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Abstract

As artificial intelligence and machine learning algorithms be-
come increasingly prevalent in society, multiple stakehold-
ers are calling for these algorithms to provide explanations.
At the same time, these stakeholders, whether they be af-
fected citizens, government regulators, domain experts, or
system developers, have different explanation needs. To ad-
dress these needs, in 2019, we created Al Explainability
360, an open source software toolkit featuring ten diverse
and state-of-the-art explainability methods and two evalua-
tion metrics. This paper examines the impact of the toolkit
with several case studies, statistics, and community feedback.
The different ways in which users have experienced Al Ex-
plainability 360 have resulted in multiple types of impact and
improvements in multiple metrics, highlighted by the adop-
tion of the toolkit by the independent LF Al & Data Foun-
dation. The paper also describes the flexible design of the
toolkit, examples of its use, and the significant educational
material and documentation available to its users.

Introduction

The increasing use of artificial intelligence (Al) systems in
high stakes domains has been coupled with an increase in so-
cietal demands for these systems to provide explanations for
their outputs. This societal demand has already resulted in
new regulations requiring explanations (Goodman and Flax-
man 2016; Wachter, Mittelstadt, and Floridi 2017; Selbst
and Powles 2017; Pasternak 2019). Explanations can allow
users to gain insight into the system’s decision-making pro-
cess, which is a key component in calibrating appropriate
trust and confidence in Al systems (Doshi-Velez and Kim
2017; Varshney 2019).

However, many machine learning techniques, which are
responsible for much of the advances in Al, are not easily
explainable, even by experts in the field. This has led to a
growing research community (Kim, Varshney, and Weller
2018), with a long history, focusing on “interpretable” or
“explainable” machine learning techniques.! However, de-
spite the growing volume of publications, there remains a
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'We use the terms explainable and interpretable fairly inter-
changeably; some scholars make a strong distinction (Rudin 2019).
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gap between what the research community is producing and
how it can be leveraged by society.

One reason for this gap is that different people in different
settings may require different kinds of explanations (Tomsett
et al. 2018; Hind 2019). We refer to the people interacting
with an Al system as consumers, and to their different types
as personas. For example, a doctor trying to understand an
Al diagnosis of a patient may benefit from seeing known
similar cases with the same diagnosis. A denied loan appli-
cant will want to understand the reasons for their rejection
and what can be done to reverse the decision. A regulator, on
the other hand, will want to understand the behavior of the
system as a whole to ensure that it complies with the law. A
developer may want to understand where the model is more
or less confident as a means of improving its performance.

As a step toward addressing the gap, in 2019, we re-
leased the Al Explainability 360 (AIX360) open source soft-
ware toolkit for explaining machine learning models and
data (Arya et al. 2020). The toolkit currently features ten
explainability methods (listed in Table 1) and two evalua-
tion metrics from the literature (Alvarez-Melis and Jaakkola
2018; Luss et al. 2021). We also introduced a taxonomy to
navigate the space of explanation methods, not only the ten
in the toolkit but also the broader literature on explainable
Al The taxonomy was intended to be usable by consumers
with varied backgrounds to choose an appropriate explana-
tion method for their application. AIX360 differs from other
open source explainability toolkits (see Arya et al. (2020)
for a list) in two main ways: 1) its support for a broad and
diverse spectrum of explainability methods, implemented in
a common architecture, and 2) its educational material as
discussed below.

The main purpose of the current paper, two years after the
release of AIX360, is to look back at the impact that it has
had. More specifically
Impact: We describe some benefits of the toolkit from our
experiences with it, spanning use cases in finance, manufac-
turing, and IT support, as well as community metrics and
feedback. Due to the variety of ways in which others have
experienced AIX360 and its algorithms, it has had multi-
ple types of impact: operational, educational, competition,
and societal. It has correspondingly brought improvements
in multiple metrics: accuracy, semiconductor yield, satisfac-
tion rate, and domain expert time.



BRCG (Dash, Giinliik, and Wei 2018)

Learns a small, interpretable Boolean rule in disjunctive normal form (DNF) for
binary classification.

GLRM (Wei et al. 2019)

Learns a linear combination of conjunctions for real-valued regression through
a generalized linear model (GLM) link function (e.g., identity, logit).

ProtoDash (Gurumoorthy et al. 2019)

Selects diverse and representative samples that summarize a dataset or explain
a test instance. Non-negative importance weights are also learned for each of
the selected samples.

