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Abstract

In 2020, the White House released the “Call to Action to
the Tech Community on New Machine Readable COVID-19
Dataset,” wherein artificial intelligence experts are asked to
collect data and develop text mining techniques that can help
the science community answer high-priority scientific ques-
tions related to COVID-19. The Allen Institute for Al and
collaborators announced the availability of a rapidly growing
open dataset of publications, the COVID-19 Open Research
Dataset (CORD-19). As the pace of research accelerates,
biomedical scientists struggle to stay current. To expedite
their investigations, scientists leverage hypothesis generation
systems, which can automatically inspect published papers to
discover novel implicit connections. We present automated
general purpose hypothesis generation systems AGATHA-
C and AGATHA-GP for COVID-19 research. The systems
are based on the graph mining and transformer models. The
systems are massively validated using retrospective informa-
tion rediscovery and proactive analysis involving human-in-
the-loop expert analysis. Both systems achieve high-quality
predictions across domains in fast computational time and
are released to the broad scientific community to accelerate
biomedical research. In addition, by performing the domain
expert curated study, we show that the systems are able to
discover ongoing research findings such as the relationship
between COVID-19 and oxytocin hormone.

All code, details, and pre-trained models are available at
https://github.com/IlyaTyagin/AGATHA-C-GP.

Introduction

Development of vaccines for COVID-19 is a major triumph
of modern medicine and humankind’s ability to accelerate
scientific research. While we are all hoping to see large-
scale positive changes from fast mass adoption of the ex-
isting vaccines, there remain significant open research ques-
tions around COVID-19. The scientific community has a re-
sponsibility to do everything possible to block the ongoing
transmission of the dangerous virus and accelerate research
to mitigate its consequences. We present the following au-
tomated knowledge discovery system in order to propose

“Now with Google Brain. Contact: jsybrandt@google.com.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

12673

new tools that could compliment the existing arsenal of tech-
niques to accelerate biomedical and drug discovery research
for events like COVID-19.

The COVID-19 pandemic became one of the most im-
portant events in the information space since the end of
2019. The pace of published scientific information is un-
precedented and spans all resolutions, from the news and
pop-science articles to drug design at the molecular level.
The pace of scientific research has already been a signifi-
cant problem in science for years (Spangler 2015), and under
current circumstances this factor becomes even more pro-
nounced. Several thousands papers are being added weekly
to CORD-19! (the dataset of publications related to COVID-
19) and even more in MEDLINE?. As a result, groups work-
ing on similar problems may not be immediately aware of
the other’s findings, which can lead to inefficient invest-
ments and production delays.

Although, there are quite a few hypothesis generation
(HG) systems (Gopalakrishnan et al. 2019) including those
we have previously proposed (Sybrandt, Shtutman, and
Safro 2017; Sybrandt et al. 2020), none of them is currently
COVID-19 customized and available in the open domain
to massively process related queries. In addition to the tra-
ditional requirements for HG systems, such as high-quality
results of hypotheses, interpretability and availability for
broad scientific community, a specific demand for COVID-
19 data analysis requires: (1) customization of the vocabu-
lary and other logical units such as subject-verb-object pred-
icates; (2) customization of the training data that in the re-
ality of urgent research contains a lot of controversial and
incorrect information; (3) multiple models for different in-
formation resolutions (e.g., microscopic for drug design, and
macroscopic for the population related conclusions); and (4)
validation on the on-going domain-specific discovery.

Our contribution: In this work we bridge this gap by
releasing, AGATHA-C and AGATHA-GP , reliable and
easy to use HG systems that demonstrate state-of-the art
performance and validate their inference capabilities on
both COVID-19 related and general biomedical data. To
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make them closely related to different goals of COVID-
19 research, they correspond to micro- (AGATHA-C, for
COVID-19) and macroscopic (AGATHA-GP, for general
purpose) scales of knowledge discovery. Both systems
are trained on all existing biomedical literature available
through NIH and CORD-19 and able to process any queries
to connect biomedical concepts but AGATHA-C exhibits
better results on the molecular scale queries, e.g., those that
are relevant to drug design, and AGATHA-GP works better
for general queries, e.g., establishing connections between
certain profession and COVID-19 transmission. As it will be
explained later, we emphasize that AGATHA is not a tradi-
tional information retrieval system that effectively searches
for existing information and thus cannot be compared to
them. Instead, AGATHA generates novel hypotheses.

