
A Simulation-Based Evaluation Framework for
Interactive AI Systems and Its Application

Maeda F. Hanafi*, Yannis Katsis*, Martı́n Santillán Cooper*, Yunyao Li
IBM Research AI

{maeda.hanafi, yannis.katsis, msantillancooper}@ibm.com, yunyaoli@us.ibm.com

Abstract

Interactive AI (IAI) systems are increasingly popular as the
human-centered AI design paradigm is gaining strong trac-
tion. However, evaluating IAI systems, a key step in build-
ing such systems, is particularly challenging, as their out-
put highly depends on the performed user actions. Develop-
ers often have to rely on limited and mostly qualitative data
from ad-hoc user testing to assess and improve their systems.
In this paper, we present InteractEva; a systematic evalua-
tion framework for IAI systems. We also describe how we
have applied InteractEva to evaluate a commercial IAI sys-
tem, leading to both quality improvements and better data-
driven design decisions.

Introduction
Classical AI systems are based on a two-step development
workflow, where developers create an AI model based on la-
bels provided by Subject Matter Experts (SMEs), which is
then deployed and made available for SMEs to use. As a re-
sult, SMEs are not directly involved in the model building
process, with their feedback incorporated only after lengthy
discussions with developers or other mediators (Amershi
et al. 2014). To empower users and build better AI sys-
tems, the community has looked into building AI systems
with humans-in-the-loop. Particularly popular have been in-
teractive ML/AI (IAI) systems, which continuously interact
with SMEs and incorporate their feedback to create ever-
improving versions of the underlying AI models (Fails and
Olsen Jr 2003; Amershi et al. 2014).

While a lot of work focuses on the development of IAI
systems, there are many unaddressed challenges when it
comes to their evaluation. Since the resulting AI model de-
pends on the performed user actions, how can developers of
such systems understand and track their performance accu-
rately and efficiently? A common technique is to drive eval-
uation from user testing. SMEs interact with the system to
identify and report suboptimal cases, which are then repli-
cated and debugged by developers. While user testing is very
valuable, relying solely on it may lead to an ad-hoc whack-
a-mole approach towards model improvement that is based
only on limited evidence of mostly qualitative nature.

*These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we present InteractEva; a novel evaluation
framework for IAI systems tailored towards providing data-
driven, quantitative guidance in the development of IAI sys-
tems. InteractEva leverages a user simulation engine to sim-
ulate a large number of user interactions, automatically col-
lects quantitative performance data, and generates visual-
izations and evaluation reports allowing developers to work
with designers and other stakeholders and make data-driven
decisions over the development of an IAI system.

Our work makes the following contributions:

• An analysis of the challenges of IAI system evaluation
and the desiderata for an evaluation framework.

• A novel evaluation framework for IAI systems. The
framework combines a simulation-based backend to au-
tomatically test the system against different use cases
and user interactions at scale and an interactive frontend,
allowing developers to perform quantitative evaluation
tasks, including acquiring a performance overview, per-
forming error analysis, and conducting what-if studies.

• A description of how the evaluation framework was used
in a real-life industrial setting to improve Pattern Induc-
tion; a commercial IAI text extraction system.

Note that this work focuses on evaluating the backend
of an IAI system and its ability to consistently learn high-
quality models, which falls under the class of algorithm-
centered evaluation approaches (Boukhelifa, Bezerianos,
and Lutton 2018). IAI systems can also be evaluated on user
experience, leading to human-centered evaluations (Sperrle
et al. 2021), which however are outside the scope of this
work. For additional discussions on related work, please re-
fer to the corresponding section at the end of the paper.

Tested IAI System: Pattern Induction
To exemplify our IAI evaluation framework, we will use Pat-
tern Induction; a commercial IAI Natural Language Process-
ing (NLP) extraction system, which is currently available in
Beta as part of IBM Watson® Discovery 1. Given a set of
documents, Pattern Induction allows SMEs to interactively
extract text mentions that follow recurring patterns. Exam-
ples of patterns include ISO numbers (i.e., ‘ISO’ followed
by a number), percentage of crimes by type (i.e., percentage

1https://www.ibm.com/cloud/watson-discovery

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

12658



SME provides feedback to 
system-generated questions to 
further improve the model

SME highlights a few positive examples1

2

Figure 1: Screenshot of Pattern Induction annotated with the types of supported user actions

followed by phrases of the form ‘crimes against property’ or
‘crimes against persons’), COVID-19 cases by country (i.e.,
country name followed by number), and others.