ProfWeight (Dhurandhar et al. 2018b)

Learns a reweighting of the training set based on a given interpretable model
and a high-performing complex neural network. Retraining of the interpretable
model on this reweighted training set is likely to improve the performance of
the interpretable model.

TED (Hind et al. 2019)

Learns a predictive model based not only on input-output labels but also on user-
provided explanations. For an unseen test instance both a label and explanation
are returned.

CEM (Dhurandhar et al. 2018a)

Generates a local explanation in terms of what is minimally sufficient to main-
tain the original classification, and also what should be necessarily absent.

CEM-MAF (Luss et al. 2021)

For complex images, creates contrastive explanations like CEM above but based
on high-level semantically meaningful attributes.

DIP-VAE (Kumar, Sattigeri, and Balakrishnan 2018)

Learns high-level independent features from images that possibly have semantic
interpretation.

LIME (Ribeiro, Singh, and Guestrin 2016)

Obtains local explanations by fitting a sparse linear model locally. The code
is integrated from the library maintained by its authors: https://github.com/
marcotcr/lime.

SHAP (Lundberg and Lee 2017)

Identifies feature importances based on Shapley value estimation methods. The
code is integrated from the authors’ repository: https://github.com/slundberg/

shap.

Table 1: The AI Explainability 360 toolkit (v0 . 2. 1) includes a diverse collection of explainability algorithms

In addition, we discuss aspects of the toolkit and accom-
panying materials that illustrate its design, ease of use, and
documentation. This discussion expands upon the brief sum-
mary given in Arya et al. (2020).
Toolkit Design: We describe the architecture that enables
coverage of a diversity of explainability methods as well as
extensions to the toolkit since its initial release. Code listings
show how its methods can be easily called by data scientists.
Educational Material: We discuss the resources available
to make the concepts of explainable AI accessible to non-
technical stakeholders. These include a web demonstration,
which highlights how three different personas in a loan ap-
plication scenario can be best served by different explana-
tion methods. Five Jupyter notebook tutorials show data sci-
entists how to use different methods across several problem
domains, including lending, health care, and human capital
management.

These contributions demonstrate how the design and edu-
cational material of the AIX360 toolkit have led to the cre-
ation of better Al systems.

Initial Impact

This section highlights the impact of the AIX360 toolkit in
the first two years since its release. It describes several differ-
ent forms of impact on real problem domains and the open
source community. This impact has resulted in improve-
ments in multiple metrics: accuracy, semiconductor yield,
satisfaction rate, and domain expert time.

The current version of the AIX360 toolkit includes ten ex-
plainability algorithms described in Table 1 covering differ-
ent ways of explaining. Explanation methods could be either
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local or global, where the former refers to explaining an Al
model’s decision for a single instance, while the latter refers
to explaining a model in its entirety. Another dimension of
separation is that explanation methods are typically either
feature-based or exemplar-based. The former provides key
features as an explanation, while the latter provides a list of
most relevant instances. Under feature-based, there are also
methods termed as contrastive/counterfactual explanations.
These provide the most sensitive features which, if slightly
changed, can significantly alter the output of the Al model.
Another type here are rule-based methods which output se-
mantically meaningful rules and could be considered a sub-
type of feature-based explanations.

Financial Institution: Educational Impact

Large financial institutions typically have dedicated teams
to ensure transparency and trustworthiness of their deployed
models. These teams validate models built by the model de-
velopment team. After the release of the AIX360 toolkit,
one such financial institution approached us to educate their
data science team in a newly founded “center of excellence”.
Based on real use cases seen by this team they created multi-
ple explainability use cases that varied in modality (tabular,
image, and text) and model types (LSTMs, CNNs, RNNs,
boosted trees). The goal for each use case/model was to an-
swer the following four questions:

Q1: Generally, what features are the most important for de-
cisions made by the model?

Q2: What features drove a decision for a certain input?

Q3: What features could be minimally changed to alter the



decision for an input?
Q4: Do similar inputs produce the same decision?

These questions provide pragmatic examples of an enter-
prise’s requirement for an explainability technique, which
is more concrete than simply “the model should be able to
explain its decision.”