Both systems are the next generation of the AGATHA
knowledge network mining transformer model (Sybrandt
et al. 2020). They substantially improve the quality of the
previous AGATHA by introducing new information layers
into multi-layered semantic knowledge network pipeline,
and expanding new information retrieval techniques that fa-
cilitate inference. We present the deep learning transformer-
based AGATHA-C/GP models trained with up-to date
datasets and provide easy to use interface to broad scien-
tific community to conduct COVID-19 research. We validate
the system via candidate ranking (Sybrandt, Shtutman, and
Safro 2018; Sybrandt et al. 2020) using very recent scien-
tific publications containing findings absent in the training
set. While the original AGATHA has demonstrated state-
of-the-art performance for the time of its release, AGA-
THA and other systems were found to perform with notably
lower quality on extremely rapidly changing COVID-19 re-
search. We demonstrate a remarkable improvement on dif-
ferent types of queries with very fast query process that al-
lows massive validation. In addition, we demonstrate that
the proposed system can identify recently uncovered gene
(BST2) and hormone (oxytocin and melatonin) relationships
to COVID-19, using only papers published before these con-
nections were discovered.

More technical details are available in our extended
preprint version of the paper at arXiv (Tyagin et al. 2021).

Background and Related Work

A number of works have been proposed to organize the
CORD-109 literature into structured graphs for different pur-
poses (Basu et al. 2020; Oniani et al. 2020). A major short-
coming of these approaches is that they are limited to either
specific kind of entities or relations or both and as a result
not only the scope of possible new literature is narrowed but
a lot of additional useful knowledge is filtered out of the sys-
tem.

A major interest of constructing knowledge graphs is to
allow medical researchers to re-purpose existing drugs for
treating COVID-19. Zhang et al. (Zhang et al. 2020) de-
velop a system that uses combined semantic predicates from
SemMedDB and CORD-19 (extracted using SemRep) to
recommend drugs for COVID-19 treatment. To improve the
predications from CORD-19, the authors fine tune various
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transformer based models on a manually annotated internal
dataset.

The most similar to our current work is the system pro-
posed by (Nordon et al. 2019). The authors use Electronic
Medical Record (EMR) to generate candidates for drug re-
purposing and then use a knowledge graph constructed from
MEDLINE documents to validate those candidates. In con-
text of recent diseases like COVID-19 for which EMRs
are not as readily available, the system will be limited in
their candidate generation. Moreover, validation using only
SemMedDB publication data may yield subpar results since
it is not updated as frequently. In contrast, our method in-
corporates new sources of literature during the graph con-
struction phase itself and can be readily adapted to new
and emerging challenges in medicine. Other systems that
are built for COVID-19 drug discovery include systems
by (Martinc et al. 2020) and Kinderminer (Kuusisto et al.
2017). The former tool uses fine-tuned SciBERT model to
generate contexualized embeddings given an initial seed set
of words and the latter system uses a keyword co-count al-
gorithm to propose candidates for COVID-19. We observe
that our graph contains a larger variety of data sources data
than any of these tools and thus can produce broader set of
hypotheses.

The lack of broader applicability of systems like these in
the situation with COVID-19 pandemic demonstrates that
several major issues exist and require immediate attention:
(1) Most of the existing HG systems are domain-specific
(e.g., gene-disease interactions) that is usually expressed in
limiting the processed information (e.g., significant filtering
vocabulary and papers to a specific domain in probabilistic
topic modeling (Wang et al. 2011));

(2) A proper validation of HG system remains a techni-
cal problem because multiple large-scale models have to be
trained with all heterogeneous data carefully eliminated sev-
eral years back;

(3) Moreover, a large number of HG systems are not mas-
sively validated at all except of very old findings rediscov-
ery (Smalheiser 2017) or demonstrating just a few proactive
examples in manually curated investigation; and

(4) Interpretability and explainability of generated hypothe-
ses remain a major issue.

Pipeline Summary

We briefly summarize the AGATHA semantic graph
construction pipeline. It is described in greater details
in (Sybrandt et al. 2020).

