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Abstract

Pattern mining is an essential part of knowledge discov-
ery and data analytics. It is a powerful paradigm, especially
when combined with constraint reasoning. In this paper, we
present Seq2Pat, a constraint-based sequential pattern min-
ing tool with a high-level declarative user interface. The li-
brary finds patterns that occur frequently in large sequence
databases subject to constraints. We highlight key benefits
that are desirable, especially in industrial settings where scal-
ability, explainability, rapid experimentation, reusability, and
reproducibility are of great interest. We then showcase an au-
tomated feature extraction process powered by Seq2Pat to
discover high-level insights and boost downstream machine
learning models for customer intent prediction.

Introduction
Sequential Pattern Mining (SPM) is highly relevant in var-
ious practical applications including the analysis of medi-
cal treatment history (Bou Rjeily et al. 2019), customer pur-
chases (Requena et al. 2020), call patterns and digital click-
stream (Agrawal and Srikant 1995; Srikant and Agrawal
1996). A recent survey has more details (Gan et al. 2019).

In SPM, we are given a set of sequences that is referred to
as sequence database. As shown in the example in Table 1,
each sequence is an ordered set of items. Each item might
be associated with a set of attributes to capture item proper-
ties, e.g., price, timestamp. A pattern is a subsequence that
occurs in at least one sequence in the database maintaining
the original ordering of items. The number of sequences that
contain a pattern defines the frequency. Given a sequence
database, SPM is aimed at finding patterns that occur more
than a certain frequency threshold.

In practice, finding the entire set of frequent patterns in
a sequence database is not the ultimate goal. The number
of patterns is typically too large and may not provide sig-
nificant insights. It is thus important to search for patterns
that are not only frequent but also capture specific proper-
ties of the application at hand. This has motivated research in
Constraint-based SPM (CSPM) (Pei, Han, and Wang 2007;
Chen et al. 2008). The goal of CSPM is to incorporate
constraint reasoning into sequential pattern mining to find
smaller subsets of interesting patterns.

Copyright © 2022, Association for the Advancement of Artificial
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SEQUENCE DATABASE ⟨(item, price, timestamp)⟩
⟨ (A, 5, 1), (A, 5, 1), (B, 3, 2), (A, 8, 3), (D, 2, 3)⟩

⟨(C, 1, 3), (B, 3, 8), (A, 3, 9)⟩
⟨(C, 4, 2), (A, 5, 5), (C, 2, 5), (D, 1, 7)⟩

Table 1: Example sequence database with three sequences.

As an example, let us consider online retail clickstream
analysis. We might not be interested in all frequent browsing
patterns. For instance, the pattern ⟨login, logout⟩ is likely
to be frequent but offers little value. Instead, we seek recur-
ring clickstream patterns with unique properties, e.g., fre-
quent patterns from sessions where users spend at least a
minimum amount of time on a particular set of items with a
specific price range. Such constraints help reduce the search
space for the mining task and help discover patterns that are
more effective in knowledge discovery than arbitrarily fre-
quent clickstreams.

The main goal of this paper is to introduce an innova-
tive tool to support CSPM applications and their deployment
in real-world scenarios. Despite the applicability of pattern
mining and its potential to generate insights when com-
bined with constraint reasoning, library support remains lim-
ited for off-the-shelf tools. In particular, the Python ecosys-
tem, one of the most commonly used technology stacks
in machine learning, lacks such support. We designed the
Seq2Pat1 library to fill this gap and provide a stable and
efficient pattern mining tool with easy access for Python
users. Furthermore, beyond frequent pattern mining, our li-
brary enables users to introduce complex constraints in a
declarative manner to search for meaningful patterns. This
is a unique contribution of Seq2Pat that is not fully sup-
ported in existing mining libraries.
Seq2Pat is a tool built in collaboration between

academia and industry to serve researchers and practition-
ers for knowledge discovery in large sequence databases.
The tool finds sequential patterns that occur frequently. Fur-
thermore, it supports constraint-based reasoning to specify
desired properties by leveraging the state-of-the-art multi-
valued decision diagram representation of the sequence
database (Hosseininasab, van Hoeve, and Ciré 2019).