User actions. To allow SMEs to create an extraction
model without requiring a large amount of annotations, Pat-
tern Induction employs an IAI approach. In particular, SMEs
can interactively build a model by carrying out two types of
user actions through the system’s UI (see Figure 1):

• Highlight a small number of positive examples of men-
tions to be extracted through the document pane. In Fig-
ure 1, an SME willing to extract ISO numbers from
her documents has provided two examples ISO 9001 ,
ISO 22301 , shown in blue. From these, the system’s

backend learns a first version of the extraction model and
uses active learning to select representative examples and
ask for feedback. This leads to another type of action:

• Provide boolean feedback to system-generated questions.
Figure 1 (right-most pane) shows three examples the sys-
tem asks the user to verify. Feedback is used by the sys-
tem to further improve the underlying model.

This loop is repeated until the SME is satisfied with the
extraction results (highlighted in green on the document
pane and also depicted on a separate review pane, not shown
here for space reasons).

Learning algorithm. Throughout this loop, user actions
are fed into Pattern Induction’s backend, which uses a rule
induction algorithm to learn extraction rules capturing the
desired patterns. Rules in Pattern Induction consist of a se-
quence of primitives, each capturing one or more tokens of
an extraction. The following primitive types are supported:

• regular expressions – e.g., [A-Za-z]+
• prebuilt extractors for standard entities – e.g.,

IntegerNumber and Organization

• token gaps – e.g., Token gap: 3 (skip over 0 to 3 tokens)

• literals & dictionaries – e.g., ISO & [ISO, IEC, TC] .

For instance, the positive examples of ISO numbers pro-
vided above can be captured by the rule ISO [0-9]+ ,
looking for the string ‘ISO‘ followed by a number. For a
comprehensive review of Pattern Induction please refer to
SEER (Hanafi et al. 2017), on which the system is based.

Evaluation Challenges & Desiderata
Once an initial version of Pattern Induction was developed,
we worked together with other stakeholders (including re-
searchers, designers, and engineers) to understand the per-
formance of the system and improve it. We focused on the
backend algorithm trying to answer the following question:
Can the system learn good extraction models for different
use cases and if not, what needs to be improved?

Challenges. To this end, we asked SMEs to interact with
the end-to-end system and report cases where the extrac-
tion results were not satisfactory. While this successfully re-
vealed some issues, we found the process to not be sufficient
for our development workflow for three reasons: First, it is
labor-intensive requiring significant effort by SMEs to carry
out and document the issues (as they have to also describe
the sequence of performed actions). As a result, we received
only limited feedback, covering a relatively small set of user
interactions. Second, the feedback was mostly qualitative.
While user reports described cases where the learning al-
gorithm was underperforming, we did not have a way to
quantify the performance of the learned model and track its
performance over time. Third, conducting error analysis of
the reported issues to identify their root causes and inform
model improvement efforts also required substantial work.
Due to the interactive nature of the system, developers had to
manually write test cases replicating the reported sequence
of user actions, in order to then inspect the internal state of
the model (i.e., the learned rules) and debug it. As a result,
we were left with limited, anecdotal evidence of qualitative
nature that required significant time to act on.

Desiderata. Supporting our development workflow re-
quired a systematic evaluation framework that would allow

12659



Backend

IAI Evaluation Framework

User Simulation Engine

User ModelUser ModelUser Models
User ModelUser ModelUse Cases

Frontend

Evaluated 
IAI System

VersionsVersionsBackend Versions

Dataset

Ground Truth

Metadata

Next Action

Is Complete

Simulation 
Reports

API Version ID

JSON

Figure 2: InteractEva’s architecture

the development team to try several usage scenarios at scale
and get a quantitative view of the performance of the result-
ing model. Based on our observations above, as well as in-
teractions with other stakeholders, we identified three main
evaluation tasks that such a framework should support:

• Understand overall AI model performance: At its most
basic form, it should allow developers to quickly under-
stand the performance of the learned model on a vari-
ety of user interactions and datasets. The performance
should be quantified, so that developers can get an objec-
tive view of how the system performs in different scenar-
ios and identify scenarios for which more work is needed.

• Conduct error analysis: Once scenarios where the sys-
tem underperforms are identified, the framework should
enable developers to conduct error analysis to identify
the underlying issues. To this end, the framework should
expose information about the internal state of the learned
model (e.g., the set of learned extraction rules).