Text pre-processing. The input for our system is a corpora
of scientific citations from the MEDLINE and CORD-19
datasets. These files contain titles and abstracts for millions
of biomedical papers. We filter non-English documents,
using the FastText Language Identification model (Joulin
et al. 2016) if the language is not provided. After that
we split all abstracts into sentences and process all sen-
tences with ScispaCy library. From each sentence we ex-
tract POS-annotated lemmas, entities and perform n-gram
mining, where n € [2,3,4] and n-grams are composed
of frequently co-occurring lemmas. Additionally, we asso-
ciate all sentences with any relevant metadata, such as the
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Figure 1: AGATHA multi-layered graph schema.

MeSH/UMLS (Bodenreider 2004) keywords provided along
with the citation.

Semantic Graph Construction. We construct a seman-
tic graph containing different types of nodes, namely, sen-
tences, entities, coded terms (from UMLS and MeSH), n-
grams, lemmas, and predicates following the schema de-
picted in Figure 1. Edges between sentences are induced
from the nearest-neighbors network of sentence embed-
dings. We also include an edge between two sentences that
appear sequentially within the same abstract, counting the
title as the first sentence. Other edges can be inferred di-
rectly from the recorded metadata. For instance, the node
representing the entity “COVID-19” is connected to every
sentence and predicate that discuss COVID-19.

NLM UMLS implementation. The prior AGATHA se-
mantic network only includes UMLS terms that appear
in SemMedDB predicates (Kilicoglu et al. 2012) which
is a major limitation. In this work we enrich the “Coded
Term” layer by introducing an additional preprocessing
phase wherein we run the SemRep tool with full-fielded out-
put option ourselves on the entire input corpora. This phase
would be necessary as CORD-19 and most recent MED-
LINE citations are not represented within slowly updated
SemMedDB. However, we find that we can substantially
increase the quality of recovered terms by applying these
tools ourselves. By doing that we not only enrich the “Coded
Terms” semantic network layer, but also introduce a signifi-
cant number of uncovered previously semantic predicates.
Graph Embedding. The resulting semantic graph is a large
undirected heterogeneous network, where each node has its
own type (as shown in Figure 1) and each edge between
nodes with types w and v corresponds to type uv. At this
point we additionally clarify that the constructed network is
not a traditional homogeneous knowledge graph. We embed
the network using a heterogeneous technique that captures
node similarity through a biased transformed dot product.
By explicitly including a bias term for each node, we capture
a concepts overall affinity within the network that is critical
for such general terms as “coronavirus.” By learning trans-
formations between each pair of node types (e.g., between
sentences and lemmas), we enable each type to occupy em-
bedding spaces with differing characteristics. Specifically,
we fit an embedding model that optimizes the following sim-
ilarity measure:

d
S(u,v) =y +in + TP + Y (6 + ), (1)
1=2

where d - space dimensionality, u, v are nodes in the seman-
tic graph with embeddings «, 0, and T is the directional
transformation vector between nodes of u’s type to nodes of
V’S.
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Figure 2: Predicate Extraction pipeline with Deep Learning
based Open IE system.

Ranking Semantic Predicates (Transformer model). Af-
ter we obtain embeddings per node in the semantic graph,
we train AGATHA system ranking model. This model is
trained to rank published subject-object pairs above ran-
domly composed pairs of UMLS concepts (negative sam-
ples). Two coded terms, along with a fixed-size random sub-
sample of predicates containing each term are input to this
model. Graph embeddings for each term and predicate are
fed into stacked transformer encoder layers, which apply
multi-headed self-attention across the embedding set. The
last set of encodings are averaged and the result is projected
to the unit interval, forming a scalar prediction for the input’s
“plausibility.”

Augmenting Semantic Predicates with Deep
Learning

We used SemRep predicate extraction system in the first sys-
tem, AGATHA-C , to extract predicates from the abstracts.
However, SemRep relies on expert coded rules and heuris-
tics to extract biomedical relations leading to significantly
fewer predicates for training. Thus, in order to augment the
predicates (for the second system, AGATHA-GP ) we de-
cided to use a deep learning based information extraction
system by Stanvosky et al. (Stanovsky et al. 2018). Figure 2
shows our overall predicate extraction pipeline. We index
our pipeline by box numbers and describe them below.
Abstract Pre-processing Box [Box 1]. We use SemRep tool
described in previous sections to process the abstracts and
mine information about the biomedical entities and poten-
tial semantic relations. This information is processed into a
record-like data structure and is augmented throughout the
rest of the pipeline.