1https://github.com/fidelity/seq2pat
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# Sequence database over items {A, B, C, D}
database = [["A", "A", "B", "A", "D"],

["C", "B", "A"],
["C", "A", "C", "D"]]

# Seq2Pat over three sequences
seq2pat = Seq2Pat(database)

# Minimum frequency threshold
min_frequency = 2

# Find patterns that occur at least twice
patterns=seq2pat.get_patterns(min_frequency)

# Patterns
# >>> ["A", "D"], ["B", "A"], ["C", "A"]

Figure 1: Seq2Pat usage example on a toy database with
three sequences over the item set {A,B,C,D}. We discover
three patterns, {[A,D], [B,A], [C,A]}, that occur in at least
two sequences.

In the following, we start with an illustrative usage exam-
ple and then provide details of the mining algorithm based
on multi-valued decision diagrams. We then highlight key
features, especially desirable in industrial settings. Finally,
we demonstrate an AI application where the library serves
as an integration technology between raw data and machine
learning models for downstream customer intent prediction.

Usage Example
Let us start with a simple usage example based on the
sequence database in Table 1 to make the idea behind
Seq2Pat more concrete. The first example demonstrates
sequential pattern mining and the second example demon-
strates constraint-based sequential pattern mining.

The example in Figure 1 shows how to find frequent se-
quential patterns in a given sequence database. The database
is represented as a list of sequences each with a list of items.
There are three sequences over the item set {A,B,C,D}.
The min frequency parameter configures the search for
patterns that occur in at least two sequences. This exam-
ple does not enforce any constraints. When this is the case,
Seq2Pat performs sequential pattern mining. As a result,
we discover three patterns {[A,D], [B,A], [C,A]} subject
to minimum frequency threshold. Notice that each pattern
occurs in exactly two sequences satisfying the minimum fre-
quency. More specifically;

• The pattern [A,D] is a subsequence of the first and the
third sequence.

• The pattern [B,A] is a subsequence of the first and the
second sequence.

• The pattern [C,A] is a subsequence of the second and the
third sequence.

Our main design goal is to facilitate the interaction be-
tween the sophisticated pattern mining algorithm and the
raw sequence data. In Section , we provide a high-level
overview of the underlying algorithm.

# Prices for each sequence
prices = [[5, 5, 3, 8, 2],

[1, 3, 3],
[4, 5, 2, 1]]

# Timestamps for each sequence
timestamps = [[1, 1, 2, 3, 3],

[3, 8, 9],
[2, 5, 5, 7]]

# Attributes
price = Attribute(prices)
time = Attribute(timestamps)

# Declarative constraints
seq2pat.add_constraint(3<=price.average()<=4)
seq2pat.add_constraint(3<=price.median()<=4)
seq2pat.add_constraint(0<=time.gap()<=2)
seq2pat.add_constraint(0<=time.span()<=2)

# Minimum frequency threshold
min_frequency = 2

# Find patterns that occur at least twice
# subject to price and time constraints
patterns=seq2pat.get_patterns(min_frequency)

# Patterns
# >> ["A", "D"]

Figure 2: Seq2Pat usage example extended with ad-
ditional attributes and constraints. Only a single pattern,
[A,D], satisfies all constraints and the minimum frequency.

While this example uses strings (and more precisely, char-
acters) to represent the items, integer-based representation is
also supported. Similarly, while this example uses an integer
value for the frequency threshold, it is possible to use a float-
ing number ∈ (0, 1] to specify an occurrence percentage in
the size of the sequence database.

Declarative Constraints
Next, we extend the initial example with more data to intro-
duce various constraints to enforce desired properties on the
resulting patterns.

As shown in Figure 2, we incorporate two attributes; price
and timestamp. Conceptually, the idea is to capture frequent
patterns in the database from users who have spent at least
a minimum amount of time on certain items within specific
price ranges. We assume information is available to asso-
ciate each event in each sequence with the corresponding
price and timestamp value. We then encapsulate this infor-
mation in Attribute objects so that the user can interact with
the raw data. The attribute object allows reasoning about the
properties of the pattern. For instance, the first condition re-
stricts the average price of items in a pattern to be between
the range [3, 4]. This condition is added to the system as a
constraint. As such, Seq2Pat is now tasked with perform-
ing constraint-based sequential pattern mining.
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Notice how operator overloading for arithmetics and com-
pound expressions enables a user-friendly interface and im-
proves the modeling experience. It is possible to create
nested conditions that restrict upper and lower bounds simul-
taneously. Our design allows declarative modeling where the
user can add and drop various constraints on attributes. In
Section , we provide formal details about these constraints.