• Perform What-If analysis: Last but not least, the eval-
uation framework should allow developers to perform
comparative What-If analyses to enable data-driven de-
cisions. This may involve comparing different backend
versions (e.g., to check how a change to the backend
affects performance and avoid regressions) or compar-
ing the result of different user interactions to make UX
recommendations (e.g., compare the system performance
when a user provides 2 vs 4 positive examples to under-
stand how many positive examples users should be en-
couraged to provide).

Evaluation Framework Overview
Figure 2 depicts the architecture of InteractEva; the result-
ing evaluation framework. To enable the evaluation of an
IAI system at scale, InteractEva is designed around a user
simulation engine. This engine (running on the framework’s
backend) is responsible for simulating user actions and feed-
ing them into the tested IAI system, which then learns a re-

spective AI model. The predictions of the AI model (e.g.,
the extractions in our example) are then retrieved by the
framework and evaluated against provided ground truth us-
ing standard evaluation metrics (such as Precision, Recall,
and F1) to get quantifiable measures of the model’s per-
formance. These performance results, together with addi-
tional information about the simulations, are passed into the
framework’s frontend, which allows developers to inspect
them in a variety of ways to perform the aforementioned
evaluation tasks. The frontend-backend interaction happens
through JSON files, designed to facilitate the reuse of the
frontend for the evaluation of other IAI systems, as we will
see later. We next discuss the backend and frontend in de-
tail. In the following, user or SME refers to the end user of
Pattern Induction and developer refers to the person using
InteractEva to assess the performance of Pattern Induction.

Evaluation Framework Backend
InteractEva’s backend is structured around a user simulation
engine that can simulate large numbers of user interactions
and evaluate the performance of the resulting models. As
shown in Figure 2, the simulation engine interacts with three
components, designed to be flexible and capture the require-
ments of different IAI systems:

• Use cases: Acquiring a good understanding of the perfor-
mance of an IAI system requires evaluating it on a variety
of datasets/tasks. To this end, InteractEva can be supplied
with a set of use cases. Each use case corresponds to a
specific task on a particular dataset (e.g., extracting ISO
numbers from ISO reference documents) and consists of
the following components: the dataset (e.g., input doc-
uments), the ground truth (e.g., text and span informa-
tion of the ISO numbers to be extracted), and metadata
providing additional information about the use case (e.g.,
description of the task and representative examples). To
evaluate Pattern Induction, we created several use cases
of varying difficulty (see Table 1 for a subset thereof).

• User models: While use cases capture the multitude of
tasks on which the IAI system should be tested, the
framework should also capture the variety of potential
user interactions. This is accomplished by user models.
A user model represents a class of potential user interac-
tions, expressed as a sequence of user actions of specific
types. For instance, for Pattern Induction, a user model
m1 may represent SMEs that first highlight two posi-
tive examples and then provide feedback to all system
questions. Similarly, another user model m2 may rep-
resent SMEs that start with four positive examples be-
fore providing feedback. We found that having several
user models designed to test the effect of particular user
behaviours can be beneficial for what-if studies. For in-
stance, user models m1 and m2 can aid in understand-
ing how performance changes under varying number of
positive examples. Implementation-wise, a user model
exposes two functions; one returning the next user ac-
tion (e.g., next positive example) and another indicating
whether the current user interaction is complete. Note
that user models typically employ random number gen-

12660



Use Case Description Representative Examples
COVID-19 cases by
country

Extract country names followed by number of
COVID-19 cases in parentheses. Spain (239 932) Malta (620)

Cups multiple forms Extract amounts in cups. 2 cup 1/4 cup 1 1/2 cup
Earnings time period
multiple forms

Extract quarterly time periods incl. year appear-
ing in the beginning or end of the extraction. 2014 First-Quarter fourth-quarter of 2013

ISO numbers
multiple forms

Extract prefix containing a combination of
“ISO”, “TC”, and “IEC” followed by an integer.

ISO 639 TC 292 ISO/IEC 40180
ISO/TC 28

Table 1: Subset of information extraction use cases used to evaluate Pattern Induction

erators to simulate multiple user interactions of the same
type. For instance, user model m1 randomly selects from
the ground truth two examples to highlight, thus generat-
ing a different user interaction upon each invocation.