Raw Predicate Extraction [Boxes 2 & 3]. We use the
model described in (Stanovsky et al. 2018) as the deep learn-
ing model to extract semantic predicates. The model is pro-
vided as a prediction endpoint by AllenNLP and is trained to
predict the beginning-input-output (BIO) tags for a particu-
lar sentence and classify them into subject, verb and object.
We extract and match the UMLS concepts contained in the
phrases and store these as “raw predicates” for further filter-
ing.

Semnet Filtering [Box 4]. The raw predicates extracted
from previous stage contain superfluous and spurious con-
nections between concepts that can only serve to increase
the noise in the training dataset. Hence we design two dis-



tinct filtering strategies to extract the most relevant predi-
cates. Semnet filtering takes advantage of the UMLS con-
cept’s semantic types to construct a relationship graph be-
tween all known types. If the subject and object terms are
connected via some path in this graph then the predicate is
retained and otherwise removed.

Co-count Filtering [Box 5]. A second strategy of pruning
is to get information about the terms that co-occur the most
in our corpus. A larger degree of co-occurrence implies a
greater correlation between concepts. We use a normalized
frequency count as a scoring measure of co-occurrence. All
predicates that contain subject and object terms below a cer-
tain threshold are pruned from the list of candidate predi-
cates.

Validation

A fair validation of HG systems is extremely challeng-
ing, as these models are designed to predict novel connec-
tions that are unknown to even those who evaluate the sys-
tem (Sybrandt et al. 2018). In addition, even if validated by
rediscovering findings using historical data, the process is
computationally expensive because of the need to train mul-
tiple models to understand how many months (or years) back
the HG system can predict the findings, which requires care-
ful filtering of the used papers, vocabulary and other types of
information. To present our results in terms of its usefulness
for urgent CORD-19-related HG, we use a historical bench-
mark, which is conceptually described in (Sybrandt et al.
2020). This technique is fully automated and does not re-
quire any domain experts intervention.

Positive samples collection. We use SemRep tool and pro-
posed in the previous section approach to process the most
recent CORD-19 citations, which were published after the
specific cut date making sure that the citations are not in-
cluded in the training set. After that we extract all subject-
object pairs from the obtained results and explicitly check
that none of these pairs are presented in the training set. Pairs
mentioned in the CORD-19 less than twice are filtered out
from the validation set. Almost all of them are either noisy
or represent information that already appears in other pairs
(e.g., because of the difference in grammar).

We also use the strategy of subdomain recommenda-

tion. This strategy works in the following way. For each
UMLS term we collect its semantic type (which is a part of
the metadata provided in UMLS metathesaurus) and group
all extracted SemRep pairs by the term-pair criteria (com-
bination of subject and object types). Then we identify the
top-10 most common term-pairs subdomains and construct
the validation set from pairs belonging to these 10 subdo-
mains.
Negative samples generation. To generate negative sam-
ples per domain, the random sampling is used, that is, for
each positive sample we keep its subject and randomly sam-
ple the object belonging to the same semantic type as the ob-
ject of the source pair. We do this 10 times, thus having 10
negative domain-specific samples for each positive sample.
When the validation set is generated, we apply our ranking
criteria to it, obtaining a numerical score value s per each
sample, where s € [0, 1].
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Evaluation metrics. We propose our approach as a recom-
mendation system and to report our results we use a com-
bination of the following classification and recommendation
metrics:

e (Classification metrics: (1) Area under the receiver-
operating-characteristic curve (AUC ROC); (2) Area un-
der the precision-recall curve (AUC PR).

* Recommendation metrics: (1) Top-k precision (P.@k);
(2) Average precision (AP.@k).

We report these numbers in per subdomain manner to better
understand how the system performs with respect to specific
task (e.g. drug repurposing).