The first example in Figure 1 found three patterns
{[A,D], [B,A], [C,A]}. When we introduce the constraints
in the second example as in Figure 2, [A,D] is the only re-
maining pattern that meets all of the four constraints. The
other patterns do not satisfy the conditions.

Let us examine the details of constraint satisfaction for
one of the constraints; the average price. The important
observation is that the first sequence in the database ex-
hibits three different subsequences of [A,D]. Notice the
subsequences exhibit different price averages. In the first
sequence, the first and the second occurrence of [A,D]
has price average([5, 2]) = 3.5 while the third occur-
rence has price average([8, 2]) = 5. The first two sub-
sequences are feasible with respect to the price constraint,
while the third subsequence is infeasible. One satisfying
subsequence suffices for constraint feasibility. Hence the
first sequence supports the pattern [A,D]. Similarly, the
last sequence in the database satisfies the constraint with
price average([5, 1]) = 3 for the [A,D] pattern. Two se-
quences supporting the pattern for the price average meets
the minimum required frequency condition. The reasoning
for other constraints follows similarly. No other patterns sat-
isfy the constraints and frequency condition. As a result, the
library returns the only solution with [A,D].

CSPM using Decision Diagrams
We formalize our problem of solving SPM and discuss
briefly how decision diagrams help constraint reasoning.

In SPM, a sequence database SD is defined as a col-
lection of N item sequences {S1, S2, . . . , SN}. Each se-
quence is modeled as an ordered list of items, where items
i ∈ I . The items are associated with a set of attributes
A = {A, . . . ,A|A|}. As in our example, the attributes can
be price and timestamp. A pattern P = ⟨i1, i2, . . . , i|P |⟩
is a subsequence of some S ∈ SD. A subsequence rela-
tion P ⪯ S holds if and only if there exists an embed-
ding e : e1 ≤ e2 ≤ . . . ≤ e|P | such that S[ej ] = ij ,
where S[ej ] denotes the ej

th position of S , ij ∈ P and
j ∈ {1, 2, . . . , |P |}. In our usage example, P = ⟨A,D⟩ is
a subsequence of S = ⟨A,A,B,A,D⟩ with three possible
embeddings (1, 5), (2, 5) and (4, 5). A pattern is identified
to be frequent if it is a subsequence of at least θ number of
sequences in SD, where θ is a given frequency threshold.
Then SPM aims to find a set of all frequent patterns in SD.

The technology behind our approach is based on Multi-
valued Decision Diagrams (MDDs) (Bergman et al. 2016).
MDDs are widely used as efficient data structures (Wegener
2000) and for discrete optimization (Bergman et al. 2016).
More recently, MDDs were utilized for CSPM (Hosseini-
nasab, van Hoeve, and Ciré 2019) to encode the sequences
and associated attributes of sequence databases.

Figure 3: The MDD encoding of our usage example from
Table 1 and Figure 2. Each node is associated with the se-
quence ID and attributes, [ID, ⟨price⟩, ⟨timestamp⟩].

An MDD M = (U,A) is a layered directed acyclic graph
where U is the set of nodes and A is the set of arcs. Set U
is partitioned into layers (l0, l1, . . . , lm+1) such that layers
li : 1 ≤ i ≤ m correspond to position i of a sequence
S ∈ SD. The first and the last layer consists of the root r and
terminal node t modeling the start and end of all sequences.
An arc a = (u, v) ∈ A is directed from a node u ∈ lj to
a node v ∈ lj′ : j′ > j and represents the next possible
item after node u for all sequences in SD. MDD nodes store
constraint-specific information to support propagation.