These questions also represent diversity in the types of
explanations needed. Q1 is a global explainability question.
Q2 and Q3 are local feature-based explainability questions,
where Q3 is requiring a contrastive explanation. Q4 is a local
exemplar-based explainability question. All these questions
were answerable through one or more methods available
through AIX360: Q1 — BRCG, GLRM, ProfWeight; Q2 —
LIME, SHAP; Q3 — CEM, CEM-MAF and Q4 — Proto-
Dash. In fact, we learned that some of these questions were
inspired from our toolkit and the methods it possesses. This
demonstrates that not only does the toolkit address many real
explainability questions, but it also can help structure think-
ing about this space in relation to real problems. Thus, its
contributions are both technical and conceptual.

The result of the engagement was that the data science
team was able to successfully test out many of our methods
on the different use cases covering the four questions. They
came away with newly acquired expertise in this space due
in large part to AIX360’s existence.

Semiconductor Manufacturing: Operational
Impact

Semiconductor manufacturing is a multibillion-dollar indus-
try, where producing a modern microprocessor chip is a
complex process that takes months. A semiconductor manu-
facturer was using a model to estimate the quality of a chip
during an etching process, precluding the use of standard
tools that are expensive (cost millions of dollars) and time-
consuming (can take several days). The engineers’ goal was
not only to predict quality accurately but also to obtain in-
sight into ways in which they can improve the process. They
specifically wanted a decision tree type of model which they
were comfortable interpreting. Our goal was thus to build
the most accurate “smallish” decision tree we could. Using
the ProfWeight explanability algorithm (Dhurandhar et al.
2018b), we transferred information from an accurate neural
network to a decision tree, elevating its performance by ~
13% making it also accurate. We reported the top features:
certain pressures, time since last cleaning, and certain acid
concentrations. Based on these insights, the engineer started
controlling some of them more tightly, improving the total
number of within-spec wafers by 1.3%. In this industry a 1%
increase in yield can amount to billions of dollars in savings.

Information Technology: Operational Impact

The IT division of a large corporation used a natural lan-
guage processing (NLP) model to classify customer com-
plaints into a few hundred categories. Although this model
achieved close to 95% accuracy, the inability to explain the
misclassifications led to distrust of the system. The team
used the CEM explainability algorithm (Dhurandhar et al.
2018a) to compute local explanations. The experts said that
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such explanations are highly valuable in providing stake-
holders and end-users with confidence in the inner workings
of the classifier. Approximately, 80% of the explanations of
misclassified complaints were deemed reasonable by them
compared to 40% with the previous approach that resembled
LIME (Ribeiro, Singh, and Guestrin 2016). The experts said
the algorithm provided much better intuition about why the
system made a mistake, showing in most cases that the mis-
take was acceptable. They felt that this was useful in devel-
oping trust in the system. Given the success of our technique
for this problem, CEM has been integrated into their multi-
cloud management platform to help accelerate their clients’
journey to cloud. Initial parts of the work were also de-
scribed in a blog post (Ayachitula and Khandekar 2019).

Consumer Finance: Competition Impact

The Fair Isaac Corporation (FICO) is well known for its
FICO score, the predominant consumer credit score in the
US. FICO organized an Explainable Machine Learning
Challenge (FICO 2018) around a real-world dataset of home
equity line of credit (HELOC) applications. The tasks were
to accurately predict whether applicants would satisfactorily
repay the HELOC as well as provide local and global expla-
nations. We used the BRCG algorithm (Dash, Giinliik, and
Wei 2018) to produce a remarkably simple, directly inter-
pretable rule set model, consisting of only two rules, each
with three conditions. The model’s accuracy of 72% was
also close to the best achieved by any model of around 74%.

This submission was awarded first place for the highest
score in an empirical evaluation. The scores of our submis-
sion and other submissions were not disclosed. We do know,
however, from a presentation made by FICO that the evalu-
ation involved data scientists with domain knowledge being
presented with local and global explanations, without model
predictions. They were then asked to predict the model out-
put. Submissions were scored based on a linear combina-
tion of the data scientists’ predictive accuracy (weight of
70%) and time taken (30%). Based on this description, we
conclude that (1) directly interpretable models as provided
by AIX360 can offer an appealing combination of accuracy
and explainability, especially for regulated industries such as
consumer lending, and (2) such models may be preferred by
human decision-makers who have to understand and work
with them, particularly under time constraints.