Results

To report the results, we provide the performance measures
for three AGATHA models trained on the same input data
(MEDLINE corpus and CORD-19 abstracts dataset):

1. AGATHA-O : Baseline AGATHA model (Sybrandt et al.
2020);

AGATHA-C : AGATHA-O with new UMLS layer and
SemRep enrichment;

AGATHA-GP AGATHA-C with additional deep
learning-based extracted and further filtered predicates.
It is done in this particular manner because the major role
in learning the proposed ranking criteria depends heavily on
the quality of extracted semantic predicates and their num-
ber, as they form the training set for the AGATHA rank-
ing module. At the moment of writing, no other general pur-
pose and available for public use HG system compliant with
the three validation criteria, namely, (a) ability to run thou-
sands of queries in a reasonable time, (b) ability to process
COVID-19 related vocabulary, and (c) ability to operate in
multiple domains was available for comparison. Compari-
son of the baseline AGATHA-O is discussed in (Sybrandt
et al. 2020).

The performance of both AGATHA-C and AGATHA-GP
allows to run thousands of queries in a very short time (in
the order of minutes), making the validation on a large num-
ber of samples possible. Unfortunately, given the current cir-
cumstances, large-scale validation for the specific scientific
subdomain (COVID-19 related hypotheses) is hard to imple-
ment, because well-established and reliable factual base is
being actively developed at the moment and big historic gap
for the vocabulary simply does not exist (e.g., the COVID-
19 term is less than two years old). We, however, provide the
validation set of positive connections extracted from CORD-
19 dataset citations added within the time frame from Octo-
ber 28, 2020 to January 21, 2021, which numbered at 77
thousand abstracts.

The overall training dataset contains 190.6 million sen-
tences, which results in 287 million nodes and 13.5 billion
edges (AGATHA-C model).

In Table 1, we compare aforementioned models using
the metrics described in the previous section. We present
predicate types with NLM semantic type codes (McCray,
Burgun, and Bodenreider 2001) due to space restrictions.
Both AGATHA-C and AGATHA-GP models show significant
gains when compared to AGATHA-O baseline model. Ben-
efits in the most problematic for the baseline model areas

2.

3.



ROC AUC PR AUC P.@10 P.@100 AP.@10 AP.@100

O C G O C GP O C GP O C GP O C GP O C GP
dsyn:dsyn  0.83 0.88 0.88 0.35 041 042 0.40 0.60 0.70 0.48 0.51 0.56 0.57 0.83 0.74 0.54 0.57 0.60
hsu:dsyn  0.86 091 091 036 041 046 0.50 0.10 0.80 0.45 047 0.57 049 033 0.66 046 042 0.64
ndg:dsyn  0.85 0.93 0.92 0.40 0.54 0.54 0.70 0.80 0.90 0.52 0.59 0.62 0.84 0.82 0.95 0.64 0.67 0.74
dsynfndg  0.81 0.89 0.90 0.32 043 045 030 0.80 0.60 0.45 048 0.50 0.50 0.96 0.57 0.49 0.60 0.57
fndgshumn 0.81 0.89 0.89 0.37 045 0.48 0.80 0.60 1.00 044 0.56 0.55 095 0.72 1.00 0.68 0.59 0.73
dsynhumn 0.77 0.84 0.85 027 0.33 0.37 0.50 0.50 0.50 0.35 040 0.52 0.50 0.35 0.40 0.50 0.47 0.54
topp:dsyn  0.87 0.92 0.92 0.38 0.52 0.50 0.30 0.60 0.70 0.50 0.60 0.57 0.29 0.77 0.76 0.47 0.67 0.62
orch:dsyn 0.87 0.89 0.88 0.34 045 045 0.40 0.80 0.40 036 045 0.51 0.65 098 0.70 0.45 0.63 0.61
geoaspco 075 074 0.90 022 020 0.44 020 0.30 0.50 030 025 0.53 0.33 040 0.51 0.32 026 0.57
aapp:dsyn  0.86 0.93 0.92 039 044 049 0.50 040 0.50 0.45 048 0.48 0.71 040 1.00 0.53 045 0.58
Mean 0.83 0.88 0.90 0.34 042 0.46 046 0.55 0.66 043 0.48 0.54 0.58 0.66 0.73 0.51 0.53 0.62

Table 1: Classification and recommendation quality metrics across recently popular COVID-19-related biomedical subdomains.
Labels O, C and GP stand for AGATHA-O , AGATHA-C and AGATHA-GP models, respectively. Used abbreviations: dsyn:
Disease or Syndrome; fopp: Therapeutic or Preventive Procedure; humn: Human; aapp: Amino Acid, Peptide, or Protein; phsu:
Pharmacologic Substance; orch: Organic Chemical; spco: Spatial Concept; findg: Finding; geoa: Geographic Area.