Figure 3 shows the MDD encoding of our usage exam-
ple. Each sequence is represented by a path from r to t.
The MDD structure is used to enforce constraints by remov-
ing infeasible patterns and store constraint-specific informa-
tion for tackling non-monotone constraint efficiently. For in-
stance, imposing the constraints removes the nodes and arcs
shown in dashed lines. We refer to (Hosseininasab, van Ho-
eve, and Ciré 2019) for more details.

The MDD approach accommodates multiple attributes
and constraint types. It is shown to be competitive with or
superior to existing CSPM algorithms in terms of scalability
and efficiency (Hosseininasab, van Hoeve, and Ciré 2019).
The Seq2Pat library makes this efficient algorithm acces-
sible to a broad audience with a user-friendly interface.

Available Constraints
Seq2Pat supports several constraint types. Let c denote a
threshold and Ctype(·) is a function imposed on attributes
with a certain type of operation. Each constraint is presented
for both a minimum and maximum threshold c.
• Average: This constraint specifies the average value of

an attribute across all events in a pattern.
Cavg(A) ≤ c
Cavg(A) ≥ c

(1)

• Gap: This constraint specifies the difference between at-
tribute values of every two consecutive events in a pat-
tern.

Cgap(A) ≤ c := αj − αj−1 ≤ c
αj ∈ A, 2 ≤ j ≤ |P |

Cgap(A) ≥ c
(2)

• Median: This constraint specifies the median value of an
attribute across all events in a pattern.

Cmed(A) ≤ c
Cmed(A) ≥ c

(3)
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• Span: This constraint specifies the difference between
the maximum and the minimum value of an attribute
across all events in a pattern.

Cspn(A) ≤ c := max{A} −min{A} ≤ c
Cspn(A) ≥ c

(4)

The difficulty of imposing a constraint in SPM depends
on its monotone, anti-monotone, or non-monotone property.
A constraint is anti-monotone if its violation by a sequence
implies violation by all super-sequences of that sequence. A
constraint is monotone if its violation by a sequence implies
that all subsequences violates the constraint. Constraints that
are neither monotone nor anti-monotone are called non-
monotone. In SPM, imposing anti-monotone constraints is
relatively easy, whereas imposing monotone constraints and
non-monotone constraints are harder for mining algorithms.

The maximum gap constraint is prefix anti-monotone,
the minimum gap and maximum span constraints are anti-
monotone, and the minimum span constraint is monotone.
The average and median constraints Cavg(A) and Cmed(A)
are non-monotone, and challenging to implement, despite
their need in real-world applications. Previous works can-
not handle monotone and non-monotone constraints and
have to address them at the post-processing step. Contrar-
ily, Seq2Pat enforces non-monotone constraints during
the mining process, thanks to its underlying MDD structure,
thereby improving the efficiency of the mining process.

Library Highlights
The main design goal behind Seq2Pat is twofold: to sup-
port the state-of-the-art MDD approach for CSPM in a user-
friendly fashion in Python, and to accommodate several con-
straint types in a declarative fashion, including complex con-
straints such as average and median that are not supported in
existing tools.

There exist other key considerations to ease application
development, deployment, and maintenance costs. These in-
clude extensive documentation, a stable and well-tested li-
brary, graceful error handling to guide users, and scalability.
We highlight some of these library features next.

Expressiveness As demonstrated in our usage examples,
the Seq2Pat API is designed to provide a user-friendly,
class-based interface. The user interacts with the system
by adding and removing constraints. The Python ecosys-
tem further supports pattern mining with other powerful li-
braries such as pandas for data manipulation, numpy and
scipy for scientific computation, and sklearn for ma-
chine learning algorithms, all of which can interoperate with
Seq2Pat. This facilitates benchmarking with Seq2Pat as
part of a larger machine learning pipeline.

Efficiency When working with large sequence databases,
scalability is crucial. With this requirement in mind, the
library is written in Cython to bring together the effi-
ciency of a low-level C++ backend and the expressiveness
of a high-level Python public interface. Cython (Behnel
et al. 2011) is a superset of Python that enables type dec-
larations. It translates C++ code into optimized code com-
piled as Python extension modules. Cython is commonly

used to optimize heavy computations in Python to im-
prove performance and programming productivity, e.g. in
sklearn (Pedregosa et al. 2011) and surprise (Hug
2020). Seq2Pat is implemented with special attention to
ensure reproducibility, a highly desirable feature in indus-
trial applications, while minimizing any runtime and mem-
ory overhead when interfacing Python and C++ modules.