• Tested IAI system’s backend: Finally, the simulation en-
gine interacts with the API of the tested IAI system’s
backend to perform the simulation. Through the API the
simulation engine (a) submits the user actions instructed
by the respective user model and (b) retrieves the pre-
dictions of the learned AI model with their explanations
(if available). Model explanations, which are leveraged
in error analysis, as we will see next, can be either na-
tive explanations of white-box models or explanations
created through explainability techniques for black-box
models (Xu et al. 2019; Danilevsky et al. 2020). For in-
stance, in Pattern Induction explanations take the form
of rules. Note that InteractEva can interface with differ-
ent versions of the IAI system, allowing experimentation
with different backend algorithms or comparison of dif-
ferent backend versions over time.

Running the simulation. For a given backend version B
and user model M , the simulation engine iterates over all use
cases U . For each use case it queries the user model k times
to generate k user simulations, referred to next as runs 2.
For each run, it executes the simulation, retrieves the predic-
tions of the learned model by the IAI system and evaluates
it against the groundtruth using standard evaluation metrics
(e.g., Precision, Recall, and F1). The results of all runs over
all use cases are stored in a specially formatted evaluation
report. Each report captures not only the aggregate evalua-
tion metrics, but detailed information about the simulation,
including information about the evaluation results as well
as model explanations (e.g., rules) for each individual run.
One or more of these reports can then be loaded into In-
teractEva’s frontend, facilitating both inspection of a single
(backend version, user model) pair, as well as comparison of
different backend versions or user models.

Evaluation Framework Frontend
We next present InteractEva’s frontend, explaining in the
process how it allowed developers to carry out the evalu-
ation tasks outlined above and improve Pattern Induction.

2For our analysis, we utilized k = 100 runs

Note that the presented evaluation results correspond to in-
termediate development versions and do not necessarily re-
flect the performance of the commercial product.

Understanding the Overall AI Model Performance
When invoked with a simulation report for a given version
b1 of Pattern Induction and user model m1, the frontend
shows a tabular summary of model performance across all
use cases (Figure 3 (1)). Each cell displays the precision,
recall, or F1 of the learned model for a particular use case
over all simulated runs. The performance visualization cap-
tures both the average performance of the model (black bar),
as well as the range of min/max performance observed dur-
ing the simulation (light blue bars). This helps developers
identify not only cases where the IAI system consistently
underperforms, but also long-tail edge cases, which are es-
pecially important for improving AI models (Bornstein and
Casado 2020). Through this summary, developers can assess
overall performance and decide where to focus their analy-
sis efforts. For example, they can see that the use case Cups
multiple forms has low F1 and needs further investigation.

Conducting Error Analysis
Developers can then drill down into specific use cases to
identify issues in the IAI system and their root causes. In-
teractEva supports the following error analysis tasks:

Identify patterns across runs. When inspecting a use
case, the framework offers an overview of the model’s per-
formance across all simulated runs through the following
visualizations: (a) a distribution of evaluation results (e.g.,
precision, recall, F1) across runs in the form of histograms
(Figure 3 (2)), (b) a list showing the performance for each
run (Figure 3 (3)), and (c) a summary of the rules learned
during the runs and their respective frequency (Figure 3 (4)).

This information can help developers identify error pat-
terns across runs. We next demonstrate this by presenting a
real-life error analysis result and resulting fix from the Pat-
tern Induction development process. While inspecting the
Cups multiple forms use case and studying the histograms,
the developer notices that the distributions for precision, re-
call, and F1 scores skew to the left and merit more inspection
(Figure 3 (2)). Using the histogram sliders, she filters the run
list and aggregated rule views to keep only low-scoring runs.

12661



Assess overall AI model 
performance
Summary report across all use 
cases of a single version

Error analysis
Aggregate view of a use 
case of a single version

What-If analysis
Comparative view across user 
models

Error analysis
Detailed view of a run within a 
use case of a single version

Use case “Cups multiple 
forms”, where the version of 
the IAI system does not yet 
contain a fix to avoid creating 
overly general token gap rules

Distribution of Precision, Recall, and F1 
across runs

1

List of runs satisfying histogram slider filters

Use case “Earnings time period 
multiple forms” across different 
seed sizes of 2, 4, and 6. 