(e.g., (Geographic Area) — (Spatial Concept) denoted by
(geoa,spco)) serve the best illustration for that, showing up
to 0.25 advantage in ROC AUC (AGATHA-GP ). Important
biomedical domains, such as (Amino Acid, Peptide or Pro-
tein) — (Disease or Syndrome) denoted by (aapp,dsyn) also
show noticeable improvements (0.07 for AGATHA-C ). Due
to space limit we include the results for only top-10 most
popular subdomains. More can be found in the long preprint
version (Tyagin et al. 2021). Average ROC AUC value is
increased by 0.07.

Our validation strategy involves a big number of many-to-
many queries, making the area under precision-recall curve
another very illustrative metric. This is where the newly pro-
posed models show even more drastic improvements over
the baseline AGATHA-O . For some subdomains, like (Or-
ganic Chemical) — (Disease or Syndrome) (orch,dsyn) we
observe that new models improve the PR AUC score on
more than 0.1. Average PR AUC value is increased by 0.12.

Emergent Discovery Case Study

The proactive discovery of ongoing research findings is an
important component in the validation of hypothesis gen-
eration systems (Sybrandt, Shtutman, and Safro 2018). In
particular, in the current uncertain situation with COVID-
19 when a lot of unintentionally incorrect discoveries are
published, the validation must include human-in-the-loop
part even in limited capacity such as in (Aksenova et al.
2019; Spangler et al. 2014). To demonstrate the predictive
potential of AGATHA-C , we perform a case study on three
COVID-19-related novel connections manually selected by
the domain expert. These connections were published after
the cut date before which any data used in training was avail-
able to download at NIH.

At a low level, all AGATHA models use entity subsam-
pling to calculate pairwise ranking criteria, which means
that the absolute numbers may fluctuate slightly. Thus, to
present the numeric scores, each experiment was repeated
100 times to compute the average and standard deviation that
we present in Figure 3.
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AGATHA-C was tested whether it would be able to pre-
dict compounds potentially applicable for the treatment of
COVID-19 and the genes involved in the SARS-CoV-2
pathogenesis. The data confirming cardiovascular protective
effects of hormone oxytocine were published recently (Diep
2021; Wang and Wang 2021). The protective effect is linked
to anti-inflammatory activity of the hormone. AGATHA-C
ranked this connection at top 1.4 percent.

Similarly, we tested the prediction of the effects of
the other hormone, melatonin. Several publications, started
from November 2020 (Cardinali, Brown, and Pandi-Perumal
2020; Zimmermann and Curtis 2020; Alschuler et al. 2020;
Ho et al. 2021) show the protective effects of melatonin,
specifically for COVID-19 neurological complications. The
activity was linked to anti-oxidative effects of the melatonin.
This connection was ranked at top 5.6 percent.

Our system ranked at top 7.6 percent the involvement of
tetherin (BST2). The results published in 2021 (Stewart et al.
2021) show that tetherin restricts the secretion of SARS-
CoV-2 viral particles and is downregulated by SARS-CoV-
2. Therefore, pharmacological activation of tetherin expres-
sion, or inhibition of the degradation could be a promising
direction of the development of SARS-CoV-2 treatment.