Installation & Dependencies The library is indexed in
PyPI. This allows a simple installation with a single
pip install seq2pat command hiding the complex
backend from the user. The setup automatically downloads
and installs necessary packages, such as Cython. The only
requirement is to have a C++ compiler, e.g., gcc or clang.
For the power user, we provide installation instructions to
build the library from scratch using the source code on dif-
ferent operating systems.

Coding Standards & Testing The library adheres to the
PEP-8 style guide for Python coding standards and is com-
pliant with numpydoc documentation standards. All avail-
able functionality is tested via standalone unit tests to verify
the correctness of the algorithms, including invalid cases.
The test suite provides more than 95% code coverage. The
source code is peer-reviewed for both architecture and im-
plementation. There is special attention on immutable data
containers for reproducible results and strict error checking
of input parameters to help users avoid simple mistakes.

Documentation & Examples The library is well doc-
umented2. Publicly available methods are complete with
source code documentation, including their arguments, de-
fault parameter settings, return values, and exception cases.
The library supports typing to provide the user with argu-
ment hints and annotations. We provide installation instruc-
tions, detailed usage examples3 and an API reference guide.

Seq2Pat as an Integration Technology
Our tool is readily available for any mining application that
deals with data encoded as sequences of symbols. For con-
tinuous sequences, such as time series, discretization can be
performed (Fournier-Viger et al. 2017; Lin et al. 2007). The
original work presents successful applications using stream-
ing data from MSNBC, an e-commerce website, and online
news. These are considerably large benchmarks with 900K
sequences of length more than 29K, containing up to 40K
items (Hosseininasab, van Hoeve, and Ciré 2019).

Beyond pattern mining, we envision Seq2Pat as an inte-
gration technology to enable other AI applications. It can be
used to capture data characteristics for downstream AI mod-
els. Seq2Pat generates succinct representations from large
volumes of digital clickstream activity. The patterns found
then become consumable for subsequent machine learning
models. This generic process alleviates manual feature en-
gineering and automates feature generation. In the next sec-
tion, we present a demonstration of this integration on a pub-
lic dataset.

2https://fidelity.github.io/seq2pat
3https://github.com/fidelity/seq2pat/blob/master/notebooks/
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Customer Intent Prediction
We demonstrate how to automate the feature extraction pro-
cess leveraging Seq2Pat. For this purpose, we use a pub-
licly available dataset on online shopper behavior. The pat-
terns generated by our tool serve as input features for down-
stream machine learning models to predict shopper intent.
We show that the auto-generated features by Seq2Pat
match the hand-crafted features explicitly designed for this
dataset and improves the performance of predictive models.

In the following, we describe the dataset, the pattern min-
ing and feature generation process, the machine learning
models, and the training setup. We then present numeric re-
sults and study feature importance to drive insights and ex-
planations from auto-generated Seq2Pat features.

Clickstream Data The dataset contains rich clickstream
behavior on online users browsing a popular fashion e-
commerce website (Requena et al. 2020). It consists of
203,084 shoppers’ click sequences. There are 8,329 se-
quences with at least one purchase, while 194,755 sequences
lead to no purchase. The sequences are composed of sym-
bolized events as shown in Table 2. Each sequence has
length L within the range 5 ≤ L ≤ 155. Sequences leading
to purchase are labeled as positive (+1); otherwise, labeled
as negative (0), resulting in a binary classification problem.

Sequential Pattern Mining We divide the customers into
two groups as purchasers and non-purchasers. Then, we ap-
ply Seq2Pat to each group independently to mine patterns
specific to each characteristic (Wang and Serdar 2022). For
each event, we have two attributes: the sequential order in a
sequence, Aorder, and the dwell time on a page, Atime. We
enforce two constraints to seek interesting patterns. First, we
require the maximum length of a pattern to be 10. Addition-
ally, we seek page views where shoppers spend at least 20
secs on average. More precisely, we set Cspn(Aorder) ≤ 10
and Cavg(Atime) ≥ 20(sec). Note that the maximum span
constraint is anti-monotone and is relatively easy to enforce.
In contrast, the average constraint is non-monotone and is
one of the challenging constraints that is supported uniquely
by Seq2Pat. We set the min frequency threshold as the
30% of the total number of sequences. Seq2Pat finds 457
frequent patterns in purchase sequences, in 2 minutes on
a Linux RHEL7 OS, 16-core 2.2GHz CPU, and 64 GB of
RAM, and 236 frequent patterns from the non-purchase se-
quences, in 35 minutes on the same machine, with some
overlap between the two groups.