…
Use case “Earnings time period 
multiple forms”, where the 
version of the IAI system contains 
a fix to handle multiple extraction 
variations

Most common learned 
rules across filtered runs

Aggregate Time, Precision, Recall, and F1 of learned model across 100 runs for each use case

3 4

5

2

List of steps, incl. user action, performance of learned model and model explanation (rules)

6 7Performance across different user models on 
early version of IAI system

Comparative view after additional fixes 
have been implemented in the IAI system

Figure 3: Illustration of InteractEva’s core frontend features

The resulting aggregate rule view shows that across low
scoring runs the most commonly learned rules contain to-
ken gaps (which act as wildcards) (Figure 3 (4)). Such
rules are generic and lead to many incorrect extractions.
Based on this insight, the development team introduces op-
tional regular expressions into the learner to prevent such
over-generalizations. As a result of the fix, instead of gen-
erating the generic rule [1,2] Token gap: 3 [A-Za-z]+ ,
Pattern Induction now generates the more specific rule
IntegerNumber [0-9]* [/]* [0-9]* [A-Za-z]+ , leading
to better performance on both this use case and beyond.

Inspect individual runs. In addition to acquiring an
overview of performance across runs, InteractEva also en-
ables developers to drill down and investigate individual
runs (Figure 3 (5)). Developers can see a detailed log of the
run, including the user action performed at each step, the re-
sulting model performance, and the model explanation (in
Pattern Induction’s case, the rules). This allows them to in-
spect and debug runs directly through InteractEva, without
having to manually write test cases to replicate the run.

During the development process this view is typically
used to both analyze errors and verify fixes. For instance,
Figure 3 (5) shows the details of a run on the Earnings time
period multiple forms use case after a fix had been imple-
mented in Pattern Induction to capture variations in the pro-
vided examples. The fix addressed cases where examples
followed different patterns and required multiple rules to be

covered. With the detailed run view, developers confirmed
that the revised algorithm indeed learns a rule for each vari-
ation: (a) IntegerNumber Token gap: 1 quarter (captur-

ing examples, such as 2013 second quarter , with the year in

front) and (b) Ordinal Token gap: 2 DateTime (for exam-

ples, such as third-quarter 2016 , with the year at the end).

Performing What-If Analysis
In addition to the inspection of a single simulation report, In-
teractEva also allows developers to load multiple reports and
compare performance across user models or backend ver-
sions. This enables them to perform what-if studies in order
to test different hypotheses and make data-driven decisions.

Compare performance across user models. For in-
stance, Figure 3 (6) shows the performance of an early
version of Pattern Induction on the Earnings time period
multiple forms use case across three user models, simu-
lating users that start by providing a seed of 2, 4, and 6
positive examples, respectively, before giving feedback to
the system-generated questions. Conceptually, more positive
examples should improve the performance of the learned
model. However, the three user models showed that perfor-
mance dropped with increasing number of positive exam-
ples. This uncovered a deficiency in the backend algorithm
for use cases where the examples exhibited higher variabil-
ity, such as in the use case above, leading to no rules be-

12662



Figure 4: Performance comparison across different back-
end versions: Average precision (pink), recall (blue), and F1
(purple) over 100 runs each seeded with 6 positive examples.

ing learned. After implementing a fix, the performance of
the system improves with increasing number of examples,
as verified by the comparison view shown in Figure 3 (7)).

Compare performance across backend versions. Fi-
nally, Figure 4 shows charts generated by the frontend com-
paring the average performance of the system for different
use cases over consecutive backend versions. These views
proved indispensable in the development process, as they
allowed the development team to quantitatively track per-
formance of the system over time and identify and address
regressions early on; something that was not possible before
the deployment of the evaluation framework.

Impact to Pattern Induction
Once developed, InteractEva was continuously used during
the development of Pattern Induction to evaluate the system,
identify issues, and inform fixes. At the time of writing, In-
teractEva has been used for 5 months, during which develop-
ers iteratively generated 14 intermediate versions of Pattern
Induction. As a result of the functionality outlined above, In-
teractEva had a multi-faceted impact on Pattern Induction’s
development and deployment process:

1. it enabled developers to effectively uncover several mi-
nor and major issues before deployment,

2. it significantly accelerated debugging efforts with its in-
tegrated debugging functionality,

3. it offered a quantitative view of the system’s perfor-
mance, improving in the process the confidence of all
stakeholders in the system’s abilities,

4. it allowed regressions to be identified early on by en-
abling tracking of system performance over time, and

5. it enabled the development team to compile guidelines
for Pattern Induction users (such as recommendations for
the number of provided seed examples) based on the re-
sults of what-if analyses.