Regulator: Educational Impact

Some requirements for AI Explainability come from
industry-specific regulation. Complementary to the previous
examples, we were contacted by a large group from a major
financial regulator to leverage our expertise in the creation of
the toolkit and taxonomy. The group wanted to get a deeper
understanding of Al explainability techniques to determine
how they should update their explainability regulations for
Al models. Financial regulation is trying to ensure credit is
extended without taking on unnecessary risk. More accurate
models can help achieve this goal, but often they are not used
because of existing XAI regulations. The group hoped that
some of the techniques in the toolkit could be used as a basis
for future regulation of financial institutions.



Metric Value
Forks 190
Stars 923
Last 14-day avg. of github views/day 182
Last 14-day avg. of github unique visitors/day 35.1
Last 14-day avg. of unique github clones/day 2.6
Total PyPI downloads 26,218
AIX360 Slack users 261
Closed pull requests (PRs) 71
Public presentations/tutorials views 6,849

Table 2: Usage and community statistics as of September 9,
2021 for the AIX360 toolkit, released in August 2019.

Open Source Community: Societal Impact

We quantify the impact of AIX360’s release in the open
source community via three channels: the GitHub repos-
itory, PyPI package repository, and the public Slack
workspace (aix360.slack.com). The usage and community-
building statistics are given in Table 2. In addition to these
metrics, the three channels provide qualitative evidence of
interaction with the community, chiefly problem reports or
feature requests on GitHub, and questions about algorithms
and event announcements on Slack. Another form of en-
gagement comes from public presentations and conference
tutorials. There have been ten presentations, some of which
were captured as videos with over 6,000 views.

Another measure of impact is the adoption of the toolkit
by independent bodies. One example of this is the LF Al
& Data Foundation’s accepting the toolkit as an incubator
project in September, 2020 (LF Al & Data 2020a). This
open governance organization has over 50 corporate and uni-
versity members and “‘supports open source innovation in
artificial intelligence, machine learning, deep learning, and
data” (LF Al & Data 2020b).

We have encouraged the community to make their own
contributions to AIX360. A good example of a community
contribution is Floid Gilbert’s FeatureBinarizerFromTrees,
which uses decision trees to binarize features more intelli-
gently for the BRCG and GLRM algorithms. Additionally,
the authors of the following four papers are currently in-
tegrating new algorithms based on counterfactual explana-
tions and influence functions into the toolkit: Galhotra, Prad-
han, and Salimi (2021); Le, Wang, and Lee (2020); Zhang
et al. (2021); Li et al. (2021). The next version of the toolkit
(v0.2.2) will include these four additional explainability
algorithms and is planned to be released by Dec 2021.

The AIX360 toolkit offers an extensible software archi-
tecture and its licensing structure (Apache v2.0) permits free
commercial use and distribution of derivative works. This
paves the way for enterprises to build new commercial of-
ferings that leverage the toolkit. Presently, the toolkit is in-
tegrated into IBM’s Cloud Pak for Data and is the foun-
dational component of a commercial explainability library
offered by IBM with additional proprietary algorithms and
software support.

In addition to the above statistics, contributions and ex-
tensions, we have also received unsolicated feedback from
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the broader community via our public slack channel (IBM
Research 2019).

“What a fantastic resource (AIX360 is)! Thanks to ev-
eryone working on it.”

— John C. Havens, Executive Director of IEEE Global
Initiative on Ethics of Autonomous and Intelligent Systems

“I have found aix360 to be most comprehensive.”
— Arpit Sisodia, Data Scientist with Ericsson

Consistent with their roles, John particularly appreciated our
educational material, and Arpit found the toolkit to have the
best coverage of a diverse set of explainability questions.

AIX360 Design and Usage

The AIX360 toolkit offers a unified, flexible, extensible, and
easy-to-use programming interface and an associated soft-
ware architecture to accommodate the diversity of explain-
ability techniques required by various stakeholders. The goal
of the architectural design is to be amenable both to data
scientists, who may not be experts in explainability, as well
as explainability algorithm developers. Toward this end, we
make use of a programming interface that is similar to pop-
ular Python model development tools (e.g., scikit-learn) and
construct a hierarchy of Python classes corresponding to ex-
plainers for data, models, and predictions. Explainability al-
gorithm developers can inherit from a family of base class
explainers to integrate new explainability algorithms. The
base class explainers are organized according to the Al mod-
eling pipeline shown in Figure 1, based upon their use in of-
fering explanations at different stages. Below we provide a
summary of the various AIX360 classes and illustrate their
usage via example in Listing 1.