Feature Generation When the two different sets of pat-
terns from purchaser and non-purchaser are compared, there
are 244 unique purchaser patterns and 23 unique non-
purchaser patterns. The groups share 213 patterns in com-
mon. In combination, we have 480 unique frequent patterns.
We generate the feature space via one-hot encoding. For
each sequence, we create 480-dimensional feature vector
with a binary indicator to denote the existence of a pattern.

Predictive Modeling To study the behavior of auto-
generated patterns, we develop four different models for pur-
chase prediction: LightGBM (Ke et al. 2017), shallow neural
network using one hidden layer (Shallow NN), Long Short

SYMBOL EVENT

1 Page view
2 Detail (see product page)
3 Add (add product to cart)
4 Remove (remove product from cart)
5 Purchase
6 Click (click on result after search)

Table 2: The symbols used to depict clickstream events.

Term Memory (LSTM) network (Hochreiter and Schmid-
huber 1997) from (Requena et al. 2020) that uses se-
quences as input, and LSTM boosted with Seq2Pat pat-
terns (LSTM seq2pat). LSTM applies one hidden layer on
the output of the last layer as input followed by a fully con-
nected layer to make predictions. LSTM seq2pat uses the
same architecture with the only difference that Seq2Pat
based features are concatenated to the output of LSTM and
are used together as input to the hidden layer.

Training Setup We use 80% of the data as the train set
and 20% as the test set and repeat this split 10 times for
robustness. We compare the average results for each model
based on Precision, Recall, F1 score, and the area under the
ROC curve, also known as AUC.
Hyper-parameter Tuning: We apply 3-fold cross-validation
for hyper-parameter tuning in the first train-test split. We ap-
ply grid search on the number of iterations [400, 600, 800,
1000] for LightGBM, number of nodes in the hidden layer
[32, 64, 128, 256, 512] for Shallow NN and LSTM models,
number of LSTM units [32, 64, 128]. We use 10% of train set
as a validation set to determine if training meets early stop
condition. When the loss on validation set stops decreasing
steadily, training is terminated. The validation set is used
to determine a decision boundary on the predictions for the
highest F1 score. The final parameters are 400 iterations for
LightGBM, 64 nodes for shallow NN, 32 units for the two
LSTM models with 64 and 128 nodes in hidden layers.

Numerical Results Table 3 presents the average results
that compare model performance. For feature space, we ei-
ther use the patterns found by Seq2Pat, the raw click-
stream events, or their combination. Notice LightGBM and
Shallow NN cannot operate on clicstream events. Instead,
using auto-generated Seq2Pat features, LightGBM and
Shallow NN achieve a performance that closely match the
results given in the reference work (Requena et al. 2020).
The difference is, models in (Requena et al. 2020) use hand-
crafted features, while we automate the feature generation
process. When a more sophisticated model such as LSTM is
used purely on clickstreams, it outperforms LightGBM and
Shallow NN, where the latter two models lack the ability
to capture the sequential nature of the data. When LSTM is
combined with Seq2Pat, LSTM seq2pat further improves
the performances in terms of Recall, F1 score and AUC.
We conclude that the features extracted automatically via
Seq2Pat boost ML models in downstream task for shopper
intent prediction.
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MODEL FEATURES SPACE PRECISION(%) RECALL(%) F1(%) AUC(%)

LightGBM Seq2Pat Patterns 44.70 (± 1.92) 63.15 (± 4.65) 52.20 (± 0.65) 94.98 (± 0.15)
Shallow NN Seq2Pat Patterns 44.40 (± 2.18) 64.11 (± 4.57) 52.31 (± 0.54) 95.00 (± 0.17)

LSTM Clickstream 54.96 (± 1.77) 69.53 (± 4.31) 61.28 (± 0.95) 96.41 (± 0.15)
LSTM seq2pat Clickstream + Seq2Pat Patterns 54.35 (± 2.40) 73.64 (± 4.70) 62.39 (± 0.81) 96.76 (± 0.12)

Table 3: Comparison of averaged classification performance by different methods over 10 random Train-Test splits.