It is also worth a special mention that InteractEva helped
uncover a major class of issues in IAI systems, which are
particularly hard to identify solely through user testing: er-
rors that manifest themselves either very rarely or after sev-

eral user actions. Through its simulation-based architecture,
InteractEva helped uncover and rectify several such issues.

Generalizability
While the framework was initially created to evaluate Pat-
tern Induction, generalizability has been a guiding principle
since its inception. In particular, the following aspects of the
framework can be generalized to other IAI systems:

Reusable frontend. The frontend/backend JSON inter-
face was designed to allow the frontend to be directly reused
for the evaluation of other IAI systems. By reading the dis-
played information (such as user model names, metrics, etc.)
directly from the JSON file, the frontend can be used with
different evaluation backends that support IAI systems other
than Pattern Induction (which may expose different user
models, evaluation metrics, or model explanations) 3.

General backend architecture. While the backend will
have to be adapted to the tested IAI system (with its own
API and ground truth format and its own requirements for
user models), we believe that the backend architecture in-
cluding its modules and interfaces (Figure 2) can be lever-
aged to develop a backend for another IAI system. Testing
this hypothesis and further improving the reusability of the
backend will be part of our future work.

Related Work
Evaluation of interactive machine learning. Sev-
eral works have looked into evaluating IAI systems
(see (Boukhelifa, Bezerianos, and Lutton 2018; Sperrle
et al. 2021) for recent surveys). These range from human-
centered evaluations (focusing on user experience) to
algorithm-centered evaluations (studying the robustness of
the underlying algorithms). Our work falls under the latter
category, but goes beyond existing work by leveraging sim-
ulations to build an end-to-end simulation-based evaluation
framework that can be generalized to other IAI systems
(which to the best of our knowledge is the first of its kind).

User simulation. User simulations have been extensively
studied in the context of dialogue systems, where they were
used for training (Schatzmann et al. 2007; Kreyssig et al.
2018) or evaluation (Scheffler and Young 2001; Jung et al.
2009; Crook and Marin 2017; Zhang and Balog 2020) pur-
poses. In both cases, the focus has been on generating sim-
ulators for the specific task that closely resemble real users.
In contrast, our work focuses on an end-to-end evaluation
framework (not simply a simulation engine) for general IAI
systems (beyond dialogue systems), where one can plug in
their own user simulator(s) (which we call user model(s)).

Debugging and interpreting AI models. Finally, many
works have looked into helping humans understand AI
models. These include debugging systems for AI models,
such as ModelTracker (Amershi et al. 2015), MLDebugger

3The only exception are the aggregate rule views (Figure 3 (4)),
which currently require interpretation of the rules and may have to
be adapted for other types of model explanations.

12663



(Lourenço, Freire, and Shasha 2019), and ActiVis (Kahng
et al. 2018), as well as works on explainable AI (Gilpin et al.
2018; Lipton 2018). These works focused on general AI
models without considering how these models were gener-
ated. In contrast, our work focuses on models learned by IAI
systems, where the resulting model depends on the sequence
of user actions. This creates the need for a simulation-based
backend and a frontend where simulation and user-related
concepts become first-class citizens. However, the afore-
mentioned works can still aid in debugging models learned
during individual simulation runs. This is why InteractEva
exposes model explanations as part of its simulation reports.

Conclusion
In this work, we introduced InteractEva - a novel evaluation
framework for IAI systems - and demonstrated its impact on
the development of Pattern Induction; a deployed industrial
text extraction system. Through its simulation-based archi-
tecture, InteractEva allowed developers to evaluate the sys-
tem at scale and quickly identify and fix several issues that
would have been much harder to spot through traditional
user testing. It also allowed them to track the performance
of the system over time and make data-driven decisions. As
part of our future work, we plan to leverage InteractEva’s
generalizable architecture to support the development and
evaluation of additional IAI systems.