* Data explainers: These explainers are implemented using
the base class DIExplainer (Directly Interpretable unsu-
pervised Explainer), which provides abstract methods to
implement unsupervised techniques that explain datasets.
The AIX360 explainers that inherit from this base class
include ProtodashExplainer and DIPVAEExplainer.

* Directly interpretable explainers: These explainers are
implemented using the base class DISExplainer (Di-
rectly Interpretable Supervised Explainer), which in-
cludes abstract methods to train interpretable models di-
rectly from labelled data. The explainers that inherit
from this base class and implement its methods include
BRCGExplainer and GLRMExplainer. Additionally, the
TED_CartesianExplainer, which trains models using data
that is labelled with persona-specific explanations, also in-
herits from DISExplainer. Listing 1 shows an example il-
lustrating the use of BRCGExplainer.

Local post-hoc explainers: These are further subdivided
into black-box and white-box explainers. The black-box
explainers are model-agnostic and generally require ac-
cess only to a model’s prediction function. This class of
explainers is implemented via the base class LocalBB-
Explainer. Our wrapper implementations of the publicly
available LIME and SHAP algorithms inherit from Lo-
calBBExplainer. The white-box explainers generally re-



Explainer classes along with their parent base class

GlobalWBExplainer, LocalWBExplainer,
DIExplainer DISExplainer GlobalBBExplainer LocalBBExplainer
T y v T
ProtodashExplainer BRCGExplainer CEMExplainer .
DIPVAEExplainer GLRMExplainer TED_CartesianExplainer  ProfweightExplainer CEMMAFImageExplainer

Data Explanations Directly Interpretable

Self Explaining

LIME & SHAP Explainers

Local Post-hoc

I

Global Post-hoc

A

Model Inference

Training Train Debug Deploy Model
Data ~~~°~ *  Model s Trained model T

A

& Training data
A

with explanations

Figure 1: Organization of AIX360 explainer classes according to their use in various steps of the Al modeling pipeline.

quire access to a model’s internals, such as its loss func-
tion, and are implemented via the base class LocalWB-
Explainer. CEMExplainer and CEMMAFImageExplainer
both inherit from LocalWBExplainer.

Global post-hoc explainers: These are subdivided into
black-box and white-box explainers as above. The cor-
responding base classes GlobalWBExplainer and Glob-
alBBExplainer, include abstract methods that can help
train interpretable surrogate models, given a source model
along with its data. The ProfweightExplainer, which is an
example of a global post-hoc white box explainer, inherits
from the base class Global WBExplainer.

* Dataset and Model API classes: In addition to explainer
classes, AIX360 includes several dataset classes to facil-
itate loading and processing of commonly used datasets
so that users can easily experiment with the implemented
algorithms.

To allow users to explain models that have been built us-
ing different deep learning frameworks (e.g. TensorFlow,
Keras, PyTorch, MXNet) while avoiding the need to im-
plement explainability algorithms multiple times for each
framework, AIX360 includes framework-specific classes
that expose a common model API needed by explainabil-
ity algorithm developers. The current version of the toolkt
includes model API classes for Keras (based on Tensor-
Flow) and Pytorch models.

Listing 1: A python code example illustrating the use of BR-
CGExplainer (directly interpretable explainer).

1 from aix360.algorithms.rbm import
BRCGExplainer, BooleanRuleCG

2 # Instantiate and train an explainer to
compute global rules in conjunctive
normal form (CNF)

3 br = BRCGExplainer (BooleanRuleCG (CNF=
True))

4 Dbr.fit(x_train, y_train)

5 # print the CNF rules

6 print (br.explain() [’rules’])

Educational Material

AIX360 was developed with the goal of providing acces-
sible resources on explainability to nontechnical stakehold-
ers. Therefore, we include numerous educational materials
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to both introduce the explainability algorithms provided by
AIX360, and to demonstrate how different explainability
methods can be applied in real-world scenarios. These edu-
cational materials include general guidance for the key con-
cepts of explainability, a taxonomy of algorithms to help a
user choose the appropriate one for their use case, a web
demo that illustrates the usage of different explainability
methods, and multiple tutorials.