Feature Importance Lastly, we study feature importance
to drive high-level insights and explanations from auto-
generated Seq2Pat features. We examine the SHapley Ad-
ditive exPlanation (SHAP) (Lundberg et al. 2020) value of
features from the LightGBM model. Figure 4 shows the top-
20 features with the highest impact. Our observations match
previous findings in (Requena et al. 2020). The pattern
⟨3, 1, 1⟩ provides the most predictive information, given that
the symbol (3) stands for adding a product. Repeated page
views as in ⟨1, 1, 1, 1, 1, 1, 1⟩, or specific product views,
⟨2, 1, 1, 1⟩ are indicative of purchase intent, whereas web
exploration visiting many products, ⟨1, 1, 2, 1, 2⟩, are more
negatively correlated to a purchase. Interestingly, searching
actions ⟨6⟩ have minimum impact on buying, raising ques-
tions about the quality of the search and ranking systems.
Most frequent patterns also yield new insights not covered
in the existing hand-crafted analysis. Most notably, we dis-
cover that removing a product but then remaining in the ses-
sion for more views, ⟨4, 1, 1⟩ is an important feature, posi-
tively correlated with a purchase. These might be scenarios
where customers need specific products, hinting at business
potential for further incentives such as prompting a virtual
chat agent or recommending personalized promotions.

Related Work
Historically, SPM was introduced in the context of market
basket analysis (Agrawal and Srikant 1995) with several al-
gorithm such as GSP (Srikant and Agrawal 1996), PrefixS-
pan (Pei et al. 2001), SPADE (Zaki 2001) and SPAM (Ayres
et al. 2002). Mining the complete set of patterns imposes
high computational costs and contains a large number of
redundant patterns. Thus CSPM is proposed to alleviate
this problem (Bonchi and Lucchese 2005; Nijssen and Zim-
mermann 2014; Aoga, Guns, and Schaus 2017). Constraint
Programming and graphical representation of the sequence
database have been shown to perform well for CSPM (Kem-
mar et al. 2017; Guns et al. 2017; Borah and Nath 2018;
Hosseininasab, van Hoeve, and Ciré 2019).

Although a few Python libraries exist for SPM, see, e.g.,
(Gao 2019; Dagenais 2016), to the best of our knowledge,
Seq2Pat is the first CSPM library in Python that supports
several anti-monotone and non-monotone constraint types.
Unfortunately, other CSPM implementations are either not
available in Python, hence missing the opportunity to inte-
grate with ML applications, or limited to a few constraint
types, most commonly, gap, maximum span, and regular ex-
pressions (Yu and Hayato 2006; Bermingham 2018; Aoga,
Guns, and Schaus 2016; Fournier-Viger et al. 2016).

Figure 4: SHAP values of auto-generated features by
Seq2Pat. Top-20 features are ranked by importance in de-
scending order. Color indicates high (in red) or low (in blue)
feature value. Horizontal location indicates the correlation
of the feature value to a high or low model prediction.

Conclusion
Pattern mining is an essential part of data analytics and
knowledge discovery from sequential databases. It is a pow-
erful tool, especially when combined with constraint rea-
soning to specify desired properties. In a collaboration be-
tween academia and industry, we open-sourced Seq2Pat
to improve applied AI innovation and deployment of pattern
mining systems. Seq2Pat provides an easy-to-use high-
level Python API for CSPM applications without sacrificing
performance, thanks to its efficient low-level C++ backend.
This enables researchers and practitioners to take advantage
of the state-of-the-art MDD algorithm in a declarative fash-
ion with modeling support for several constraint types. Fi-
nally, Seq2Pat can play an integrator role for automated
feature generation for downstream machine learning tasks
as demonstrated here on a customer intent prediction prob-
lem from fashion e-commerce.
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