that the
reconstruction loss is the same for both classes. This likely
because a significant portion of the variance in X is caused
by an unobservable variable U . Any VAE model would first
seek to learn how U impacts X . Based on the analysis of
MHSA on this dataset, there may be only a few, short seg-

Figure 3: Validation Loss by epoch for Conv-MHSA model
on the C37 dataset.

Figure 4: The Y axis indicates percentage of validation data-
points having more MSE than the number in X axis. The or-
ange and blue lines represent pre and post maintenance, re-
spectively. The distributions show no significant difference.

ments of the MTS that are actually useful for classification.
This suggests that VAE methods may struggle.

Future Research The NGAFID-MC dataset can be used
to evaluate a wide variety of models and approaches, such as
TCNN (Assaf et al. 2019) and dynamic time warping (Seto,
Zhang, and Zhou 2015). Further studies can be performed
on the full flight sequences, rather than only the last 4096
seconds of the flight. Future work should also evaluate mut-
liclass classification to identify which issue is present. We
also intend to expand the NGAFID-MC dataset with more
maintenance issue cluster types, as well as refinements based
on user annotations and as additional maintenance records
are received.

The Conv-MHSA architecture performs much better than
Conv-LSTM models on this dataset and it would be interest-
ing to evaluate this on other datasets. It is also plausible that
we can improve Conv-MHSA architecture by incorporating
memory efficient methods described by (Kitaev, Kaiser, and
Levskaya 2020). Additional work should be done on alterna-
tive loss functions for MTS classification, such as focal loss
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Figure 5: Screenshots showing the integration of the maintenance prediction models into the NGAFID user interface.

(Lin et al. 2017) and label smoothing (Szegedy et al. 2016).
Cutout, mixup, and cutmix augmentations should be eval-

uated against other MTS augmentation methods and models.
Due to the limited size of many MTS datasets and the cost
to acquire data, further study into augmentation can increase
the viability of MTS classification methods for general use.

Limitations There may be mislabeled datapoints due to
the nature of airplane maintenance. A reported maintenance
issue may not be fully fixed or an issue was falsely identi-
fied by the pilot. If given resources, the authors would like
to construct a small and rigorously annotated test set of data
(1000 examples) with the help of domain experts. Addition-
ally, the flights which occured on the day of maintenance
were not included, these will be included in the future as
they are annotated by domain experts.

NGAFID Deployment and Integration
The NGAFID provides a set of utilities for Flight Data Mon-
itoring (FDM), which allow users to access the per-second
time series data and perform various analytics. We added
additional functionality to calculate and display the proba-
bility that a flight may require maintenance for the Cessna
172S aircraft type for flights exceeding 30 minutes (see Fig-
ure 5). This includes a feedback system was created to give
users the ability to rate the accuracy of P (Yi|Xi) using a
three-point scale (accurate, inaccurate or unsure), based on
their knowledge of aviation and aircraft maintenance. This
allows users to provide valuable feedback and labeled data
for refining and improving future models.

However, there are infrastructure challenges that need to
be addressed before NGAFID can provide real time predic-
tive maintenance alerts to improve safety and reduce costs.
The main obstacle is the lack of wireless flight data trans-
mission (WFDT), which is more common in commercial
aviation settings. The current data import process for the
NGAFID occurs weekly and requires ground crews to man-
ually extract and upload the data. NGAFID partner fleets are
in the process of deploying WFDT systems that will allow
the NGAFID to perform real time predictive maintenance,
as the WFDT systems can upload data immediately after an
aircraft lands and returns to the hangar.

Conclusion
We demonstrate the challenging nature of the NGAFID-MC
dataset and its value for assessing various MTS approaches.
While some datasets exceed NGAFID-MC in terms of data-
points or sequence length, the authors are not aware of any
dataset that has both greater datapoints and sequence length.
The authors are also not aware of any other MTS dataset
that tracks a dynamic system that changes arbitrarily in a
largely uncontrolled and inconsistent environment. Further-
more, we demonstrate that this dataset contains temporally
distant relationships that previous MTS classification meth-
ods struggle with. We hope that the difficulty of this dataset
will inspire new and better methods for MTS classification.

We also introduce a more computationally efficient and
performant architecture, the Conv-MHSA. This architecture
can better capture temporally distant relationships in long
sequences and it does so with at much greater computational
efficiency than RNN methods. We also show that cutmix,
cutout, and mixup augmentations can significantly improve
generalization.

The ability to differentiate between pre and post mainte-
nance flights leads can provide a significant benefit to the do-
main of general aviation. Early detection of maintenance is-
sues has the potential to reduce long term maintenance costs
by catching issues before they cause more serious problems.
By detecting the need for maintenance one or two days prior
to maintenance, we can minimize the amount of flight hours
that a pilot spends on compromised aircraft, leading to in-
creased safety. We have already incorporated preliminary
models for maintenance classification for NGAFID, which
will allow us to gather feedback from users to further refine
and improve the early maintenance issue detection system.
We hope that these tools will lead to increased safety and
reduced costs for general aviation.
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