A key tenet from our initial work is that “One Explanation
Does Not Fit All”, i.e., different explanation consumers will
have different needs, which can be met by different expla-
nation techniques (Arya et al. 2019). The web demo (IBM
Research 2019) was created to illustrate this point. It is
based on the FICO Explainable Machine Learning Chal-
lenge dataset (FICO 2018), a real-world scenario where a
machine learning system is used to support decisions on loan
applications by predicting the repayment risk of the appli-
cants. The demo highlights that three groups of people —
data scientists, loan officers, and bank customers — are in-
volved in the scenario, and their needs are best served by
different explainability methods. For example, although the
data scientist may demand a global understanding of model
behavior through an interpretable model, which can be pro-
vided by the GLRM algorithm, a bank customer would ask
for justification for their loan application results, which can
be generated by the CEM algorithm. We use storytelling
and visual illustrations to guide users of AIX360 through
these scenarios of different explainability consumers. Fig-
ure 2 shows screenshots from the demo.

The AIX360 toolkit currently includes five tutorials in
the form of Jupyter notebooks that show data scientists and
other developers how to use different explanation methods
across several application domains. The tutorials thus serve
as an educational tool and potential gateway to Al explain-
ability for practitioners in these domains. The tutorials cover
the following industry use cases:

1. Using 3 different methods to explain a credit approval
model to 3 types of consumers, based on the FICO Explain-
able Machine Learning Challenge dataset (FICO 2018).

2. Creating directly interpretable healthcare cost prediction
models for a care-management scenario using Medical Ex-
penditure Panel Survey data.

3. Explaining dermoscopic image datasets used to train ma-
chine learning models by uncovering semantically meaning-
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Figure 2: The web demo illustrates how different types of
explanations are appropriate for different personas (image
(a)). Image (b) shows a subset of the Protodash explainer
output to illustrate how similar applicants (i.e. prototypes)
in the training data were given the same decision.
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ful features that could help physicians diagnose skin dis-
eases.

4. Explaining National Health and Nutrition Examination
Survey datasets to support research in epidemiology and
health policy by effectively summarizing them.

5. Explaining predictions of a model that recommends em-
ployees for retention actions from a synthesized human re-
sources dataset.

The tutorials not only illustrate the application of differ-
ent methods but also provide considerable insight into the
datasets that are used and, to the extent that these insights
generalize, into the respective problem domains. These in-
sights are a natural consequence of using explainable ma-
chine learning and could be of independent interest.

Discussion

We have examined the impact of the open source Al Ex-
plainability 360 (AIX360) toolkit two years after its initial
release. A major motivation for creating the toolkit was that
different personas interacting with an Al system have differ-
ent goals and require different kinds of explanations. This
diversity has been borne out in the multiple types of impact
that we have discussed, from operational to societal, and in
the metrics that have been improved, from accuracy to user
satisfaction. We have also discussed how the design of the
toolkit supports a range of explanation methods and exten-
sions, given examples of its use, and described the educa-
tional material that makes it accessible to practitioners and
nonexperts.

The experience of interacting and working with a diverse
collection of AIX360 users helped us learn some useful
lessons. One lesson learned from working with the finan-
cial institution described in section ’Initial Impact’ is the im-
portance of supporting multiple deep learning frameworks.
The AIX360 toolkit’s model API classes helped us explain
models trained in different deep learning frameworks with-
out the need to re-implement the explainability algorithms.
The model API class currently supports Keras and PyTorch
models. We aim to extend it to cover other popular deep
learning frameworks in future. Another lesson learned is the
importance of providing platform-specific installables for
air-gapped environments in financial institutions where in-
ternet is disabled for security reasons. The library currently
supports installation via Pip (package installer for Python),
and we plan to provide platform-specific Conda installation
packages in future. We also learned that basic education, via
the examples illustrated in our demo, has been quite valuable
to users, even before they use the toolkit. This is particu-
larly valuable to level set expectations, where different users
otherwise may have different intuitive views on the mean-
ing of ’explainability”. Another pragmatic lesson learned is
that explainability techniques that are model agnostic and
leverage probing, i.e, querying the black box model for pre-
dictions on generated examples, can raise issues that are not
currently discussed by most researchers. These probes can
be in the 100s per example to be explained, resulting in a di-
rect cost to the model owner when they are charged per pre-
diction, either directly or indirectly. Such probes can also
stress the scalability of the model inference platform.
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