References
Amershi, S.; Cakmak, M.; Knox, W. B.; and Kulesza, T.
2014. Power to the People: The Role of Humans in Inter-
active Machine Learning. AI Magazine, 35(4): 105–120.
Amershi, S.; Chickering, M.; Drucker, S. M.; Lee, B.;
Simard, P.; and Suh, J. 2015. ModelTracker: Redesign-
ing Performance Analysis Tools for Machine Learning,
337–346. New York, NY, USA: Association for Comput-
ing Machinery. ISBN 9781450331456.
Bornstein, M.; and Casado, M. 2020. How to
improve AI economics by taming the long tail of
data. https://venturebeat.com/2020/08/14/how-to-improve-
ai-economics-by-taming-the-long-tail-of-data/. Accessed:
2021-09-16.
Boukhelifa, N.; Bezerianos, A.; and Lutton, E. 2018. Eval-
uation of interactive machine learning systems. In Human
and Machine Learning, 341–360. Springer.
Crook, P. A.; and Marin, A. 2017. Sequence to Sequence
Modeling for User Simulation in Dialog Systems. In IN-
TERSPEECH, 1706–1710.
Danilevsky, M.; Qian, K.; Aharonov, R.; Katsis, Y.; Kawas,
B.; and Sen, P. 2020. A Survey of the State of Explainable AI
for Natural Language Processing. In Proceedings of the 1st
Conference of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th International
Joint Conference on Natural Language Processing, 447–
459. Suzhou, China: Association for Computational Lin-
guistics.
Fails, J. A.; and Olsen Jr, D. R. 2003. Interactive machine
learning. In Proceedings of the 8th international conference
on Intelligent user interfaces, 39–45.

Gilpin, L. H.; Bau, D.; Yuan, B. Z.; Bajwa, A.; Specter, M.;
and Kagal, L. 2018. Explaining explanations: An overview
of interpretability of machine learning. In 2018 IEEE 5th
International Conference on data science and advanced an-
alytics (DSAA), 80–89. IEEE.
Hanafi, M. F.; Abouzied, A.; Chiticariu, L.; and Li, Y.
2017. SEER: Auto-Generating Information Extraction Rules
from User-Specified Examples, 6672–6682. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450346559.
Jung, S.; Lee, C.; Kim, K.; Jeong, M.; and Lee, G. G. 2009.
Data-Driven User Simulation for Automated Evaluation of
Spoken Dialog Systems. Comput. Speech Lang., 23(4):
479–509.
Kahng, M.; Andrews, P. Y.; Kalro, A.; and Chau, D. H. 2018.
ActiVis: Visual Exploration of Industry-Scale Deep Neural
Network Models. IEEE Transactions on Visualization and
Computer Graphics, 24(1): 88–97.
Kreyssig, F.; Casanueva, I.; Budzianowski, P.; and Gašić, M.
2018. Neural User Simulation for Corpus-based Policy Op-
timisation of Spoken Dialogue Systems. In Proceedings of
the 19th Annual SIGdial Meeting on Discourse and Dia-
logue, 60–69. Melbourne, Australia: Association for Com-
putational Linguistics.
Lipton, Z. C. 2018. The Mythos of Model Interpretability:
In machine learning, the concept of interpretability is both
important and slippery. Queue, 16(3): 31–57.
Lourenço, R.; Freire, J.; and Shasha, D. 2019. Debugging
Machine Learning Pipelines. In Proceedings of the 3rd In-
ternational Workshop on Data Management for End-to-End
Machine Learning, DEEM’19. New York, NY, USA: Asso-
ciation for Computing Machinery. ISBN 9781450367974.
Schatzmann, J.; Thomson, B.; Weilhammer, K.; Ye, H.; and
Young, S. 2007. Agenda-Based User Simulation for Boot-
strapping a POMDP Dialogue System. In Human Language
Technologies 2007: The Conference of the North Ameri-
can Chapter of the Association for Computational Linguis-
tics; Companion Volume, Short Papers, 149–152. Rochester,
New York: Association for Computational Linguistics.
Scheffler, K.; and Young, S. 2001. Corpus-based dialogue
simulation for automatic strategy learning and evaluation. In
Proc. NAACL Workshop on Adaptation in Dialogue Systems,
64–70.
Sperrle, F.; El-Assady, M.; Guo, G.; Borgo, R.; Chau, D. H.;
Endert, A.; and Keim, D. 2021. A Survey of Human-
Centered Evaluations in Human-Centered Machine Learn-
ing. Computer Graphics Forum, 40(3): 543–567.
Xu, F.; Uszkoreit, H.; Du, Y.; Fan, W.; Zhao, D.; and Zhu, J.
2019. Explainable AI: A brief survey on history, research ar-
eas, approaches and challenges. In CCF international con-
ference on natural language processing and Chinese com-
puting, 563–574. Springer.
Zhang, S.; and Balog, K. 2020. Evaluating Conversational
Recommender Systems via User Simulation, 1512–1520.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 9781450379984.

12664