To demonstrate AGATHA-C ranking capabilities, we use
similar strategy to what we proposed in the validation sec-
tion, but now we randomly generate 500 negative samples
for each pair of interest, maintaining the ratio of 1:500 be-
tween real-world connections and random noise. The goal
of this experiment is to rank the real connections above ran-
domly sampled pairs of the same semantic network types.
Ilustration of this experiment is presented in Figure 3. In
each of the three sub-figures, there are 501 results of scores
for 501 pairs. One of the results is now known to be cor-
rect, while other 500 are unknown. For example, for the first
known meaningful pair COVID-19-melatonin, we generated
500 pairs COVID-19-X pairs, where X is a randomly cho-
sen hormone. Because we are dealing with a medical do-
main, nobody can be 100% sure that all these 500 are irrel-
evant. However, most of them are not likely to be related
to COVID-19. In the histograms of Fig. 3 we show a dis-
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Figure 3: Score distributions in case study experiment. Presented scores are obtained with AGATHA-O and AGATHA-C

models.

tribution of scores for each 501 experiments for two mod-
els: baseline AGATHA-O and newly proposed AGATHA-
C . The solid lines indicate actual scores for the known pairs.
To conclude, if lab experiments were required to confirm the
connections, the known connections would be confirmed in
the top 10 percent of predictions which significantly reduces
the research time and cost.

Model ROC AUC PRAUC AP.@10
C (Oct 2020) 0.88 0.49 0.67
C (June 2021) 0.90 0.55 0.77

Table 2: Comparison between AGATHA-C models trained
with different cut dates and validated with recently discov-
ered pairs.

We also test how the inclusion of more recent training
data affects AGATHA performance. For that we take two
models trained with the same methodology (C models), but
one model contains only training data limited to October
28th 2020 and another model is larger and contains more
recent data (threshold: June 23rd 2021). Both models were
validated with the pairs firstly introduced between June 24th
2021 and August 11th 2021. Results of this experiment are
presented in Table 2. It shows that retraining the model using
the proposed method and more recent data yields in slightly
better scores in all basic metrics.

Lessons Learned and Open Problems

Quality of the information retrieval pipelines. Informa-
tion retrieval is an important part of any HG pipeline. In or-
der to uncover implicit connections, the system should be
able to capture existing explicit connections with as high
quality as possible.

We observed that the SemRep system performs better
concept and relation recognition when full abstracts are used
as input data instead of single sentences. SemRep also al-
lows to perform optional sortal anaphora resolution to ex-
tract co-references to the entities from neighbouring sen-
tences, which was shown to be useful in (Kilicoglu et al.
2016) and is used in this work.

“Positive” research bias. The absence of published nega-
tive research results is a big problem for the HG field. With
mostly positive results available, we often have to gener-
ate negative examples using some kind of random sampling.
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These negative samples likely do not adequately represent
the real nature of negatively confirmed scientific findings.
Consequently, one of the most important future work direc-
tions in the area of HG is to accurately distinguish and lever-
age positive and negative proposed results.

The nature of input corpora. The question of what should
be used as input to a topic-modeling based hypothesis gen-
eration system is raised in (Sybrandt et al. 2018). Using full-
text papers shows an improvement, but the trade-off between
run time and output quality was barely justifiable. However,
deep learning models have a greater potential for extracting
useful information from large input sources, and as it was
demonstrated in our previous work (Sybrandt et al. 2020),
show significant performance advancements. Thus the ques-
tion of using full-text papers in deep learning-based hypoth-
esis generation systems should be addressed.

Knowledge resolution. Our newly proposed systems
showed that the knowledge resolution plays a major role
in subdomain recommendation. To increase the scope of
model expertise (and the scope of potential applications be-
yond the biomedical fields) we deliberately incorporate a
general-purpose information retrieval system RnnOIE into
AGATHA-GP . Although, both systems process all types of
queries, the general purpose predicates participated in train-
ing significantly improve “macroscopic” types of queries.
Predicate Extraction. One of the most important aspects
of any hypothesis generation system is to give it the ability
to reject hypothesis which are not backed by any research.
This task becomes difficult when we consider the positive
research bias of the existing literature. We aim to address
this enhancement in our future work.

Conclusions

We present two graph mining transformer-based models
AGATHA-C and AGATHA-GP , for micro- and macro-
scopic scales of queries respectively, which are designed
to help domain experts solve high-priority research prob-
lems and accelerate scientific discovery. We perform per-
subdomain validation of these new models on a rapidly
changing COVID-19 focused dataset, composed of re-
cently published concept pairs and demonstrate that the
proposed models achieve state-of-the-art prediction quality.
Both models significantly outperform the existing baselines.
We deploy the proposed models to the broad scientific com-
munity and believe that our contribution can raise more in-
terest in prospective hypothesis generation applications.
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